limma:
Linear Models for Microarray and RNA-Seq Data
User’s Guide

Gordon K. Smyth, Matthew Ritchie, Natalie Thorne,
James Wettenhall, Wei Shi and Yifang Hu
Bioinformatics Division, The Walter and Eliza Hall Institute
of Medical Research, Melbourne, Australia

First edition 2 December 2002
Last revised 8 September 2015

This free open-source software implements academic research
by the authors and co-workers. If you use it, please support
the project by citing the appropriate journal articles listed in
Section 2.1.

Contents

1 Introduction

2 Preliminaries

2.1 Citing limma oL
2.2 Installation L e
2.3 Howtogethelp. e
3 Quick Start
3.1 A brief introduction to R
3.2 Sample limma Session Lo
3.3 Data Objects o e e
4 Reading Microarray Data
4.1 Scope of this Chapter
4.2 Recommended Files Lo
4.3 The Targets Frame e
4.4 Reading Two-Color Intensity Data,
4.5 Reading Single-Channel Agilent Intensity Data
4.6 Reading lllumina BeadChip Data
4.7 Image-derived Spot Quality Weightso 0oL
4.8 Reading Probe Annotation
4.9 Printer Layout
4.10 The Spot Types File o
5 Quality Assessment
6 Pre-Processing Two-Color Data
6.1 Background Correction
6.2 Within-Array Normalization L
6.3 Between-Array Normalization
6.4 Using Objects from the marray Package

7 Filtering

11
11
12
13

15
15
15
15
17
19
19
20
21
22
22

24

26
26
28
30
33

34

8 Linear Models Overview
8.1 Introduction e e
8.2 Single-Channel Designs
8.3 Common Reference Designs
8.4 Direct Two-Color Designs e

9 Single-Channel Experimental Designs
9.1 Introduction L e
9.2 Two Groups« o v v i i
9.3 Several Groupso
9.4 Additive Models and Blocking oo
9.4.1 Paired Sampleso
9.4.2 Blocking
9.5 Interaction Models: 2 x 2 Factorial Designs
9.5.1 Questions of Interest
9.5.2 Analysing as for a Single Factor
9.5.3 A Nested Interaction Formula
9.5.4 Classic Interaction Models
9.6 Time Course Experiments
9.6.1 Replicated time points L L
9.6.2 Many time points. L. e
9.7 Multi-level Experiments L

10 Two-Color Experiments with a Common Reference
10.1 Introduction L Lo
10.2 Two Groups . . .« o o v v vt e
10.3 Several Groups e e e

11 Direct Two-Color Experimental Designs
11.1 Introduction oL
11.2 Simple Comparisons e e
11.2.1 Replicate Arrays e
11.2.2 Dye SWaps o v e e e
11.3 A Correlation Approach to Technical Replication

12 Separate Channel Analysis of Two-Color Data

13 Statistics for Differential Expression
13.1 Summary Top-Tables
13.2 Fitted Model Objects e
13.3 Multiple Testing Across Contrasts

14 Array Quality Weights
14.1 Introduction e e e e
14.2 Example 1. e e
14.3 Example 2 oL e
14.4 When to Use Array Weights

35
35
36
37
38

40
40
40
42
42
42
43
43
43
44
44
45
46
46
48
48

51
o1
o1
93

54
54
54
o4
95
o6

58

60
60
61
62

15 RN A-seq Data 69

15.1 Introduction L 69
15.2 Making a count matrix Lo L 69
15.3 Differential expression L L 69
15.4 Sample quality weights 70
15.5 Differential splicing L L 72
16 Two-Color Case Studies 74
16.1 Swirl Zebrafish: A Single-Group Experiment 74
16.2 Apoal Knockout Mice: A Two-Group Common-Reference Experiment 85
16.3 Weaver Mutant Mice: A Composite 2x2 Factorial Experiment 88
16.3.1 Background 88
16.3.2 Sample Preparation and Hybridizations 88
16.3.3 Datainput e 89
16.3.4 Annotation 90
16.3.5 Quality Assessment and Normalization 90
16.3.6 Setting Up the Linear Model 92
16.3.7 Probe Filtering and Array Quality Weights 93
16.3.8 Differential expressiono 93
16.4 Bobl Mutant Mice: Arrays With Duplicate Spots. 94
17 Single-Channel Case Studies 98
17.1 Lrp Mutant Ecoli: Two Group Experiment with Affymetrix Arrays 98
17.2 Effect of Estrogen on Breast Cancer Tumor Cells: A 2x2 Factorial Experiment with
Affymetrix Arrays oL 100
17.3 Comparing Mammary Progenitor Cell Populations with Illumina BeadChips. 105
17.3.1 Introduction 105
17.3.2 The target RNA samples 105
17.3.3 The expression profiles 106
17.3.4 How many probes are truly expressed? oL 107
17.3.5 Normalization and filtering L 107
17.3.6 Within-patient correlations L Lo L Lo 108
17.3.7 Differential expression between cell types 0oL 108
17.3.8 Signature genes for luminal progenitor cells 109
17.4 Time Course Effects of Corn Oil on Rat Thymus with Agilent 4x44K Arrays 110
18 RN A-Seq Case Studies 114
18.1 Profiles of Yoruba HapMap Individuals 114
18.1.1 Background 114
18.1.2 Data availability 114
18.1.3 Yoruba Individuals and FASTQ Files 114
18.1.4 Mapping reads to the reference genome 116
18.1.5 Annotation 118
18.1.6 DGEList object 119
18.1.7 Filtering e 119
18.1.8 Scale normalization 119
18.1.9 Linear modeling 121

18.1.10 Gene set testingo 124

18.1.11 Session information 127
18.1.12 Acknowledgements 128
18.2 Differential Splicing after Pasilla Knockdown 128
18.2.1 Background 128
18.2.2 GEO samples and SRA Files 128
18.2.3 Mapping reads to the reference genome, 129
18.2.4 Read counts for exonso 130
18.2.5 Assemble DGEList and sum counts for technical replicates 130
18.2.6 Gene annotationo Lo 131
18.2.7 Filtering oL 131
18.2.8 Scale normalization 132
18.2.9 Linear modelling 132
18.2.10 Alternate splicing L 134
18.2.11 Session information 138
18.2.12 Acknowledgements 139

Chapter 1

Introduction

Limma is a package for the analysis of gene expression data arising from microarray or RNA-Seq
technologies [28]. A core capability is the use of linear models to assess differential expression in
the context of multifactor designed experiments. Limma provides the ability to analyze comparisons
between many RNA targets simultaneously. It has features that make the analyses stable even for
experiments with small number of arrays—this is achieved by borrowing information across genes. It
is specially designed for analysing complex experiments with a variety of experimental conditions and
predictors. The linear model and differential expression functions are applicable to data from any
quantitative gene expression technology including microoarrays, RNA-seq and quantitative PCR.
Limma can handle both single-channel and two-color microarrays.

This guide gives a tutorial-style introduction to the main limma features but does not describe
every feature of the package. A full description of the package is given by the individual func-
tion help documents available from the R online help system. To access the online help, type
help(package=limma) at the R prompt or else start the html help system using help.start() or
the Windows drop-down help menu.

Limma provides a strong suite of functions for reading, exploring and pre-processing data from
two-color microarrays. The Bioconductor package marray provides alternative functions for reading
and normalizing spotted two-color microarray data. The marray package provides flexible location
and scale normalization routines for log-ratios from two-color arrays. The limma package overlaps
with marray in functionality but is based on a more general concept of within-array and between-array
normalization as separate steps. If you are using limma in conjunction with marray, see Section 6.4.

Limma can read output data from a variety of image analysis software platforms, including
GenePix, ImaGene etc. Either one-channel or two-channel formats can be processed.

The Bioconductor package affy provides functions for reading and normalizing Affymetrix mi-
croarray data. Advice on how to use limma with the affy package is given throughout the User’s
Guide, see for example Section 8.2 and the E. coli and estrogen case studies.

Functions for reading and pre-processing expression data from Illumina BeadChips were intro-
duced in limma 3.0.0. See the case study in Section 17.3 for an example of these. Limma can also be
used in conjunction with the vst or beadarray packages for pre-processing Illumina data.

From version 3.9.19, limma includes functions to analyse RNA-Seq experiments, demonstrated
in Case Study 11.8. The approach is to convert a table of sequence read counts into an expression
object which can then be analysed as for microarray data.

This guide describes limma as a command-driven package. Graphical user interfaces to the most
commonly used functions in limma are available through the packages limmaGUI [45], for two-color

data, or affyiImGUI [44], for Affymetrix data. Both packages are available from Bioconductor.
This user’s guide should be correct for R Versions 2.8.0 through 3.2.0 and limma versions 2.16.0
through 3.25.1. The limma homepage is http://bioinf.wehi.edu.au/limma.

Chapter 2

Preliminaries

2.1 Citing limma

Limma implements a body of methodological research by the authors and co-workers. Please try to
cite the appropriate papers when you use results from the limma software in a publication, as such
citations are the main means by which the authors receive professional credit for their work.

The limma software package itself can be cited as:

Ritchie, ME, Phipson, B, Wu, D, Hu, Y, Law, CW, Shi, W, and Smyth, GK (2015).
limma powers differential expression analyses for RN A-sequencing and microarray studies.
Nucleic Acids Research 43(7), e47.

The above article reviews the overall capabilities of the limma package, both new and old.
Other articles describe the statistical methodology behind particular functions of the package. If
you use limma for differential expression analysis, please cite:

Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential
expression in microarray experiments. Statistical Applications in Genetics and Molecular
Biology, Vol. 3, No. 1, Article 3.

http://wuw.statsci.org/smyth/pubs/ebayes.pdf

The above article describes the linear modeling approach implemented by 1mFit and the empirical
Bayes statistics implemented by eBayes, topTable etc.
If you use the voom function for RNA-seq analysis, please cite:

Law, CW, Chen, Y, Shi, W, and Smyth, GK (2014). Voom: precision weights unlock
linear model analysis tools for RNA-seq read counts. Genome Biology 15, R29.

If you use limma with duplicate spots or technical replication, please cite

Smyth, G. K., Michaud, J., and Scott, H. (2005). The use of within-array replicate spots
for assessing differential expression in microarray experiments. Bioinformatics 21, 2067—
2075.

http://www.statsci.org/smyth/pubs/dupcor.pdf

The above article describes the theory behind the duplicateCorrelation function.
If you use limma for normalization of two-color microarray data, please cite one of:

Smyth, G. K., and Speed, T. P. (2003). Normalization of cDNA microarray data. Methods
31, 265-273.
http://www.statsci.org/smyth/pubs/normalize.pdf

Oshlack, A., Emslie, D., Corcoran, L., and Smyth, G. K. (2007). Normalization of
boutique two-color microarrays with a high proportion of differentially expressed probes.
Genome Biology 8, R2.

The first of these articles describes the functions read.maimages, normalizeWithinArrays and normalize-
BetweenArrays. The second describes the use of spot quality weights to normalize on control probes.
The various options provided by the backgroundCorrect function are explained by:

Ritchie, M. E., Silver, J., Oshlack, A., Silver, J., Holmes, M., Diyagama, D., Holloway, A.,
and Smyth, G. K. (2007). A comparison of background correction methods for two-colour
microarrays. Bioinformatics 23, 2700-2707.

If you use arrayWeights or related functions to estimate sample quality weights, please cite:

Ritchie, M. E., Diyagama, D., Neilson, van Laar, R., J., Dobrovic, A., Holloway, A., and
Smyth, G. K. (2006). Empirical array quality weights in the analysis of microarray data.
BMC Bioinformatics 7, 261.

If you use the read.ilmn, nec or neqc functions to process Illumina BeadChip data, please cite:

Shi, W, Oshlack, A, and Smyth, GK (2010). Optimizing the noise versus bias trade-off
for Illumina Whole Genome Expression BeadChips. Nucleic Acids Research 38, €204.

The propexpr function is explained by

Shi, W, de Graaf, C, Kinkel, S, Achtman, A, Baldwin, T, Schofield, L, Scott, H, Hilton,
D, Smyth, GK (2010). Estimating the proportion of microarray probes expressed in an
RNA sample. Nucleic Acids Research 38, 2168-2176.

The 1mscFit function for separate channel analysis of two-color microarray data is explained by:

Smyth, GK, and Altman, NS (2013). Separate-channel analysis of two-channel microar-
rays: recovering inter-spot information. BMC Bioinformatics 14, 165.

Finally, if you are using one of the menu-driven interfaces to the software, please cite the appro-
priate one of

Wettenhall, J. M., and Smyth, G. K. (2004). limmaGUI: a graphical user interface for
linear modeling of microarray data. Bioinformatics, 20, 3705-3706.

Wettenhall, J. M., Simpson, K. M., Satterley, K., and Smyth, G. K. (2006). affylmGUTI:
a graphical user interface for linear modeling of single channel microarray data. Bioin-
formatics 22, 897-899.

2.2 Installation

Limma is a package for the R computing environment and it is assumed that you have already
installed R. See the R project at http://www.r-project.org. To install the latest version of limma,
you will need to be using the latest version of R.

Limma is part of the Bioconductor project at http://www.bioconductor.org. (Prior to R 2.6.0,
limma was also available from the R project CRAN site.) It is one of a default set of packages installed
by biocLite. You can install a set of core Bioconductor packages by

> source("http://www.bioconductor.org/biocLite.R")
> biocLite()

To get just limma alone (much quicker) you can use

> biocLite("limma")

This will allow you do to perform many basic analyses, although you’ll probably want

> biocLite("statmod")

as well.

Bioconductor works on a 6-monthly official release cycle, lagging each major R release by a short
time. As with other Bioconductor packages, there are always two versions of limma. Most users will
use the current official release version, which will be installed by biocLite if you are using the current
version of R. There is also a developmental version of limma that includes new features due for the
next official release. The developmental version will be installed if you are using the developmental
version of R. The official release version always has an even second number (for example 3.6.5),
whereas the developmental version has an odd second number (for example 3.7.7).

Limma is updated frequently. Once you have installed limma, the change-log can also be viewed
from the R prompt. To see the most recent 20 lines type:

> changeLog(n=20)

2.3 How to get help

Most questions about limma will hopefully be answered by the documentation or references. If you’'ve
run into a question which isn’t addressed by the documentation, or you’ve found a conflict between
the documentation and software itself, then there is an active support community that can offer help.

The authors of the package always appreciate receiving reports of bugs in the package functions
or in the documentation. The same goes for well-considered suggestions for improvements. All
other questions or problems concerning limma should be posted to the Bioconductor support site
https://support.bioconductor.org. Please send requests for general assistance and advice to the
support site rather than to the individual authors. Posting questions to the Bioconductor mailing
list has a number of advantages. First, the mailing list includes a community of experienced limma
users who can answer most common questions. Second, the limma authors try hard to ensure that
any user posting to Bioconductor receives assistance. Third, the mailing list allows others with the
same sort of questions to gain from the answers. Users posting to the mailing list for the first time
will find it helpful to read the posting guide at http://www.bioconductor.org/help/support/
posting-guide.

Note that each function in limma has its own online help page, as described in the next chapter.
If you have a question about any particular function, reading the function’s help page will often
answer the question very quickly. In any case, it is good etiquette to check the relevant help page
first before posting a question to the support site.

10

Chapter 3

Quick Start

3.1 A brief introduction to R

R is a program for statistical computing. It is a command-driven language meaning that you have
to type commands into it rather than pointing and clicking using a mouse. In this guide it will be
assumed that you have successfully downloaded and installed R from http://www.r-project.org.
A good way to get started is to type

> help.start()

at the R prompt or, if you're using R for Windows, to follow the drop-down menu items Help > Html
help. Following the links Packages > limma from the html help page will lead you to the contents
page of help topics for functions in limma.

Before you can use any limma commands you have to load the package by typing

> library(limma)

at the R prompt. You can get help on any function in any loaded package by typing ? and the
function name at the R prompt, for example

> ?read.maimages

or equivalently

> help("read.maimages")

for detailed help on the read.maimages function. The individual function help pages are especially
important for listing all the arguments which a function will accept and what values the arguments
can take.

A key to understanding R is to appreciate that anything that you create in R is an “object”.
Objects might include data sets, variables, functions, anything at all. For example

> x <= 2
will create a variable x and will assign it the value 2. At any stage of your R session you can type

> objects()

to get a list of all the objects you have created. You can see the contents of any object by typing
the name of the object at the prompt, for example either of the following commands will print out
the contents of x:

11

> show(x)
> x

We hope that you can use limma without having to spend a lot of time learning about the R
language itself but a little knowledge in this direction will be very helpful, especially when you want
to do something not explicitly provided for in limma or in the other Bioconductor packages. For
more details about the R language see An Introduction to R which is available from the online help.
For more background on using R for statistical analyses see [6].

3.2 Sample limma Session

This is a quick overview of what an analysis might look like. The first example assumes four replicate
two-color arrays, the second and fourth of which are dye-swapped. We assume that the images have
been analyzed using GenePix to produce a .gpr file for each array and that a targets file targets.txt
has been prepared with a column containing the names of the .gpr files.

> library(limma)
> targets <- readTargets("targets.txt")

Set up a filter so that any spot with a flag of —99 or less gets zero weight.
> f <- function(x) as.numeric(x$Flags > -99)
Read in the data.

> RG <- read.maimages(targets, source="genepix", wt.fun=f)

The following command implements a type of adaptive background correction. This is optional but
recommended for GenePix data.

> RG <- backgroundCorrect(RG, method="normexp", offset=50)

Print-tip loess normalization:

> MA <- normalizeWithinArrays(RG)

Estimate the fold changes and standard errors by fitting a linear model for each gene. The design
matrix indicates which arrays are dye-swaps.

> fit <- 1lmFit(MA, design=c(-1,1,-1,1))

Apply empirical Bayes smoothing to the standard errors.
> fit <- eBayes(fit)

Show statistics for the top 10 genes.

> topTable(fit)

The second example assumes Affymetrix arrays hybridized with either wild-type (wt) or mutant
(mu) RNA. There should be three or more arrays in total to ensure some replication. The targets
file is now assumed to have another column Genotype indicating which RNA source was hybridized
on each array.

12

> library(gcrma)
> library(limma)
> targets <- readTargets("targets.txt")

Read and pre-process the Affymetrix CEL file data.

> ab <- ReadAffy(filenames=targets$FileName)
> eset <- gcrma(ab)

Form an appropriate design matrix for the two RNA sources and fit linear models. The design matrix
has two columns. The first represents log-expression in the wild-type and the second represents the
log-ratio between the mutant and wild-type samples. See Section 9.2 for more details on the design
matrix.

> design <- cbind(WT=1, MUvsWT=targets$Genotype=="mu")
> fit <- lmFit(eset, design)

> fit <- eBayes(fit)

> topTable(fit, coef="MUvsWT")

This code fits the linear model, smooths the standard errors and displays the top 10 genes for the
mutant versus wild-type comparison.

3.3 Data Objects

There are six main types of data objects created and used in limma:

EListRaw. Raw Expression list. A class used to store single-channel raw intensities prior to
normalization. Intensities are unlogged. Objects of this class contain one row for each probe
and one column for each array. The function read.ilmn() for example creates an object of this
class.

EList. Expression list. Contains background corrected and normalized log-intensities. Usually
created from an EListRaw objecting using normalizeBetweenArrays() or neqc().

RGList. Red-Green list. A class used to store raw two-color intensities as they are read in from an
image analysis output file, usually by read.maimages().

MAList. Two-color intensities converted to M-values and A-values, i.e., to within-spot and whole-
spot contrasts on the log-scale. Usually created from an RGList using MA.RG() or normalizeWithinArrays().
Objects of this class contain one row for each spot. There may be more than one spot and
therefore more than one row for each probe.

MArrayLM. MicroArray Linear Model. Store the result of fitting gene-wise linear models to the
normalized intensities or log-ratios. Usually created by 1mFit (). Objects of this class normally
contain one row for each unique probe.

TestResults. Store the results of testing a set of contrasts equal to zero for each probe. Usually
created by decideTests(). Objects of this class normally contain one row for each unique
probe.

13

All these objects can be treated like any list in R. For example, MA$M extracts the matrix of M-values
if MA is an MAList object, or fit$coef extracts the coefficient estimates if fit is an MArrayLM object.
names (MA) shows what components are contained in the object. For those who are familiar with
matrices in R, all these objects are also designed to obey many analogies with matrices. In the case
of RGList and MAList, rows correspond to spots and columns to arrays. In the case of MarrayLM, rows
correspond to unique probes and columns to parameters or contrasts. The functions summary, dim,
length, ncol, nrow, dimnames, rownames, colnames have methods for these classes. For example

> dim(RG)

[1] 11088 4

shows that the RGList object RG contains data for 11088 spots and 4 arrays.

> colnames (RG)

will give the names of the filenames or arrays in the object, while if fit is an MArrayLM object then

> colnames(fit)

would give the names of the coefficients in the linear model fit.

Objects of any of these classes may be subsetted, so that RG[,j] means the data for array j and
RG[i,] means the data for probes indicated by the index i. Multiple data objects may be combined
using cbind, rbind or merge. Hence

> RG1 <- read.maimages(files[1:2], source="genepix")
> RG2 <- read.maimages(files[3:5], source="genepix")
> RG <- cbind(RG1, RG2)

is equivalent to

> RG <- read.maimages(files[1:5], source="genepix")

Alternatively, if control status has been set in the MAList object then

> i <- MA$genes$Status=="Gene"
> MA[i,]

might be used to eliminate control spots from the data object prior to fitting a linear model.

14

Chapter 4

Reading Microarray Data

4.1 Scope of this Chapter

This chapter covers most microarray types other than Affymetrix. To read data from Affymetrix
GeneChips, please use the affy, gcrma or aroma.affymetrix packages to read and normalize the data.

4.2 Recommended Files

We assume that an experiment has been conducted with one or more microarrays, all printed with
the same library of probes. Each array has been scanned to produce a TIFF image. The TIFF
images have then been processed using an image analysis program such a ArrayVision, ImaGene,
GenePix, QuantArray or SPOT to acquire the red and green foreground and background intensities
for each spot. The spot intensities have then been exported from the image analysis program into
a series of text files. There should be one file for each array or, in the case of Imagene, two files for
each array.

You will need to have the image analysis output files. In most cases these files will include the IDs
and names of the probes and possibly other annotation information. A few image analysis programs,
for example SPOT, do not write the probe IDs into the output files. In this case you will also need a
genelist file which describes the probes. It most cases it is also desirable to have a targets file which
describes which RNA sample was hybridized to each channel of each array. A further optional file is
the spot types file which identifies special probes such as control spots.

4.3 The Targets Frame

The first step in preparing data for input into limma is usually to create a targets file which lists the
RNA target hybridized to each channel of each array. It is normally in tab-delimited text format
and should contain a row for each microarray in the experiment. The file can have any name but
the default is Targets.txt. If it has the default name, it can be read into the R session using

> targets <- readTargets()

Once read into R, it becomes the targets frame.
The targets frame normally contains a FileName column, giving the name of the image-analysis
output file, a Cy3 column giving the RNA type labelled with Cy3 dye for that slide and a Cy5

15

column giving the RNA type labelled with Cy5 dye for that slide. Other columns are optional. The
targets file can be prepared using any text editor but spreadsheet programs such as Microsoft Excel
are convenient. The targets file for the Swirl case study includes optional SlideNumber and Date

columns:
Ed Microsoft Excel - Swirlsample.txt _|EI|1|
File Edit Wiew Insert Format Tools Data Window Help -0 X
DeEdesmn SRV LB o-@gz-2 e 2
H11 - &
A | B | ¢ | b [E | F [T
| 1 |SlideNumber FileName Cy3 Cya Date
| 2 | 81 swirl. 1.spot | swirl wild type | 20/09,/2001 J
| 3 | 52 swirl. 2. spot \wild type | swirl 20/09/2001
EN 93 swirl. 3. spot | switl wild type | 8/11,/2001
| 5 | 94 swirl. 4. spot wild type | swirl 871172001
G -
4 b H[\Swirlsample / 1« | Llj_‘
Ready MM o

It is often convenient to create short readable labels to associate with each array for use in output
and in plots, especially if the file names are long or non-intuitive. A column containing these labels
can be included in the targets file, for example the Name column used for the Apoal case study:

L=

@ File Edit ‘“iew Insert Format Tools Data Window Help -0 X

et SRV i v-@=-2im>E 2
525 - &

A B ¢ | o | E | F | &
| 1 |SlideMumber MName FileName Cy3 Cy5 —
| 2 | 1l cl.spot Ref wild type
| 3 | 22 c2.spat Ref wild type
EN 33 cl.spot Ref wild type
| 5 | 4cd cd spot Ref wild type
| 6 | j=3i=] chospot Ref wild type
| 7 | G B ch.spot Ref wild type
| g | 7led c/.spot Ref wild type
| 9 | G cB cB.spot Ref wild type
|10 | 9 k1 k1.spot Ref Apohl KO
|11 | 10 k2 k2.spat Ref ApoAl KD
| 12 | 11 k3 k3.spot Ref Apohl KD
|13 | 12 k4 kd. spot Ref Apohl KD
| 14 | 13 k5 kG spot Ref Apohl KD
| 15 | 14 ki kG spot Ref Apohl KD o
| 16 | 15 k7 kv spot Ref Apohl KO

1 16 k& kB.spot Ref Apohl KO =
I; 01 ¥ MM ApOAITargets / JLI | LI
Ready UM o

This column can be used to created row names for the targets frame by

> targets <- readTargets("targets.txt", row.names="Name")

The row names can be propagated to become array names in the data objects when these are read
in.

For ImaGene files, the FileName column is split into a FileNameCy3 column and a FileNameCy5
because ImaGene stores red and green intensities in separate files. This is a short example:

16

E3 Microsoft Excel - maTargetsImaGene19and20.ExE 100 x|

File Edit ‘“iew Insert Format Tools Data Window Help -0 X

Dedam SRy BB >-&=-2iB0E »
K17 - 1

A [B [© [o [E | F 3

| 1 ZlideMumber FileMameCy3 FileMNameCys Cy3 Cy5 I~

[gul

19 slide19wE05 tut slide19wbB5 txt WT Mutant
20 slide20wE95 txt | slide20wh85. txt Mutant WT

a1}

s

5 -
M 4 » H[ymaTargetsImaGenel9and20 / Jil | ﬂj_‘

Ready UM v

4.4 Reading Two-Color Intensity Data

Let files be a character vector containing the names of the image analysis output files. The fore-
ground and background intensities can be read into an RGList object using a command of the form

> RG <- read.maimages(files, source="<imageanalysisprogram>", path="<directory>")

where <imageanalysisprogram> is the name of the image analysis program and <directory> is the
full path of the directory containing the files. If the files are in the current R working directory then
the argument path can be omitted; see the help entry for setwd for how to set the current working
directory. The file names are usually read from the Targets File. For example, the Targets File
Targets.txt is in the current working directory together with the SPOT output files, then one might
use

> targets <- readTargets()
> RG <- read.maimages(targets$FileName, source="spot")

Alternatively, and even more simply, one may give the targets frame itself in place of the files
argument as

> RG <- read.maimages(targets, source="spot")

In this case the software will look for the column FileName in the targets frame.
If the files are GenePix output files then they might be read using

> RG <- read.maimages(targets, source="genepix")

given an appropriate targets file. Consult the help entry for read.maimages to see which other image
analysis programs are supported. Files are assumed by default to be tab-delimited, although other
separators can be specified using the sep= argument.

Reading data from ImaGene software is a little different to that of other image analysis programs
because the red and green intensities are stored in separate files. This means that the targets frame
should include two filename columns called, say, FileNameCy3 and FileNameCy5, giving the names of
the files containing the green and red intensities respectively. An example is given in Section 4.3.
Typical code with ImaGene data might be

> targets <- readTargets()
> files <- targets[,c("FileNameCy3","FileNameCy5")]
> RG <- read.maimages(files, source="imagene")

For ImaGene data, the files argument to read.maimages() is expected to be a 2-column matrix of
filenames rather than a vector.
The following table gives the default estimates used for the foreground and background intensities:

17

Source

Foreground

Background

agilent
agilent.mean
agilent.median

Median Signal
Mean Signal
Median Signal

Median Signal
Median Signal
Median Signal

bluefuse AMPCH None

genepix F Mean B Median

genepix.median F Median B Median

genepix.custom Mean B

imagene Signal Mean Signal Median, or Signal Mean if auto
segmentation has been used

quantarray Intensity Background

scanarrayexpress Mean Median

smd.old I.MEAN B_MEDIAN

smd Intensity (Mean) Background (Median)

spot mean morph

spot.close.open mean morph.close.open

The default estimates can be over-ridden by specifying the columns argument to read.maimages().
Suppose for example that GenePix has been used with a custom background method, and you wish
to use median foreground estimates. This combination of foreground and background is not provided
as a pre-set choice in limma, but you can specify it by

> RG <- read.maimages(files,source="genepix",
+ columns=list (R="F635 Median",G="F532 Median",Rb="B635",Gb="B532"))

What should you do if your image analysis program is not in the above list? If the image output
files are in standard format, then you can supply the annotation and intensity column names yourself.
For example,

> RG <- read.maimages(files,

+ columns=1ist (R="F635 Mean",G="F532 Mean",Rb="B635 Median",Gb="B532 Median"),
+ annotation=c("Block","Row","Column","ID","Name"))
is exactly equivalent to source="genepix". “Standard format” means here that there is a unique

column name identifying each column of interest and that there are no lines in the file following the
last line of data. Header information at the start of the file is acceptable, but extra lines at the end
of the file will cause the read to fail.

It is a good idea to look at your data to check that it has been read in correctly. Type

> show(RG)
to see a print out of the first few lines of data. Also try
> summary (RG$R)

to see a five-number summary of the red intensities for each array, and so on.
It is possible to read the data in several steps. If RG1 and RG2 are two data sets corresponding to
different sets of arrays then

> RG <- cbind(RG1, RG2)

will combine them into one large data set. Data sets can also be subsetted. For example RG[,1] is
the data for the first array while RG[1:100,] is the data on the first 100 genes.

18

4.5 Reading Single-Channel Agilent Intensity Data

Reading single-channel data is similar to two-color data, except that the argument green.only=TRUE
should be added to tell read.maimages () not to expect a red channel. Single-channel Agilent inten-
sities, as produced by Agilent’s Feature Extraction software, can be read by

> x <- read.maimages(files, source="agilent", green.only=TRUE)
or

> x <- read.maimages(targets, source="agilent", green.only=TRUE)
As for two-color data, the path argument is used:

> x <- read.maimages(files, source="agilent", path="<directory>", green.only=TRUE)

if the data files are not in the current working directory. The green.only argument tells read.maimages ()
to output an EList object instead an RGList. The raw intensities will be stored in the E component
of the data object, and can be checked for example by

> summary (x$E)

Agilent’s Feature Extraction software has the ability to estimate the foreground and background
signals for each spot using either the mean or the median of the foreground and background pixels.
The default for read.maimages is to read the median signal for both foreground and background.
Alternatively

> x <- read.maimages(targets, source="agilent.mean", green.only=TRUE)

would read the mean foreground signal while still using median for the background. The possible
values for source are:

Source Foreground Background
agilent Median Signal Median Signal
agilent.mean Mean Signal Median Signal

agilent.median Median Signal Median Signal

As for two-color data, the default choices for the foreground and background estimates can be over-
ridden by specifying the columns argument to read.maimages().

Agilent Feature Extraction output files contain probe annotation columns as well as intensity
columns. By default, read.maimages() will read the following annotation columns, if they exist:
Row, Col, Start, Sequence, SwissProt, GenBank, Primate, GenPept, ProbeUID, ControlType, ProbeName,
GeneName, SystematicName, Description.

See Section 17.4 for a complete worked case study with single-channel Agilent data.

4.6 Reading Illumina BeadChip Data

Illumina whole-genome BeadChips require special treatment. Illumina images are scanned by Bead-
Scan software, and Illumina’s BeadStudio or GenomeStudio software can be used to export probe
summary profiles. The probe summary profiles are tab-delimited files containing the intensity data.
Typically, all the arrays processed at one time are written to a single file, with several columns cor-
responding to each array. We recommend that intensities should be exported from GenomeStudio

19

without background correction or normalization, as these pre-processing steps can be better done by
limma functions. GenomeStudio can also be asked to export profiles for the control probes, and we
recommend that this be done as well.

Illumina files differ from other platforms in that each image output file contains data from multiple
arrays and in that intensities for control probes are written to a separate file from the regular probes.
There are other features of these files that can optionally be used for pre-processing and filtering.
Illumina probe summary files can be read by the read.ilmn function. A typical usage is

> x <- read.ilmn("probe profile.txt", ctrlfiles="control probe profile.txt")

where probe profile.txt is the name of the main probe summary profile file and control probe
profile.txt is the name of the file containing profiles for control probes.

If there are multiple probe summary profiles to be read, and the samples are summarized in a
targets frame, then the read.ilmn.targets function can be used.

Reading the control probe profiles is optional but recommended. If the control probe profiles are
available, then the Illumina data can be favorably background corrected and normalized using the
neqc or nec functions. Otherwise, [llumina data is background corrected and normalized as for other
single channel platforms.

See Section 17.3 for a fully worked case study with Illumina microarray data.

4.7 Image-derived Spot Quality Weights

Image analysis programs typically output a lot of information, in addition to the foreground and
background intensities, which provides information on the quality of each spot. It is sometimes
desirable to use this information to produce a quality index for each spot which can be used in
the subsequent analysis steps. One approach is to remove all spots from consideration which do
not satisfy a certain quality criterion. A more sophisticated approach is to produce a quantitative
quality index which can be used to up or downweight each spot in a graduated way depending on
its perceived reliability. limma provides an approach to spot weights which supports both of these
approaches.

The limma approach is to compute a quantitative quality weight for each spot. Weights are
treated similarly in limma as they are treated in most regression functions in R such as 1m(). A
zero weight indicates that the spot should be ignored in all analysis as being unreliable. A weight
of 1 indicates normal quality. A spot quality weight greater or less than one will result in that spot
being given relatively more or less weight in subsequent analyses. Spot weights less than zero are
not meaningful.

The quality information can be read and the spot quality weights computed at the same time as
the intensities are read from the image analysis output files. The computation of the quality weights
is defined by the wt.fun argument to the read.maimages() function. This argument is a function
which defines how the weights should be computed from the information found in the image analysis
files. Deriving good spot quality weights is far from straightforward and depends very much on the
image analysis software used. limma provides a few examples which have been found to be useful by
some researchers.

Some image analysis programs produce a quality index as part of the output. For example,
GenePix produces a column called Flags which is zero for a “normal” spot and takes increasingly
negative values for different classes of problem spot. If you are reading GenePix image analysis files,
the call

20

> RG <- read.maimages(files,source="genepix",wt.fun=wtflags(weight=0,cutoff=-50))

will read in the intensity data and will compute a matrix of spot weights giving zero weight to
any spot with a Flags-value less than —50. The weights are stored in the weights component of the
RGList data object. The weights are used automatically by functions such as normalizeWithinArrays
which operate on the RG-list.

Sometimes the ideal size, in terms of image pixels, is known for a perfectly circular spot. In this
case it may be useful to downweight spots which are much larger or smaller than this ideal size. If
SPOT image analysis output is being read, the following call

> RG <- read.maimages(files,source="spot",wt.fun=wtarea(100))

gives full weight to spots with area exactly 100 pixels and down-weights smaller and larger spots.
Spots which have zero area or are more than twice the ideal size are given zero weight.

The appropriate way to computing spot quality weights depends on the image analysis program
used. Consult the help entry QualityWeights to see what quality weight functions are available.
The wt.fun argument is very flexible and allows you to construct your own weights. The wt.fun
argument can be any function which takes a data set as argument and computes the desired weights.
For example, if you wish to give zero weight to all GenePix flags less than -50 you could use

> myfun <- function(x) as.numeric(x$Flags > -50.5)
> RG <- read.maimages(files, source="genepix", wt.fun=myfun)

The wt.fun facility can be used to compute weights based on any number of columns in the image
analysis files. For example, some researchers like to filter out spots if the foreground mean and
median from GenePix for a given spot differ by more than a certain threshold, say 50. This could
be achieved by

> myfun <- function(x, threshold=50) {

+ okred <- abs(x[,"F635 Median"]-x[,"F635 Mean"]) < threshold

+ okgreen <- abs(x[,"F532 Median"]-x[,"F532 Mean"]) < threshold

+ as.numeric(okgreen & okred)

+3

> RG <- read.maimages(files, source="genepix", wt.fun=myfun)
Then all the “bad” spots will get weight zero which, in limma, is equivalent to flagging them out.

The definition of myfun here could be replaced with any other code to compute weights using the
columns in the GenePix output files.

4.8 Reading Probe Annotation

The RGList read by read.maimages () will almost always contain a component called genes containing
the IDs and other annotation information associated with the probes. The only exceptions are SPOT
data, source="spot", or when reading generic data, source="generic", without setting the annotation
argument, annotation=NULL. Try

> names (RG$genes)
to see if the genes component has been set.

If the genes component is not set, the probe IDs will need to be read from a separate file. If
the arrays have been scanned with an Axon scanner, then the probes IDs will be available in a tab-

delimited GenePix Array List (GAL) file. If the GAL file has extension “gal” and is in the current
working directory, then it may be read into a data.frame by

21

> RG$genes <- readGAL()

Non-GenePix gene lists can be read into R using the function read.delim from R base.

4.9 Printer Layout

The printer layout is the arrangement of spots and blocks of spots on the arrays. Knowing the
printer layout is especially relevant for old-style academic spotted arrays printed with a mechanical
robot with a multi-tip print-head. The blocks are sometimes called print-tip groups or pin-groups
or meta rows and columns. Each block corresponds to a print tip on the print-head used to print
the arrays, and the layout of the blocks on the arrays corresponds to the layout of the tips on the
print-head. The number of spots in each block is the number of times the print-head was lowered
onto the array. Where possible, for example for Agilent, GenePix or ImaGene data, read.maimages
will set the printer layout information in the component printer. Try

> names (RG$printer)

to see if the printer layout information has been set.
If you’ve used readGAL to set the genes component, you may also use getLayout to set the printer
information by

> RG$printer <- getLayout (RG$genes)

Note this will work only for GenePix GAL files, not for general gene lists.

4.10 The Spot Types File

The Spot Types file (STF) is another optional tab-delimited text file that allows you to identify
different types of probes from the entries appearing in the gene list. It is especially useful for
identifying different types of control probes. The STF is used to set the control status of each probe
on the arrays so that plots may highlight different types of spots in an appropriate way. It is typically
used to distinguish control probes from regular probes corresponding to genes, and to distinguish
positive from negative controls, ratio from calibration controls and so on. The STF should have a
SpotType column giving the names of the different spot-types. One or more other columns should
have the same names as columns in the gene list and should contain patterns or regular expressions
sufficient to identify the spot-type. Any other columns are assumed to contain plotting attributes,
such as colors or symbols, to be associated with the spot-types. There is one row for each spot-type
to be distinguished.

The STF uses simplified regular expressions to match patterns. For example, AA* means any
string starting with AA, *AA means any code ending with AA, AA means exactly these two letters,
AA means any string containing AA, AA. means AA followed by exactly one other character and
AA\. means exactly AA followed by a period and no other characters. For those familiar with regular
expressions, any other regular expressions are allowed but the codes ~ for beginning of string and
$ for end of string should be excluded. Note that the patterns are matched sequentially from first
to last, so more general patterns should be included first. The first row should specify the default
spot-type and should have pattern * for all the pattern-matching columns.

Here is a short STF appropriate for the ApoAl data:

22

RI=TE]
@ File Edit ‘iew Insert Format Tools Data Window Help
-0 X
DEHSREGY B[o-az- 400D 2
F10 - I3
A | B | ¢ | b | E | F =]
| 1 |SpotType 1D Mame Caolor
| 2 |cDNA * ¥ black
| 3 |BLANK. BLAMK 7 brown
| 4 |Blank Blank * orange
| 5 |Control Contral 7 blue
| B |
| 7|
&
49 —
Moy v ApoAISpotTypes // 141 | LljJ
Ready M J

In this example, the columns ID and Name are found in the gene-list and contain patterns to match.
The asterisks are wildcards which can represent anything. Be careful to use upper or lower case as
appropriate and don’t insert any extra spaces. The remaining column gives colors to be associated
with the different types of points. This code assumes of that the probe annotation data.frame includes
columns ID and Name. This is usually so if GenePix has been used for the image analysis, but other
image analysis software may use other column names.

Here is a STF below appropriate for arrays with Lucidea Universal ScoreCard control spots.

F3 Microsoft Excel - ml1405035potTypes.txt 1Ol =l
Eile Edit Wiew Insert Format Tools Data Window Help
-8 X
=g = R = R R YRR | WE
F11 - I3
A | e | ¢ | o | E | F 3‘
| 1 |SpotType 1D Marme Calar
| 2 |gene * * black
| 3 |ratio - Ratio® red
| 4 |calibration ™ Calibr® |blue
| 5 |utility i Lttility™ pink
| 6 [negative 7 Megative™ brown
| 7 |buffer - Buffer orange
| G |blank blank * yellow
9 -
PRI » [t ml1405035pot Types |4] | L|JJ
Ready TIJM A

If the STF has default name SpotTypes.txt then it can be read using

> spottypes <- readSpotTypes()

It is typically used as an argument to the controlStatus() function to set the status of each spot on
the array, for example

> RG$genes$Status <- controlStatus(spottypes, RG)

23

Chapter 5

Quality Assessment

An essential step in the analysis of any microarray data is to check the quality of the data from the
arrays. For two-color array data, an essential step is to view the MA-plots of the unnormalized data
for each array. The plotMD() function produces plots for individual arrays [28]. The plotMA3by2()
function gives an easy way to produce MA-plots for all the arrays in a large experiment. This
functions writes plots to disk as png files, 6 plots to a page.

The usefulness of MA-plots is enhanced by highlighting various types of control probes on the
arrays, and this is facilited by the controlStatus() function. The following is an example MA-Plot
for an Incyte array with various spike-in and other controls. (Data courtesy of Dr Steve Gerondakis,
Walter and Eliza Hall Institute of Medical Research.) The data shows high-quality data with long
comet-like pattern of non-differentially expressed probes and a small proportion of highly differen-
tially expressed probes. The plot was produced using
> spottypes <- readSpotTypes()

> RG$genes$Status <- controlStatus(spottypes, RG)
> plotMD(RG)

Example MA-Plot with Spot-Type Highlighting

*+ Gene
Unknown gy
< Control
+ Uu03 . ‘e
D03
o * U10
D10
+ U2 |
D25 3
+ Sensifivity
Buffer

The array includes spike-in ratio controls which are 3-fold, 10-fold and 25-fold up and down regulated,
as well as non-differentially expressed sensitivity controls and negative controls.

24

The background intensities are also a useful guide to the quality characteristics of each array.
Boxplots of the background intensities from each array

> boxplot (data.frame(log2(RG$Gb)) ,main="Green background")
> boxplot(data.frame(log2(RG$Rb)) ,main="Red background")

will highlight any arrays unusually with high background intensities.
Spatial heterogeneity on individual arrays can be highlighted by examining imageplots of the
background intensities, for example

> imageplot(log2(RG$Gb[,1]) ,RG$printer)

plots the green background for the first array. The function imageplot3by2() gives an easy way to
automate the production of plots for all arrays in an experiment.

If the plots suggest that some arrays are of lesser quality than others, it may be useful to estimate
array quality weights to be used in the linear model analysis, see Section 14.

25

Chapter 6

Pre-Processing Two-Color Data

6.1 Background Correction

The default background correction action is to subtract the background intensity from the fore-
ground intensity for each spot. If the RGList object has not already been background corrected, then
normalizeWithinArrays will do this by default. Hence

> MA <- normalizeWithinArrays (RG)

is equivalent to

> RGb <- backgroundCorrect(RG, method="subtract")
> MA <- normalizeWithinArrays (RGb)

However there are many other background correction options which may be preferable in certain
situations, see Ritchie et al [27].
For the purpose of assessing differential expression, we often find

> RG <- backgroundCorrect(RG, method="normexp", offset=50)

to be preferable to the simple background subtraction when using output from most image analysis
programs. This method adjusts the foreground adaptively for the background intensities and results
in strictly positive adjusted intensities, i.e., negative or zero corrected intensities are avoided. The
use of an offset damps the variation of the log-ratios for very low intensities spots towards zero.

To illustrate some differences between the different background correction methods we consider
one cDNA array which was self-self hybridized, i.e., the same RNA source was hybridized to both
channels. For this array there is no actual differential expression. The array was printed with a
human 10.5k library and hybridized with Jurkatt RNA on both channels. (Data courtesy Andrew
Holloway and Dileepa Diyagama, Peter MacCallum Cancer Centre, Melbourne.) The array included
a selection of control spots which are highlighted on the plots. Of particular interest are the spike-in
ratio controls which should show up and down fold changes of 3 and 10. The first plot displays
data acquired with GenePix software and background corrected by subtracting the median local
background, which is the default with GenePix data. The plot shows the typical wedge shape with
fanning of the M-values at low intensities. The range of observed M-values dominates the spike-in
ratio controls. The are also 1148 spots not shown on the plot because the background corrected
intensities were zero or negative.

26

GenePix median background

-4
|

The second plot shows the same array background corrected with method="normexp" and offset=50.
The spike-in ratio controls now standout clearly from the range of the M-values. All spots on the
array are shown on the plot because there are now no missing M-values.

GenePix normexp background

-1
|

The third plot shows the same array quantified with SPOT software and with “morph” background
subtracted. This background estimator produces a similar effect to that with normexp.

27

SPOT morph backgreund

.
.« #pWrr

The effect of using “morph” background or using method="normexp" with an offset is to stabilize the
variability of the M-values as a function of intensity. The empirical Bayes methods implemented in
the limma package for assessing differential expression will yield most benefit when the variabilities
are as homogeneous as possible between genes. This can best be achieved by reducing the dependence
of variability on intensity as far as possible [27].

6.2 Within-Array Normalization

Limma implements a range of normalization methods for spotted microarrays. Smyth and Speed
[37] describe some of the most commonly used methods. The methods may be broadly classified
into methods which normalize the M-values for each array separately (within-array normalization)
and methods which normalize intensities or log-ratios to be comparable across arrays (between-array
normalization). This section discusses mainly within-array normalization, which all that is usually
required for the traditional log-ratio analysis of two-color data. Between-array normalization is
discussed further in Section 6.3.

Print-tip loess normalization [51] is the default normalization method and can be performed by

> MA <- normalizeWithinArrays(RG)

There are some notable cases where this is not appropriate. For example, Agilent arrays do not have
print-tip groups, so one should use global loess normalization instead:

> MA <- normalizeWithinArrays(RG, method="loess")

Print-tip loess is also unreliable for small arrays with less than, say, 150 spots per print-tip group.
Even larger arrays may have particular print-tip groups which are too small for print-tip loess nor-
malization if the number of spots with non-missing M-values is small for one or more of the print-tip
groups. In these cases one should either use global "loess" normalization or else use robust spline
normalization

> MA <- normalizeWithinArrays(RG, method="robustspline")

28

which is an empirical Bayes compromise between print-tip and global loess normalization, with 5-
parameter regression splines used in place of the loess curves.

Loess normalization assumes that the bulk of the probes on the array are not differentially
expressed. It doesn’t assume that that there are equal numbers of up and down regulated genes or
that differential expression is symmetric about zero, provided that the loess fit is implemented in a
robust fashion, but it is necessary that there be a substantial body of probes which do not change
expression levels. Oshlack et al [20] show that loess normalization can tolerate up to about 30%
asymmetric differential expression while still giving good results. This assumption can be suspect
for boutique arrays where the total number of unique genes on the array is small, say less than
150, particularly if these genes have been selected for being specifically expressed in one of the RNA
sources. In such a situation, the best strategy is to include on the arrays a series of non-differentially
expressed control spots, such as a titration series of whole-library-pool spots, and to use the up-
weighting method discussed below [20]. A whole-library-pool means that one makes a pool of a
library of probes, and prints spots from the pool at various concentrations [50]. The library should
be sufficiently large than one can be confident that the average of all the probes is not differentially
expressed. The larger the library the better. Good results have been obtained with library pools
with as few as 500 clones. In the absence of such control spots, normalization of boutique arrays
requires specialist advice.

Any spot quality weights found in RG will be used in the normalization by default. This means
for example that spots with zero weight (flagged out) will not influence the normalization of other
spots. The use of spot quality weights will not however result in any spots being removed from the
data object. Even spots with zero weight will be normalized and will appear in the output object,
such spots will simply not have any influence on the other spots. If you do not wish the spot quality
weights to be used in the normalization, their use can be over-ridden using

> MA <- normalizeWithinArrays(RG, weights=NULL)

The output object MA will still contain any spot quality weights found in RG, but these weights are
not used in the normalization step.

It is often useful to make use of control spots to assist the normalization process. For example,
if the arrays contain a series of spots which are known in advance to be non-differentially expressed,
these spots can be given more weight in the normalization process. Spots which are known in advance
to be differentially expressed can be down-weighted. Suppose for example that the controlStatus()
has been used to identify spike-in spots which are differentially expressed and a titration series of
whole-library-pool spots which should not be differentially expressed. Then one might use

> w <- modifyWeights(RG$weights, RG$genes$Status, c("spikein","titration"), c(0,2))
> MA <- normalizeWithinArrays(RG, weights=w)

to give zero weight to the spike-in spots and double weight to the titration spots. This process is
automated by the "control" normalization method, for example

> csi <- RG$genes$Status=="titration"
> MA <- normalizeWithinArrays(RG, method="control", controlspots=csi)

In general, csi is an index vector specifying the non-differentially expressed control spots [20].

The idea of up-weighting the titration spots is in the same spirit as the composite normalization
method proposed by [50] but is more flexible and generally applicable. The above code assumes that
RG already contains spot quality weights. If not, one could use

29

> w <- modifyWeights(array(1,dim(RG)), RG$genes$Status, c("spikein","titration"), c(0,2))
> MA <- normalizeWithinArrays(RG, weights=w)

instead.
Limma contains some more sophisticated normalization methods. In particular, some between-
array normalization methods are discussed in Section 6.3 of this guide.

6.3 Between-Array Normalization

This section explores some of the methods available for between-array normalization of two-color
arrays. A feature which distinguishes most of these methods from within-array normalization is the
focus on the individual red and green intensity values rather than merely on the log-ratios. These
methods might therefore be called individual channel or separate channel normalization methods.
Individual channel normalization is typically a prerequisite to individual channel analysis methods
such as that provided by 1mscFit(). Further discussion of the issues involved is given by [53].
This section shows how to reproduce some of the results given in [53]. The Apoal data set from
Section 16.2 will be used to illustrate these methods. We assume that the the Apoal data has been
loaded and background corrected as follows:

> load("Apoal.RData")

An important issue to consider before normalizing between arrays is how background correction
has been handled. For between-array normalization to be effective, it is important to avoid missing
values in log-ratios which might arise from negative or zero corrected intensities. The function
backgroundCorrect () gives a number of useful options. For the purposes of this section, the data has
been corrected using the "minimum" method:

> RG.b <- backgroundCorrect (RG,method="minimum"

plotDensities displays smoothed empirical densities for the individual green and red channels
on all the arrays. Without any normalization there is considerable variation between both channels
and between arrays:

> plotDensities(RG.b)

30

RG densities

it

04
1

0.3
1

Density

0.z

0.1

0.0

Intensity

After loess normalization of the M-values for each array the red and green distributions become
essentially the same for each array, although there is still considerable variation between arrays:

> MA.p <-normalizeWithinArrays(RG.b)

> plotDensities(MA.p)
RG densities

03
1

Density
0.z

4
Intensity

Loess normalization doesn’t affect the A-values. Applying quantile normalization to the A-values
makes the distributions essentially the same across arrays as well as channels:

> MA.pAq <- normalizeBetweenArrays(MA.p, method="Aquantile")

> plotDensities(MA.pAq)
31

RG densities

Density
015
1

0.10
1

0.03
1

Intensity

Applying quantile normalization directly to the individual red and green intensities produces a
similar result but is somewhat noisier:

> MA.q <- normalizeBetweenArrays(RG.b, method="quantile")
> plotDensities(MA.q, col="black")

Warning message:
number of groups=2 not equal to number of col in: plotDensities(MA.q, col = "black")

RG densities

0.z0
1

Density

0.00
1

Intensity

There are other between-array normalization methods not explored here. For example normalizeBetweenArrays
with method="vsn" gives an interface to the variance-stabilizing normalization methods of the vsn

package.

32

6.4 Using Objects from the marray Package

The package marray is a well known R package for pre-processing of two-color microarray data.
Marray provides functions for reading, normalization and graphical display of data. Marray and
limma are both descendants of the earlier and path-breaking sma package available from http://www.
stat.berkeley.edu/users/terry/zarray/Software/smacode.html but limma has maintained and
built upon the original data structures whereas marray has converted to a fully formal data class
representation. For this reason, Limma is backwardly compatible with sma while marray is not.

Normalization functions in marray focus on a flexible approach to location and scale normalization
of M-values, rather than the within and between-array approach of limma. Marray provides some
normalization methods which are not in limma including 2-D loess normalization and print-tip-scale
normalization. Although there is some overlap between the normalization functions in the two pack-
ages, both providing print-tip loess normalization, the two approaches are largely complementary.
Marray also provides highly developed functions for graphical display of two-color microarray data.

Read functions in marray produce objects of class marrayRaw while normalization produces objects
of class marrayNorm. Objects of these classes may be converted to and from limma data objects using
the convert package. marrayRaw objects may be converted to RGList objects and marrayNorm objects
to MAList objects using the as function. For example, if Data is an marrayNorm object then

> library(convert)
> MA <- as(Data, "MAList")

converts to an MAList object.
marrayNorm objects can also be used directly in limma without conversion, and this is generally
recommended. If Data is an marrayNorm object, then

> fit <- lmFit(Data, design)

fits a linear model to Data as it would to an MAList object. One difference however is that the marray
read functions tend to populate the maW slot of the marrayNorm object with qualitative spot quality
flags rather than with quantitative non-negative weights, as expected by limma. If this is so then
one may need

> fit <- 1mFit(Data, design, weights=NULL)

to turn off use of the spot quality weights.

33

Chapter 7

Filtering

We usually recommend that all probes on the microarray platform be used for the normalization
step.

For downstream analysis, it is usually worthwhile to remove probes that appear not be expressed
in any of the experimental conditions. This is called filtering. We generally recommend that this is
done before the linear modelling and empirical Bayes steps, but after normalization.

There are a number of ways that filtering can be done. One way is to keep probes that are
expressed above background on at least n arrays, where n is the smallest number of replicates
assigned to any of the treatment combinations. See for example Case studies 15.3 or 15.4 in the
limma User’s Guide.

Note that filtering methods involving variances should not be used. The limma algorithm analyses
the spread of the genewise variances. Any filtering method based on genewise variances will change
the distribution of variances, will interfere with the limma algorithm and hence will give poor results.

34

Chapter 8

Linear Models Overview

8.1 Introduction

The package limma uses an approach called linear models to analyze designed microarray experiments.
This approach allows very general experiments to be analyzed just as easily as a simple replicated
experiment. The approach is outlined in [34, 52]. The approach requires one or two matrices to
be specified. The first is the design matriz which indicates in effect which RNA samples have been
applied to each array. The second is the contrast matriz which specifies which comparisons you
would like to make between the RNA samples. For very simple experiments, you may not need to
specify the contrast matrix.

The philosophy of the approach is as follows. You have to start by fitting a linear model to
your data which fully models the systematic part of your data. The model is specified by the design
matrix. Each row of the design matrix corresponds to an array in your experiment and each column
corresponds to a coefficient that is used to describe the RNA sources in your experiment. With
Affymetrix or single-channel data, or with two-color with a common reference, you will need as
many coefficients as you have distinct RNA sources, no more and no less. With direct-design two-
color data you will need one fewer coefficient than you have distinct RNA sources, unless you wish
to estimate a dye-effect for each gene, in which case the number of RNA sources and the number of
coefficients will be the same. Any set of independent coefficients will do, providing they describe all
your treatments. The main purpose of this step is to estimate the variability in the data, hence the
systematic part needs to be modelled so it can be distinguished from random variation.

In practice the requirement to have exactly as many coefficients as RNA sources is too restrictive
in terms of questions you might want to answer. You might be interested in more or fewer comparisons
between the RNA source. Hence the contrasts step is provided so that you can take the initial
coefficients and compare them in as many ways as you want to answer any questions you might have,
regardless of how many or how few these might be.

If you have data from Affymetrix experiments, from single-channel spotted microarrays or from
spotted microarrays using a common reference, then linear modeling is the same as ordinary analysis
of variance or multiple regression except that a model is fitted for every gene. With data of this type
you can create design matrices as one would do for ordinary modeling with univariate data. If you
have data from spotted microarrays using a direct design, i.e., a connected design with no common
reference, then the linear modeling approach is very powerful but the creation of the design matrix
may require more statistical knowledge.

For statistical analysis and assessing differential expression, limma uses an empirical Bayes method

35

to moderate the standard errors of the estimated log-fold changes. This results in more stable
inference and improved power, especially for experiments with small numbers of arrays [34]. For
arrays with within-array replicate spots, limma uses a pooled correlation method to make full use of
the duplicate spots [36].

8.2 Single-Channel Designs

Affymetrix data will usually be normalized using the affy package. We will assume here that the
data is available as an ExpressionSet object called eset. Such an object will have an slot containing
the log-expression values for each gene on each array which can be extracted using exprs(eset).
Affymetrix and other single-channel microarray data may be analyzed very much like ordinary linear
models or anova models. The difference with microarray data is that it is almost always necessary
to extract particular contrasts of interest and so the standard parametrizations provided for factors
in R are not usually adequate.

There are many ways to approach the analysis of a complex experiment in limma. A straightfor-
ward strategy is to set up the simplest possible design matrix and then to extract from the fit the
contrasts of interest.

Suppose that there are three RNA sources to be compared. Suppose that the first three arrays
are hybridized with RNAT1, the next two with RNA2 and the next three with RNA3. Suppose that
all pair-wise comparisons between the RNA sources are of interest. We assume that the data has
been normalized and stored in an ExpressionSet object, for example by

> data <- ReadAffy()
> eset <- rma(data)

An appropriate design matrix can be created and a linear model fitted using

> design <- model.matrix(~ O+factor(c(1,1,1,2,2,3,3,3)))
> colnames(design) <- c("groupl", "group2", "group3")
> fit <- 1mFit(eset, design)

To make all pair-wise comparisons between the three groups the appropriate contrast matrix can be
created by

> contrast.matrix <- makeContrasts(group2-groupl, group3-group2, group3-groupl, levels=design)
fit2 <- contrasts.fit(fit, contrast.matrix)
> fit2 <- eBayes(fit2)

\

A list of top genes differential expressed in group2 versus groupl can be obtained from

\

topTable(fit2, coef=1, adjust="BH")

The outcome of each hypothesis test can be assigned using

> results <- decideTests(fit2)

A Venn diagram showing numbers of genes significant in each comparison can be obtained from

> vennDiagram(results)

36

8.3 Common Reference Designs

Now consider two-color microarray experiments in which a common reference has been used on all
the arrays. Such experiments can be analyzed very similarly to Affymetrix experiments except that
allowance must be made for dye-swaps. The simplest method is to setup the design matrix using
the modelMatrix () function and the targets file. As an example, we consider part of an experiment
conducted by Joélle Michaud, Catherine Carmichael and Dr Hamish Scott at the Walter and Eliza
Hall Institute to compare the effects of transcription factors in a human cell line. The targets file is
as follows:

> targets <- readTargets("runxtargets.txt")

> targets

SlideNumber Cy3 Cyb
1 2144 EGFP AML1
2 2145 EGFP AML1
3 2146 AML1 EGFP
4 2147 EGFP AML1.CBFb
5 2148 EGFP AML1.CBFb
6 2149 AML1.CBFDb EGFP
7 2158 EGFP CBFb
8 2159 CBFDb EGFP
9 2160 EGFP AML1.CBFb
10 2161 AML1.CBFb EGFP
11 2162 EGFP AML1.CBFb
12 2163 AML1.CBFDb EGFP
13 2166 EGFP CBFb
14 2167 CBFDb EGFP

In the experiment, green fluorescent protein (EGFP) has been used as a common reference. An
adenovirus system was used to transport various transcription factors into the nuclei of HeLa cells.
Here we consider the transcription factors AML1, CBFbeta or both. A simple design matrix was
formed and a linear model fit:

> design <- modelMatrix(targets,ref="EGFP")

> design

AML1 AML1.CBFb CBFb
1 1 0 0
2 1 0 0
3 -1 0 0
4 0 1 0
5 0 1 0
6 0 -1 0
7 0 0 1
8 0 o -1
9 0 1 0
10 0 -1 0
11 0 1 0
12 0 -1 0
13 0 0 1
14 0 o -1

> fit <- 1mFit(MA, design)

It is of interest to compare each of the transcription factors to EGFP and also to compare the
combination transcription factor with AML1 and CBFb individually. An appropriate contrast matrix
was formed as follows:

37

> contrast.matrix <- makeContrasts(AML1,CBFb,AML1.CBFb,AML1.CBFb-AML1,AML1.CBFb-CBFb,
+ levels=design)
> contrast.matrix

AML1 CBFb AML1.CBFb AML1.CBFb - AML1 AML1.CBFb - CBFb

AML1 1 0 0 -1 0
AML1.CBFb 0 0 1 1 1
CBFb 0 1 0 0 -1

The linear model fit can now be expanded and empirical Bayes statistics computed:

> fit2 <- contrasts.fit(fit, contrasts.matrix)
> fit2 <- eBayes(fit2)

8.4 Direct Two-Color Designs

Two-color designs without a common reference require the most statistical knowledge to choose
the appropriate design matrix. A direct design is one in which there is no single RNA source
which is hybridized to every array. As an example, we consider an experiment conducted by Dr
Mireille Lahoud at the Walter and Eliza Hall Institute to compare gene expression in three different
populations of dendritic cells (DC).

cD4
15
DN
cD8 -

Arrow heads represent Cyo i e arrows point inthe Cy3 to Cys
direction.

This experiment involved six ¢cDNA microarrays in three dye-swap pairs, with each pair used to
compare two DC types. The design is shown diagrammatically above. The targets file was as
follows:

> targets

SlideNumber FileName Cy3 Cyb
mli2med 12 ml12med.spot CD4 CD8
ml13med 13 ml13med.spot CD8 CD4
mli4med 14 mli4med.spot DN CD8
mli5med 15 ml15med.spot CD8 DN
mli6med 16 ml16med.spot CD4 DN
mli7med 17 ml17med.spot DN CD4

There are many valid choices for a design matrix for such an experiment and no single correct
choice. We chose to setup the design matrix as follows:

> design <- modelMatrix(targets, ref="CD4")

Found unique target names:
CD4 CD8 DN

38

> design

CD8 DN
ml12med 1 0
mli3med -1 O
mli4med 1 -1
mlibmed -1 1
mli6med 0 1
ml17med 0 -1

In this design matrix, the CD8 and DN populations have been compared back to the CD4 population.
The coefficients estimated by the linear model will correspond to the log-ratios of CD8 vs CD4 (first
column) and DN vs CD4 (second column).

After appropriate normalization of the expression data, a linear model was fit using

> fit <- 1mFit(MA, design)

The linear model can now be interrogated to answer any questions of interest. For this experiment
it was of interest to make all pairwise comparisons between the three DC populations. This was
accomplished using the contrast matrix

> contrast.matrix <- cbind("CD8-CD4"=c(1,0),"DN-CD4"=c(0,1),"CD8-DN"=c(1,-1))
> rownames (contrast.matrix) <- colnames(design)
> contrast.matrix
CD8-CD4 DN-CD4 CD8-DN
CD8 1 0 1
DN 0 1 -1

The contrast matrix can be used to expand the linear model fit and then to compute empirical Bayes
statistics:

> fit2 <- contrasts.fit(fit, contrast.matrix)
> fit2 <- eBayes(fit2)

39

Chapter 9

Single-Channel Experimental Designs

9.1 Introduction

Unlike the early days of microarrays, most data is now of the single channel type. Single channel
data is generated from popular microarray technologies such as Affymetrix, [llumina or Agilent. The
new technology of RNA-Seq also generates single channel data, so everything in this chapter can
be applied to RNA-Seq analyses when the data has been pre-processed using the voom function [12].
Single-channel data may be analyzed very much like ordinary univariate linear models or analysis
of variance. The difference with microarray data is that it is almost always necessary to extract
particular contrasts of interest and so the standard parametrizations provided for factors in R are
not usually adequate.

We will assume for our examples here that the data has been suitably pre-processed normalized
and is available as an ExpressionSet or EList object called eset. Such an object will have an
slot containing the log-expression values for each gene on each array which can be extracted using
exprs(eset).

9.2 Two Groups

The simplest possible single channel experiment is to compare two groups. Suppose that we wish to
compare two wild type (Wt) mice with three mutant (Mu) mice:

FileName Target

Filel wT
File2 WwT
File3 Mu
File4 Mu
Fileb Mu

There are two different ways to form the design matrix. We can either
1. create a design matrix which includes a coefficient for the mutant vs wild type difference, or

2. create a design matrix which includes separate coefficients for wild type and mutant mice and
then extract the difference as a contrast.

40

For the first approach, the treatment-contrasts parametrization, the design matrix should be as
follows:

> design

WT MUvsWT
Arrayl 1 0
Array2 1 0
Array3 1 1
Array4 1 1
Array5 1 1

Here the first coefficient estimates the mean log-expression for wild type mice and plays the role
of an intercept. The second coefficient estimates the difference between mutant and wild type.
Differentially expressed genes can be found by

> fit <- 1mFit(eset, design)
> fit <- eBayes(fit)
> topTable(fit, coef="MUvsWT", adjust="BH")

where eset is an ExpressionSet or matrix object containing the log-expression values. For the second
approach, the design matrix should be

WT MU
Arrayl 1 O
Array2 1 O
Array3 0 1
Array4 0 1
Array5 0 1

Differentially expressed genes can be found by

> fit <- lmFit(eset, design)

> cont.matrix <- makeContrasts(MUvsWT=MU-WT, levels=design)
> fit2 <- contrasts.fit(fit, cont.matrix)

> fit2 <- eBayes(fit2)

> topTable(fit2, adjust="BH")

For the first approach, the treatment-contrasts parametrization, the design matrix can be com-
puted by

> design <- cbind(WT=1,MUvsWI=c(0,0,1,1,1))
or by

> Group <- factor(targets$Target, levels=c("WI","Mu"))
> design <- model.matrix(~Group)
> colnames(design) <- c("WT","MUvsWT")

For the second approach, the group-means parametrization, the design matrix can be computed by

> design <- cbind(WT=c(1,1,0,0,0),MU=c(0,0,1,1,1))

or by

> design <- model.matrix(~0+Group)
> colnames(design) <- c("WT","MU")

41

9.3 Several Groups

The above approaches for two groups extend easily to any number of groups. Suppose that three
RNA targets to be compared. Suppose that the three targets are called “RNA1”, “RNA2” and
“RNA3” and that the column targets$Target indicates which one was hybridized to each array. An
appropriate design matrix can be created using

> f <- factor(targets$Target, levels=c("RNA1","RNA2",6"RNA3"))

> design <- model.matrix(~0+f)
> colnames(design) <- c("RNA1","RNA2", 6 "RNA3")

To make all pair-wise comparisons between the three groups one could proceed

> fit <- 1mFit(eset, design)

> contrast.matrix <- makeContrasts(RNA2-RNA1, RNA3-RNA2, RNA3-RNA1,
+ levels=design)

> fit2 <- contrasts.fit(fit, contrast.matrix)

> fit2 <- eBayes(fit2)

A list of top genes for RNA2 versus RNA1 can be obtained from
> topTable(fit2, coef=1, adjust="BH")

The outcome of each hypothesis test can be assigned using

> results <- decideTests(fit2)

A Venn diagram showing numbers of genes significant in each comparison can be obtained from

> vennDiagram(results)

The statistic £it2$F and the corresponding £it2$F.p.value combine the three pair-wise compar-
isons into one F-test. This is equivalent to a one-way ANOVA for each gene except that the residual
mean squares have been moderated between genes. To find genes which vary between the three RNA
targets in any way, look for genes with small p-values. To find the top 30 genes:

> topTableF(fit2, number=30)

9.4 Additive Models and Blocking

9.4.1 Paired Samples

Paired samples occur when we compare two treatments and each sample given one treatment is
naturally paired with a particular sample given the other treatment. This is a special case of blocking
with blocks of size two. The classical test associated with this situation is the paired t-test.

Suppose an experiment is conducted to compare a new treatment (T) with a control (C). Six
dogs are used from three sib-ships. For each sib-pair, one dog is given the treatment while the other
dog is a control. This produces the targets frame:

FileName SibShip Treatment
Filel 1
File2
File3
File4
Filed
File6

W W N N
HaoHOQHAQ

42

A moderated paired t-test can be computed by allowing for sib-pair effects in the linear model:

SibShip <- factor(targets$SibShip)

Treat <- factor(targets$Treatment, levels=c("C","T"))
design <- model.matrix(~SibShip+Treat)

fit <- ImFit(eset, design)

fit <- eBayes(fit)

topTable(fit, coef="TreatT")

V V. V V V V

9.4.2 Blocking

The above approach used for paired samples can be applied in any situation where there are batch
effects or where the experiment has been conducted in blocks. The treatments can be adjusted for
differences between the blocks by using a model formula of the form:

> design <- model.matrix(“Block+Treatment)

In this type of analysis, the treatments are compared only within each block.

9.5 Interaction Models: 2 x 2 Factorial Designs

9.5.1 Questions of Interest

Factorial designs are those where more than one experimental dimension is being varied and each
combination of treatment conditions is observed. Suppose that cells are extracted from wild type and
mutant mice and these cells are either stimulated (S) or unstimulated (U). RNA from the treated
cells is then extracted and hybridized to a microarray. We will assume for simplicity that the arrays
are single-color arrays such as Affymetrix. Consider the following targets frame:

FileName Strain Treatment

Filel WT U
File2 WT S
File3 Mu U
File4 Mu S
Fileb Mu S

The two experimental dimensions or factors here are Strain and Treatment. Strain specifies the
genotype of the mouse from which the cells are extracted and Treatment specifies whether the cells
are stimulated or not. All four combinations of Strain and Treatment are observed, so this is a
factorial design. It will be convenient for us to collect the Strain/Treatment combinations into one
vector as follows:

> TS <- paste(targets$Strain, targets$Treatment, sep=".")
> TS

[1] "wT.U" "WT.S" "Mu.U" "Mu.S" "Mu.S"

It is especially important with a factorial design to decide what are the comparisons of interest.
We will assume here that the experimenter is interested in

1. which genes respond to stimulation in wild-type cells,

43

2. which genes respond to stimulation in mutant cells, and
3. which genes respond differently in mutant compared to wild-type cells.

as these are the questions which are most usually relevant in a molecular biology context. The first
of these questions relates to the WT.S vs WT.U comparison and the second to Mu.S vs Mu.U. The third
relates to the difference of differences, i.e., (Mu.S-Mu.U)-(WT.S-WT.U), which is called the interaction
term.

9.5.2 Analysing as for a Single Factor

We describe first a simple way to analyze this experiment using limma commands in a similar way to
that in which two-sample designs were analyzed. Then we will go on to describe the more classical
statistical approaches using factorial model formulas. All the approaches considered are equivalent
and yield identical bottom-line results. The most basic approach is to fit a model with a coefficient
for each of the four factor combinations and then to extract the comparisons of interest as contrasts:

> TS <- factor(TS, levels=c("WT.U","WT.S","Mu.U","Mu.S"))
> design <- model.matrix(~0+TS)

> colnames(design) <- levels(TS)

> fit <- 1mFit(eset, design)

This fits a model with four coefficients corresponding to WT.U, WT.S, Mu.U and Mu.S respectively. Our
three contrasts of interest can be extracted by

> cont.matrix <- makeContrasts(

+ SvsUinWT=WT.S-WT.U,

+ SvsUinMu=Mu.S-Mu.U,

+ Diff=(Mu.S-Mu.U)-(WT.S-WT.U),
+ levels=design)

> fit2 <- contrasts.fit(fit, cont.matrix)
> fit2 <- eBayes(fit2)

We can use topTable() to look at lists of differentially expressed genes for each of three contrasts, or
else

> results <- decideTests(fit2)
> vennDiagram(results)

to look at all three contrasts simultaneously.
This approach is recommended for most users, because the contrasts that are being tested are
formed explicitly.

9.5.3 A Nested Interaction Formula

Model formulas in R are very flexible, and offer lots of possible shortcuts for setting up the design
matrix. However they also require a high level of statistical understanding in order to use reliably,
and they are not completely described in the main R documentation. If we only wanted to test the
first two questions above, an easy to to setup the design matrix would be to use a nested interaction
term:

44

> Strain <- factor(targets$Strain, levels=c("WT","Mu"))

> Treatment <- factor(targets$Treatment, levels=c("U","S"))

> design <- model.matrix(~Strain+Strain:Treatment)

> colnames(design)

[1] "(Intercept)" "StrainMu" "StrainWT:TreatmentS" "StrainMu:TreatmentS"

The first term in the model formula is an effect for Strain. This introduces an intercept column
to the design matrix, which estimates the average log-expression level for wild-type unstimulated
cells, and a column for Strain which estimates the mutant vs wildtype difference in the unstimulated
state. The second term in the model formula represents the interaction between stimulation and
strain. Because there is no main effect for treatment in the model, the interaction is fitted in a
nested sense. It introduces a third and a fourth column to the design matrix which represent the
effect of stimulation for wild-type and for mutant mice respectively, exactly the same as the contrasts
SvsUinWT and SvsUinMu define in the previous section. After

> fit <- lmFit(eset, design)
> fit <- eBayes(fit)

then

> topTable(fit, coef=3)

will find those genes responding to stimulation in wild-type mice, and

> topTable(fit, coef=4)

will find those genes responding to stimulation in mutant mice. Finally, we could extract the inter-
action contrast Diff considered above by

> fit2 <- contrasts.fit(fit, c(0,0,-1,1))
> fit2 <- eBayes(fit2)
> topTable(fit2)

This finds genes that respond differently to the stimulus in mutant vs wild-type mice.

9.5.4 Classic Interaction Models

The analysis of factorial designs has a long history in statistics and a system of factorial model
formulas has been developed to facilitate the analysis of complex designs. It is important to un-
derstand though that the above three molecular biology questions do not correspond to any of the
classic parametrizations used in statistics for factorial designs. Hence we generally recommend the
approaches already considered above for microarray analysis.

Suppose for example that we proceed in the usual statistical way,

> design <- model.matrix(~Strain*Treatment)

This creates a design matrix which defines four coefficients with the following interpretations:

Coefficient Comparison Interpretation

Intercept WT.U Baseline level of unstimulated WT
StrainMu Mu.U-WT.U Difference between unstimulated strains
TreatmentS WT.S-WT.U Stimulation effect for WT

StrainMu:TreatmentS (Mu.S-Mu.U)-(WT.S-WT.U) Interaction

45

This is called the treatment-contrast parametrization. Notice that one of our comparisons of interest,
Mu.S-Mu.U, is not represented and instead the comparison Mu.U-WT.U, which might not be of direct
interest, is included. We need to use contrasts to extract all the comparisons of interest:

> fit <- 1mFit(eset, design)

> cont.matrix <- cbind(SvsUinWT=c(0,0,1,0),SvsUinMu=c(0,0,1,1),Diff=c(0,0,0,1))
> fit2 <- contrasts.fit(fit, cont.matrix)

> fit2 <- eBayes(fit2)

This extracts the WT stimulation effect as the third coefficient and the interaction as the fourth
coefficient. The mutant stimulation effect is extracted as the sum of the third and fourth coefficients
of the original model. This analysis yields exactly the same results as the previous analysis.

An even more classical statistical approach to the factorial experiment would be to use the sum
to zero parametrization. In R this is achieved by

> contrasts(Strain) <- contr.sum(2)
> contrasts(Treatment) <- contr.sum(2)
> design <- model.matrix(~Strain*Treatment)

This defines four coefficients with the following interpretations:

Coefficient Comparison Interpretation
Intercept (WT.U+WT.S+Mu.U+Mu.S) /4 Grand mean

Strainl (WT.U+WT.8-Mu.U-Mu.S8)/4 Strain main effect
Treatment1 (WT.U-WT.S+Mu.U-Mu.S)/4 Treatment main effect

Strainl:Treatmentl (WT.U-WT.S-Mu.U+Mu.S)/4 Interaction

This parametrization has many appealing mathematical properties and is the classical parametriza-
tion used for factorial designs in much experimental design theory. However it defines only one
coefficient which is directly of interest to us, namely the interaction. Our three contrasts of interest
could be extracted using

> fit <- 1mFit(eset, design)

> cont.matrix <- cbind(SvsUinWT=c(0,0,-2,-2),SvsUinMu=c(0,0,-2,2),Diff=c(0,0,0,4))
> fit2 <- contrasts.fit(fit, cont.matrix)

> fit2 <- eBayes(fit2)

The results will be identical to those for the previous three approaches.

The various approaches described here for the 2 x 2 factorial problem are equivalent and differ
only in the parametrization chosen for the linear model. The fitted model objects fit will differ
only in the coefficients and associated components. The residual standard deviations fit$sigma,
residual degrees of freedom fit$df.residual and all components of £it2 will be identical regardless
of parametrization used. Since the approaches are equivalent, users are free to choose whichever one
is most intuitive or convenient.

9.6 Time Course Experiments

9.6.1 Replicated time points

Time course experiments are those in which RNA is extracted at several time points after the onset
of some treatment or stimulation. How best to analyse a time course experiment depends on the
nature of the experiment, and especially on the number of distinct time points. We consider first

46

experiments with a relative small number of replicated time points. Simple time course experiments
of this type are similar to experiments with several groups covered in Section 9.3.

As an example, we consider here a two-way experiment in which time course profiles are to be
compared for two genotypes. Consider the targets frame

FileName Target
Filel wt.0hr
File2 wt.Ohr
File3 wt.6hr
Filed wt.24hr
File5 mu.Ohr
File6 mu.Ohr
File7 mu.6hr
File8 mu.24hr

The targets are RNA samples collected from wild-type and mutant animals at 0, 6 and 24 hour time
points. This can be viewed as a factorial experiment but a simpler approach is to use the group-mean
parametrization.

> lev <- c("wt.Ohr","wt.6hr","wt.24hr","mu.Ohr","mu.6hr", "mu.24hr")
> f <- factor(targets$Target, levels=lev)
> design <- model.matrix(~0+f)

> colnames(design) <- lev

> fit <- 1mFit(eset, design)

Which genes respond at either the 6 hour or 24 hour times in the wild-type? We can find these
by extracting the contrasts between the wild-type times.

cont.wt <- makeContrasts(
"wt.6hr-wt.Ohr",
"wt.24hr-wt.6hr",

levels=design)

fit2 <- contrasts.fit(fit, cont.wt)

fit2 <- eBayes(fit2)

topTableF(fit2, adjust="BH")

vV V.V + + + V

Any two contrasts between the three times would give the same result. The same gene list would be
obtained had "wt.24hr-wt.Ohr" been used in place of "wt.24hr-wt.6hr" for example.
Which genes respond (i.e., change over time) in the mutant?

> cont.mu <- makeContrasts(

+ "mu.6hr-mu.Ohr",

+ "mu.24hr-mu.6hr",

+ levels=design)

> fit2 <- contrasts.fit(fit, cont.mu)
> fit2 <- eBayes(fit2)

> topTableF(fit2, adjust="BH")

Which genes respond differently over time in the mutant relative to the wild-type?

cont.dif <- makeContrasts(
Dif6hr =(mu.6hr-mu.Ohr)-(wt.6hr-wt.Ohr),
Dif24hr=(mu.24hr-mu.6hr)-(wt.24hr-wt.6hr),
levels=design)
fit2 <- contrasts.fit(fit, cont.dif)
fit2 <- eBayes(fit2)
topTableF(fit2, adjust="BH")

vV V.V + + + V

47

The method of analysis described in this section was used for a six-point time course experiment
on histone deacetylase inhibitors [21].

9.6.2 Many time points

Now we consider an example with many time points for each group. When there are many time
points, it is reasonable to assume that expression changes smoothly over time rather than making
discrete jumps from one time point to another. This type of time course can be analysed by fitting
a temporal trend using a regression spline or a polynomial.

Consider the following targets frame, with 32 rows:

FileName Group Time
Filel Control 1
File2 Control 2

Filel6 Control 16

Filel7 Treat 1
Filel8 Treat 2
File32 Treat 16

It might be reasonable to represent a time course for a particular gene in a particular condition using
a cubic spline curve with a modest number of knots. Choosing effective degrees of freedom to be in
range 3-5 is reasonable. Setup a basis for a natural regression spline:

> library(splines)
> X <- ns(targets$Time, df=5)

Then fit separate curves for the control and treatment groups:

> Group <- factor(targets$Group)

> design <- model.matrix(~Group*X)
> fit <- 1lmFit(y, design)

> fit <- eBayes(fit)

This creates a model with 12 parameters, with the last 5 corresponding to interaction, i.e., to
differences in the curves between groups. To detect genes with different time trends for treatment
vs control:

> topTable(fit, coef=8:12)
This conducts a moderated F-test for each gene on 5 df, which can detect very general differences
between the treatment and control curves.

Note that for this analysis, it is not necessary to have replicates, nor is it necessary for the two
treatment groups to be observed at identical time points.

9.7 Multi-level Experiments

We have considered paired comparisons, and we have considered comparisons between two indepen-
dent groups. There are however experiments that combine both of these types of comparisons.
Consider a single-channel experiment with the following targets frame:

48

FileName Subject Condition Tissue

File01 1 Diseased A
File02 1 Diseased B
File03 2 Diseased A
File04 2 Diseased B
File05 3 Diseased A
File06 3 Diseased B
File07 4 Normal A
File08 4 Normal B
File09 5 Normal A
Filel0 5 Normal B
Filell 6 Normal A
File12 6 Normal B

This experiment involves 6 subjects, including 3 patients who have the disease and 3 normal subjects.
From each subject, we have expression profiles of two tissue types, A and B.

In analysing this experiment, we want to compare the two tissue types. This comparison can be
made within subjects, because each subject yields a value for both tissues. We also want to compare
diseased subjects to normal subjects, but this comparison is between subjects.

If we only wanted to compare the two tissue types, we could do a paired samples comparison.
If we only wanted to compared diseased to normal, we could do an ordinary two group comparison.
Since we need to make comparisons both within and between subjects, it is necessary to treat Patient
as a random effect. This can be done in limma using the duplicateCorrelation function.

The two experimental factors Condition and Tissue could be handled in many ways. Here we
will assume that it is convenient to join the two into a combined factor:

> Treat <- factor(paste(targets$Condition,targets$Tissue,sep="."))
> design <- model.matrix(~0+Treat)
> colnames(design) <- levels(Treat)

Then we estimate the correlation between measurements made on the same subject:

> corfit <- duplicateCorrelation(eset,design,block=targets$Subject)
> corfit$consensus

Then this inter-subject correlation is input into the linear model fit:

> fit <- 1mFit(eset,design,block=targets$Subject,correlation=corfit$consensus)

Now we can make any comparisons between the experimental conditions in the usual way, exam-
ple:

> cm <- makeContrasts(

+ DiseasedvsNormalForTissueA = Diseased.A-Normal.A,

+ DiseasedvsNormalForTissueB = Diseased.B-Normal.B,

+ TissueAvsTissueBForNormal = Normal.B-Normal.A,

+ TissueAvsTissueBForDiseased = Diseased.B-Diseased.A,
+ levels=design)

Then compute these contrasts and moderated t-tests:

\4

fit2 <- contrasts.fit(fit, cm)
fit2 <- eBayes(fit2)

\

49

Then

> topTable(fit2, coef="DiseasedvsNormalForTissueA")

will find those genes that are differentially expressed between the normal and diseased subjects in
the A tissue type. And so on.

This experiment has two levels of variability. First, there is the variation from person to person,
which we call the between-subject strata. Then there is the variability of repeat measurements made
on the same subject, the within-subject strata. The between-subject variation is always expected
to be larger than within-subject, because the latter is adjusted for baseline differences between the
subjects. Here the comparison between tissues can be made within subjects, and hence should
be more precise than the comparison between diseased and normal, which must be made between
subjects.

50

Chapter 10

Two-Color Experiments with a
Common Reference

10.1 Introduction

Now consider two-color microarray experiments in which a common reference has been used on all
the arrays. If the same channel has been used for the common reference throughout the experiment,
then the expression log-ratios may be analysed exactly as if they were log-expression values from a
single channel experiment. In these cases, the design matrix can be formed as for a single channel
experiment.

When the common reference is dye-swapped, the simplest method is to setup the design matrix
using the modelMatrix () function and the targets file.

10.2 Two Groups

Suppose now that we wish to compare two wild type (Wt) mice with three mutant (Mu) mice using
arrays hybridized with a common reference RNA (Ref):

FileName Cy3 Cyb
Filel Ref WT
File2 Ref WT
File3 Ref Mu
File4 Ref Mu
File5 Ref Mu

The interest here is in the comparison between the mutant and wild type mice. There are two major
ways in which this comparison can be made. We can either

1. create a design matrix which includes a coefficient for the mutant vs wild type difference, or

2. create a design matrix which includes separate coefficients for wild type and mutant mice and
then extract the difference as a contrast.

For the first approach, the design matrix should be as follows

> design

51

WTvsREF MUvsWT

Arrayl 1 0
Array2 1 0
Array3 1 1
Array4 1 1
Arrayb 1 1

Here the first coefficient estimates the difference between wild type and the reference for each probe
while the second coefficient estimates the difference between mutant and wild type. For those not
familiar with model matrices in linear regression, it can be understood in the following way. The
matrix indicates which coefficients apply to each array. For the first two arrays the fitted values
will be just the WTvsREF coefficient, which is correct. For the remaining arrays the fitted values will
be WTvsREF + MUvsWT, which is equivalent to mutant vs reference, also correct. For reasons that will
be apparent later, this is sometimes called the treatment-contrasts parametrization. Differentially
expressed genes can be found by

> fit <- 1mFit(MA, design)
> fit <- eBayes(fit)
> topTable(fit, coef="MUvsWT", adjust="BH")

There is no need here to use contrasts.fit() because the comparison of interest is already built
into the fitted model. This analysis is analogous to the classical pooled two-sample t-test except that
information has been borrowed between genes.

For the second approach, the design matrix should be

WT MU
Arrayl 1 O
Array2 1 0
Array3 0 1
Array4 0 1
Array5 0 1

The first coefficient now represents wild-type vs the reference and the second represents mutant vs
the reference. Our comparison of interest is the difference between these two coefficients. We will
call this the group-means parametrization. Differentially expressed genes can be found by

> fit <- 1mFit(MA, design)

> cont.matrix <- makeContrasts(MUvsWT=MU-WT, levels=design)

> fit2 <- contrasts.fit(fit, cont.matrix)
> fit2 <- eBayes(fit2)
> topTable(fit2, adjust="BH")

The results will be exactly the same as for the first approach.
The design matrix can be constructed

1. manually,
2. using the limma function modelMatrix(), or
3. using the built-in R function model.matrix().

Let Group be the factor defined by

> Group <- factor(c("WT","WT","Mu","Mu","Mu"), levels=c("WT","Mu"))

52

For the first approach, the treatment-contrasts parametrization, the design matrix can be computed
by

> design <- cbind(WTvsRef=1,MUvsWT=c(0,0,1,1,1))

or by

> param <- cbind(WTvsRef=c(-1,1,0) ,MUvsWI=c(0,-1,1))
> rownames (param) <- c("Ref","WT","Mu")
> design <- modelMatrix(targets, parameters=param)

or by
> design <- model.matrix(~Group)
> colnames(design) <- c("WTvsRef","MUvsWT")

all of which produce the same result. For the second approach, the group-means parametrization,
the design matrix can be computed by

> design <- cbind(WT=c(1,1,0,0,0),MU=c(0,0,1,1,1))

or by

> param <- cbind(WT=c(-1,1,0),MU=c(-1,0,1))
> rownames (param) <- c("Ref","WT","Mu")
> design <- modelMatrix(targets, parameters=param)

or by

> design <- model.matrix(~0+Group)
> colnames(design) <- c("WT","Mu")

all of which again produce the same result.

10.3 Several Groups

The above approaches for two groups extend easily to any number of groups. Suppose that the
experiment has been conducted to compare three RNA sources, “RNA1”, “RNA2” and “RNA3”.
For example the targets frame might be

FileName Cy3 Cyb
Filel Ref RNAIl
File2 RNAl Ref
File3 Ref RNA2
File4 RNA2 Ref
Fileb Ref RNA3

For this experiment the design matrix could be formed by

> design <- modelMatrix(targets, ref="Ref")

after which the analysis would be exactly as for the equivalent single channel experiment in Sec-
tion 9.3. For example, to make all pair-wise comparisons between the three groups one could proceed

> fit <- 1mFit(eset, design)

> contrast.matrix <- makeContrasts(RNA2-RNA1, RNA3-RNA2, RNA3-RNA1, levels=design)
> fit2 <- contrasts.fit(fit, contrast.matrix)

> fit2 <- eBayes(fit2)

and so on.

93

Chapter 11

Direct Two-Color Experimental
Designs

11.1 Introduction

Direct two-color designs are those in which there is no common reference, but the RNA samples are
instead compared directly by competitive hybridization on the same arrays. Direct two-color designs
can be very efficient and powerful, but they require the most statistical knowledge to choose the
appropriate design matrix.

11.2 Simple Comparisons

11.2.1 Replicate Arrays

The simplest possible microarray experiment is one with a series of replicate two-color arrays all
comparing the same two RNA sources. For a three-array experiment comparing wild type (wt) and
mutant (mu) RNA, the targets file might contain the following entries:

FileName Cy3 Cyb
Filel wt mu
File2 wt mu
File3 wt mu

A list of differentially expressed probes might be found for this experiment by

> fit <- 1mFit(MA)
> fit <- eBayes(fit)
> topTable(fit)

where MA holds the normalized data. The default design matrix used here is just a single column of
ones. The experiment here measures the fold change of mutant over wild type. Genes which have
positive M-values are more highly expressed in the mutant RNA while genes with negative M-values
are more highly expressed in the wild type. The analysis is analogous to the classical single-sample
t-test except that we have used empirical Bayes methods to borrow information between genes.

o4

11.2.2 Dye Swaps

A simple modification of the above experiment would be to swap the dyes for one of the arrays. The
targets file might now be

FileName Cy3 Cyb
Filel wt mu
File2 mu wt
File3 wt mu

Now the analysis would be

> design <- c(1,-1,1)

> fit <- 1lmFit(MA, design)
> fit <- eBayes(fit)

> topTable(fit)

Alternatively the design matrix could be set, replacing the first of the above code lines, by

> design <- modelMatrix(targets, ref="wt")

where targets is the data frame holding the targets file information.

If there are at least two arrays with each dye-orientation, then it is possible to estimate and
adjust for any probe-specific dye effects. The dye-effect is estimated by an intercept term. If the
experiment was

FileName Cy3 Cyb
Filel wt mu
File2 mu wt
File3 wt mu
File4 mu wt

then we could set
> design <- cbind(DyeEffect=1,MUvsWI=c(1,-1,1,-1))

> fit <- 1mFit(MA, design)
> fit <- eBayes(fit)

The genes which show dye effects can be seen by
> topTable(fit, coef="DyeEffect")
The genes which are differentially expressed in the mutant are obtained by

> topTable(fit, coef="MUvsWT")

The fold changes and significant tests in this list are corrected for dye-effects. Including the dye-effect
in the model in this way uses up one degree of freedom which might otherwise be used to estimate
the residual variability, but it is valuable if many genes show non-negligible dye-effects.

95

11.3 A Correlation Approach to Technical Replication

In the previous sections we have assumed that all arrays are biological replicates. Now consider an
experiment in which two wild-type and two mice from the same mutant strain are compared using
two arrays for each pair of mice. The targets might be

FileName Cy3 Cyb
Filel wtl mul
File2 wtl mul
File3 wt2 mu2
File4 wt2 mu2

The first and second and third and fourth arrays are technical replicates. It would not be correct
to treat this experiment as comprising four replicate arrays because the technical replicate pairs are
not independent, in fact they are likely to be positively correlated.

One way to analyze these data is the following;:

biolrep <- c(1, 1, 2, 2)

corfit <- duplicateCorrelation(MA, ndups = 1, block = biolrep)
fit <- ImFit(MA, block = biolrep, cor = corfit$consensus)

fit <- eBayes(fit)

topTable(fit, adjust = "BH")

vV V. V V Vv

The vector biolrep indicates the two blocks corresponding to biological replicates. The value
corfit$consensus estimates the average correlation within the blocks and should be positive. This
analysis is analogous to mized model analysis of variance [18, Chapter 18] except that information
has been borrowed between genes. Information is borrowed by constraining the within-block corre-
lations to be equal between genes and by using empirical Bayes methods to moderate the standard
deviations between genes [36].

If the technical replicates were in dye-swap pairs as

FileName Cy3 Cyb
Filel wtl mul
File2 mul wtl
File3 wt2 mu2
Filed mu2 wt2

then one might use

design <- c(1, -1, 1, -1)

corfit <- duplicateCorrelation(MA, design, ndups = 1, block = biolrep)
fit <- 1mFit(MA, design, block = biolrep, cor = corfit$consensus)

fit <- eBayes(fit)

topTable(fit, adjust = "BH")

vV V. V V Vv

In this case the correlation corfit$consensus should be negative because the technical replicates are
dye-swaps and should vary in opposite directions.

This method of handling technical replication using duplicateCorrelation() is somewhat limited
for two-color experiments. If for example one technical replicate was dye-swapped and the other not,

o6

FileName Cy3 Cyb
Filel wtl mul
File2 mul wtl
File3 wt2 mu2
File4 wt2 mu?2

then there is no way to use duplicateCorrelation() because the technical replicate correlation will
be negative for the first pair but positive for the second. In this case, there is no good alternative
to treating the technical replicates as if they were biological, so that that the experiment would be
analysed as a simple comparison with dye-swaps. Beware however that treating technical replicates
as biological gives p-values that are smaller than they should be.

57

Chapter 12

Separate Channel Analysis of
Two-Color Data

Separate channel analysis is a way to analyse two-color data in terms of the individual channel
intensities [39]. In effect, separate channel analysis converts a two-color experiment into a single
channel experiment with twice as many arrays but with a technical pairing between the two channels
that originated from the same array.

Consider an experiment comparing young and old animals for both both wild-type and mutant
genotypes.

FileName Cy3 Cyb
Filel wt.young wt.old
File2 wt.old wt.young
File3 mu.young mu.old
File4 mu.old mu.young

Each of the arrays in this experiment makes a direct comparison between young and old RNA
targets. There are no arrays which compare wild-type and mutant animals. This is an example of
an unconnected design in that there are no arrays linking the wild-type and mutant targets. It is not
possible to make comparisons between wild-type and mutant animals on the basis of log-ratios alone.
So to do this it is necessary to analyze the red and green channels intensities separately, i.e., to analyze
log-intensities instead of log-ratios. It is possible to do this using a mixed model representation
which treats each spot as a randomized block [46, 35]. Limma implements mixed model methods
for separate channel analysis which make use of shrinkage methods to ensure stable and reliable
inference with small numbers of arrays [35]. Limma also provides between-array normalization to
prepare for separate channel analysis, for example

> MA <- normalizeBetweenArrays(MA, method="Aquantile")

scales the intensities so that A-values have the same distribution across arrays.
The first step in the differential expression analysis is to convert the targets frame to be channel
rather than array orientated.

> targets2 <- targetsA2C(targets)
> targets2

o8

channel.col FileName Target

Filel.1 1 Filel wt.young
Filel.2 2 Filel wt.old
File2.1 1 File2 wt.old
File2.2 2 File2 wt.young
File3.1 1 File3 mu.young
File3.2 2 File3 mu.old
File4.1 1 File4 mu.old
File4.2 2 File4 mu.young

The following code produces a design matrix with eight rows and four columns:

> u <- unique(targets2$Target)

> f <- factor(targets2$Target, levels=u)
> design <- model.matrix(~0+f)

> colnames(design) <- u

Inference proceeds as for within-array replicate spots except that the correlation to be estimated is
that between the two channels for the same spot rather than between replicate spots.

> corfit <- intraspotCorrelation(MA, design)
> fit <- IlmscFit(MA, design, correlation=corfit$consensus)

Subsequent steps proceed as for log-ratio analyses. For example if we want to compare wild-type
young to mutant young animals, we could extract this contrast by

cont.matrix <- makeContrasts("mu.young-wt.young",levels=design)
fit2 <- contrasts.fit(fit, cont.matrix)
fit2 <- eBayes(fit2)

>
>
>
> topTable(fit2, adjust="BH")

99

Chapter 13

Statistics for Differential Expression

13.1 Summary Top-Tables

Limma provides functions topTable() and decideTests() which summarize the results of the linear
model, perform hypothesis tests and adjust the p-values for multiple testing. Results include (log2)
fold changes, standard errors, t-statistics and p-values. The basic statistic used for significance
analysis is the moderated t-statistic, which is computed for each probe and for each contrast. This
has the same interpretation as an ordinary t-statistic except that the standard errors have been
moderated across genes, i.e., squeezed towards a common value, using a simple Bayesian model.
This has the effect of borrowing information from the ensemble of genes to aid with inference about
each individual gene [34]. Moderated t-statistics lead to p-values in the same way that ordinary
t-statistics do except that the degrees of freedom are increased, reflecting the greater reliability
associated with the smoothed standard errors. The effectiveness of the moderated ¢ approach has
been demonstrated on test data sets for which the differential expression status of each probe is
known [11].

A number of summary statistics are presented by topTable() for the top genes and the selected
contrast. The 1logFC column gives the value of the contrast. Usually this represents a logs-fold change
between two or more experimental conditions although sometimes it represents a logs-expression
level. The AveExpr column gives the average logs-expression level for that gene across all the arrays
and channels in the experiment. Column t is the moderated t-statistic. Column P.Value is the
associated p-value and adj.P.Value is the p-value adjusted for multiple testing. The most popular
form of adjustment is "BH" which is Benjamini and Hochberg’s method to control the false discovery
rate [1]. The adjusted values are often called g-values if the intention is to control or estimate the
false discovery rate. The meaning of "BH" g-values is as follows. If all genes with g-value below a
threshold, say 0.05, are selected as differentially expressed, then the expected proportion of false
discoveries in the selected group is controlled to be less than the threshold value, in this case 5%.
This procedure is equivalent to the procedure of Benjamini and Hochberg although the original paper
did not formulate the method in terms of adjusted p-values.

The B-statistic (1ods or B) is the log-odds that the gene is differentially expressed [34, Section 5].
Suppose for example that B = 1.5. The odds of differential expression is exp(1.5)=4.48, i.e, about
four and a half to one. The probability that the gene is differentially expressed is 4.48/(1+4.48)=0.82,
i.e., the probability is about 82% that this gene is differentially expressed. A B-statistic of zero cor-
responds to a 50-50 chance that the gene is differentially expressed. The B-statistic is automatically
adjusted for multiple testing by assuming that 1% of the genes, or some other percentage specified

60

by the user in the call to eBayes(), are expected to be differentially expressed. The p-values and
B-statistics will normally rank genes in the same order. In fact, if the data contains no missing
values or quality weights, then the order will be precisely the same.

As with all model-based methods, the p-values depend on normality and other mathematical
assumptions which are never exactly true for microarray data. It has been argued that the p-values
are useful for ranking genes even in the presence of large deviations from the assumptions [38, 36].
Benjamini and Hochberg’s control of the false discovery rate assumes independence between genes,
although Reiner et al [25] have argued that it works for many forms of dependence as well. The
B-statistic probabilities depend on the same assumptions but require in addition a prior guess for
the proportion of differentially expressed probes. The p-values may be preferred to the B-statistics
because they do not require this prior knowledge.

The eBayes() function computes one more useful statistic. The moderated F-statistic (F) com-
bines the t-statistics for all the contrasts into an overall test of significance for that gene. The
F-statistic tests whether any of the contrasts are non-zero for that gene, i.e., whether that gene is
differentially expressed on any contrast. The denominator degrees of freedom is the same as that of
the moderated-t. Its p-value is stored as fit$F.p.value. It is similar to the ordinary F-statistic from
analysis of variance except that the denominator mean squares are moderated across genes.

A frequently asked question relates to the occasional occurrence that all of the adjusted p-values
are equal to 1. This is not an error situation but rather an indication that there is no evidence of
differential expression in the data after adjusting for multiple testing. This can occur even though
many of the raw p-values may seem highly significant when taken as individual values. This situation
typically occurs when none of the raw p-values are less than 1/G, where G is the number of probes
included in the fit. In that case the adjusted p-values are typically equal to 1 using any of the
adjustment methods except for adjust="none".

13.2 Fitted Model Objects

The output from 1mFit () is an object of class MArrayLM. This section gives some mathematical details
describing what is contained in such objects. This section can be skipped by readers not interested
in such details.

The linear model for gene j has residual variance UJZ with sample value s? and degrees of free-
dom d;. The output from 1mFit(), fit say, holds the s; in component fit$sigma and the d; in
fit$df.residual. The covariance matrix of the estimated Bj is UJQ-CT(XTX/jX)_lC where V; is a
weight matrix determined by prior weights, any covariance terms introduced by correlation structure
and any iterative weights introduced by robust estimation. The square-roots of the diagonal elements
of CT(XTV;X)71C are called unscaled standard deviations and are stored in fit$stdev.unscaled.
The ordinary t-statistic for the kth contrast for gene j is ¢, = Bjk/(ujksj) where u;y, is the unscaled
standard deviation. The ordinary t-statistics can be recovered by

> tstat.ord <- fit$coef/fit$stdev.unscaled/fit$sigma

after fitting a linear model if desired.
The empirical Bayes method assumes an inverse Chisquare prior for the 0']2- with mean s3 and
degrees of freedom dy. The posterior values for the residual variances are given by
2 dos? + djS?
J do + d;

61

where d; is the residual degrees of freedom for the jth gene. The output from eBayes() contains s3
and dp as fit$s2.prior and fit$df.prior and the 55 as fit$s2.post. The moderated t-statistic is

g f%k

bik = ———
u]ksj

This can be shown to follow a t-distribution on dy + d; degrees of freedom if 5, = 0 [34]. The extra
degrees of freedom fy represent the extra information which is borrowed from the ensemble of genes
for inference about each individual gene. The output from eBayes() contains the fjk as fit$t with
corresponding p-values in fit$p.value.

13.3 Multiple Testing Across Contrasts

The output from topTable includes adjusted p-values, i.e., it performs multiple testing for the contrast
being considered. If several contrasts are being tested simultaneously, then the issue arises of multiple
testing for the entire set of hypotheses being considered, across contrasts as well as probes. The
function decideTests() offers a number of strategies for doing this.

The simplest multiple testing method is method="separate". This method does multiple testing
for each contrast separately. This method is the default because it is equivalent to using topTable().
Using this method, testing a set of contrasts together will give the same results as when each contrast
is tested on its own. The great advantage of this method is that it gives the same results regardless
of which set of contrasts are tested together. The disadvantage of this method is that it does not
do any multiple testing adjustment between contrasts. Another disadvantage is that the raw p-value
cutoff corresponding to significance can be very different for different contrasts, depending on the
number of DE probes. This method is recommended when different contrasts are being analysed to
answer more or less independent questions.

method="global" is recommended when a set of closely related contrasts are being tested. This
method simply appends all the tests together into one long vector of tests, i.e., it treats all the tests
as equivalent regardless of which probe or contrast they relate to. An advantage is that the raw
p-value cutoff is consistent across all contrasts. For this reason, method="global" is recommended if
you want to compare the number of DE genes found for different contrasts, for example interpreting
the number of DE genes as representing the strength of the contrast. However users need to be aware
that the number of DE genes for any particular contrasts will depend on which other contrasts are
tested at the same time. Hence one should include only those contrasts which are closely related to
the question at hand. Unnecessary contrasts should be excluded as these would affect the results for
the contrasts of interest. Another more theoretical issue is that there is no theorem which proves that
adjust.method="BH" in combination with method="global" will correctly control the false discovery
rate for combinations of negatively correlated contrasts, however simulations, experience and some
theory suggest that the method is safe in practice.

The "hierarchical" method offers power advantages when used with adjust.method="holm"
to control the family-wise error rate. However its properties are not yet well understood with
adjust="BH".

method="nestedF" has a more specialised aim to give greater weight to probes which are signifi-
cance for two or more contrasts. Most multiple testing methods tend to underestimate the number
of such probes. There is some practical experience to suggest that method="nestedF" gives less con-
servative results when finding probes which respond to several different contrasts at once. However

62

this method should still be viewed as experimental. It provides formal false discovery rate control
at the probe level only, not at the contrast level.

63

Chapter 14

Array Quality Weights

14.1 Introduction

Given an appropriate design matrix, the relative reliability of each array in an experiment can be
estimated by measuring how well the expression values for that array follow the linear model. This
empirical approach of assessing array quality can be applied to both two-color and single-channel
microarray data and is described in [26].

The method is implemented in the arrayWeights function, which fits a heteroscedastic model to
the expression values for each gene by calling the function 1m.wfit. (See also arrayWeightsSimple
which does the same calculation more quickly when there are no probe-level quality weights.) The
dispersion model is fitted to the squared residuals from the mean fit, and is set up to have array
specific coefficients, which are updated in either full REML scoring iterations, or using an efficient
gene-by-gene update algorithm. The final estimates of these array variances are converted to weights
which can be used in 1mFit. This method offers a graduated approach to quality assessment by
allowing poorer quality arrays, which would otherwise be discarded, to be included in an analysis
but down-weighted.

14.2 Example 1

We consider the array quality weights applied to the spike-in controls from a quality control data
set courtesy of Andrew Holloway, Ryan van Laar and Dileepa Diyagama from the Peter MacCallum
Cancer Centre in Melbourne. This collection of arrays (described in [26]) consists of 100 replicate
hybridizations and we will use data from the first 20 arrays. The object MAlms stores the loess
normalized data for the 120 spike-in control probes on each array. Since these arrays are replicate
hybridizations, the default design matrix of a single column of ones is used.

> arrayw <- arrayWeights(MAlms)

> barplot(arrayw, xlab="Array", ylab="Weight", col="white", las=2)
> abline(h=1, lwd=1, 1lty=2)

64

Weight
|

1.0 41111 -1
gl
00 4 LU]

The empirical array weights vary from a minimum of 0.16 for array 19 to a maximum of 2.31 for
array 8. These weights can be used in the linear model analysis.

> fitw <- 1lmFit(MAlms, weights=arrayw)
> fitw <- eBayes(fitw)

In this example the ratio control spots should show three-fold or ten-fold changes while the
dynamic range spots should not be differentially expressed. To compare the moderated t-statistics
before and after applying array weights, use the following;:

> fit <- 1mFit(MAlms)

> fit <- eBayes(fit)

> boxplot (fit$t~"MAlms$genes$Status, at=1:5-0.2, col=5, boxwex=0.4, xlab="control type",
+ ylab="moderated t-statistics", pch=".", ylim=c(-70, 70), medlwd=1)

> boxplot (fitw$t "MAlms$genes$Status, at=1:5+0.2, col=6, boxwex=0.4,

+ add=TRUE, yaxt="n", xaxt="n", medlwd=1, pch=".")

> abline(h=0, col="black", lty=2, lwd=1)

> legend (0.5, 70, legend=c("Equal weights", "Array weights"), fill=c(5,6), cex=0.8)

65

-
2 - O Eqgual weights i
B Array weights j_—.
1
= — I
iy} = 1
1
éé - -+
5 S =
- 1
e =L 1L
+4 >
R e
z
=
o]
S o T R
S = __
-
= ==
¥] =l
1
i
[
= 4
1 -1

I I | I I
D03 010 DR 03 110

control type

The boxplots show that the t-statistics for all classes of ratio controls (D03, D10, U03 and U10)
move further from zero when array weights are used while the distribution of ¢-statistics for the
dynamic range controls (DR) does not noticeably change. This demonstrates that the array quality
weights increase statistical power to detect true differential expression without increasing the false
discovery rate.

The same heteroscedastic model can also be fitted at the print-tip group level using the printtipWeights
function. If there are p print-tip groups across n arrays, the model fitting procedure described in [26]
is repeated p times to produce a weight for each print-tip group on each array for use in 1mFit. This
method can be applied to two-color microarray data where the probes are organized into print-tip
groups whose size is specified by the printer component of the MAList.

14.3 Example 2

Below is an example of applying this method to the Apoal data.

ptw <- printtipWeights(MA, design, layout=MA$printer)
zlim <- c(min(ptw), max(ptw))
par (mfrow=c(3,2))
for(i in seq(7,12,by=1))
imageplot (ptw[,i], layout=MA$printer, zlim=zlim, main=colnames(MA) [i])

+ V V Vv VvV

66

z-range 0.7 to 2 (=aturation 0.2, 2.1) z-range 0.6 to 2.1 (saturation 0.2, 2.1)
alkolki
z-range 0.2 to 1.2 (saturation 0.2, 2.13 z-range 0.7 to 1.3 (saturation 0.2, 2.1)

alk alkokd

z-range 0.7 to 1.3 (saturation 0.2, 2.13 z-range 0.5 to 1.2 (saturation 0.2, 2.13

Image plots of the print-tip weights for arrays 7 through to 12 are shown above, with lighter shades
indicating print-tip groups which have been assigned lower weights. A corner of array 9 (alkokl) is
measured to be less reproducible than the same region on other arrays, which may be indicative of
a spatial artefact. Using these weights in the linear model analysis increases the t-statistics of the
top ranking genes compared to an analysis without weights (compare the results table below with
the table in section 16.2).

> fitptw <- 1lmFit(MA, design, weights=ptw)

> fitptw <- eBayes(fitptw)

> options(digits=3)

> topTable(fitptw,coef=2,number=15,genelist=fitptw$genes$NAME)

ID 1logFC AveExpr t P.Value adj.P.Val B
2149 ApoAI,lipid-Img -3.151 12.47 -25.64 1.21e-15 7.73e-12 16.4206
540 EST,HighlysimilartoA -2.918 12.28 -14.49 2.22e-11 7.09e-08 12.4699
5356 CATECHOLO-METHYLTRAN -1.873 12.93 -13.16 1.10e-10 2.34e-07 11.5734
4139 EST,WeaklysimilartoC -0.981 12.61 -11.71 7.28e-10 1.16e-06 10.3623
1739 ApoCIII,lipid-Img -0.933 13.74 -10.58 3.66e-09 4.67e-06 9.4155
1496 est -0.949 12.23 -9.92 9.85e-09 1.05e-05 8.6905
2537 ESTs,Highlysimilarto -1.011 13.63 -9.56 1.75e-08 1.60e-05 8.2587
4941 similartoyeaststerol -0.873 13.29 -6.88 1.93e-06 1.54e-03 4.6875
947 EST,WeaklysimilartoF -0.566 10.54 -5.08 7.78e-05 5.52e-02 1.6112
2812 5’similartoPIR:S5501 -0.514 11.65 -4.30 4.31e-04 2.75e-01 0.1242
6073 estrogenrec 0.412 9.79 4.21 5.27e-04 3.06e-01 -0.0497
1347 Musmusculustranscrip -0.412 10.18 -4.07 7.09e-04 3.47e-01 -0.3106

67

634 MDB1376 -0.380 9.32 -4.07 7.11e-04 3.47e-01 -0.3123
2 Cy5RT 0.673 10.65 4.04 7.61e-04 3.47e-01 -0.3745
5693 Meox2 0.531 9.77 3.84 1.19e-03 4.74e-01 -0.7649

For example, the moderated t-statistic of the top ranked gene, Apoal, which has been knocked-
out in this experiment, increases in absolute terms from -23.98 when equal weights are used to -25.64
with print-tip weights. The t-statistic of the related gene ApoCIII also increases in absolute value
(moderated t-statistic of -9.83 before weighting and -10.58 after). This analysis provides a further
example that a graduated approach to quality control can improve power to detect differentially
expressed genes.

14.4 When to Use Array Weights

Array weights are generally useful when there is some reason to expect variable array quality. For
example, RNA samples from human clinical patients are typically variable in quality, so array weights
might be used routinely with human in vivo data, see for example Ellis et al [9]. If array quality
plots suggest a problem, then array weights are indicated. If RNA is plentiful, e.g., from cell lines
or model organisms, and quality plots of the arrays don’t suggest problems, then array weights are
usually not needed.

In gross cases where an array is clearly bad or wrong, it should be removed, rather than down-
weighted. However this action should be reserved for extreme cases.

If most genes are not differentially expressed, then the design matrix for arrayWeights does not
need to be as complex as for the final linear model. For example, in a two-group comparison with
just 2 replicates in each group, the array weights should be estimated with the default (intercept)
design matrix, otherwise each array is compared only to its partner rather than to the other 3 arrays.

68

Chapter 15

RNA-seq Data

15.1 Introduction

The limma approach to RNA-seq explained in the article by Law et [12]. The voom transformation
is applied to the read counts. This converts the counts to log-counts per million with associated
precision weights. After this, the RNA-seq data can be analyzed as if it was microarray data. This
means for example that any of the linear modelling or gene set testing methods in the limma package
can be applied to RNA-seq data.

15.2 Making a count matrix

RNA-seq data usually arrives in the form of FastQ or BAM files of unaligned reads. The reads
need to be mapped to a reference genome or transcriptome, then summarized at the exon or gene
level to produce a matrix of counts. We find the Rsubread package [15] to be convenient, fast
and effective for this purpose. Other popular methods include RSEM [13] and HTseq. A runnable
example with complete code showing how to use subread and featureCounts with limma is provided
at http://bioinf.wehi.edu.au/RNAseqCaseStudy.

15.3 Differential expression

Suppose that a matrix of read counts counts has been created, with rows for genes and columns
for samples. The limma-voom method assumes that rows with zero or very low counts have been
removed.

It is usual to apply scale normalization to RNA-seq read counts, and the TMM normalization
method [29] in particular has been found to perform well in comparative studies. To apply TMM
normalization, it is convenient to create a DGEList object using the edgeR package:

> dge <- DGEList(counts=counts)
> dge <- calcNormFactors(dge)

The voom transformation is then applied:
v <- voom(dge,design,plot=TRUE)

The voom transformation uses the experiment design matrix, and produces an EList object.
It is also possible to give a matrix of counts directly to voom without TMM normalization, by

69

> v <- voom(counts,design,plot=TRUE)

If the data are very noisy, one can apply the same between-array normalization methods as would
be used for microarrays, for example:

> v <- voom(counts,design,plot=TRUE,normalize="quantile")

After this, the usual limma pipelines for differential expression can be applied, for example:

> fit <- 1mFit(v,design)
> fit <- eBayes(fit)
> topTable(fit,coef=ncol(design))

Or, to give more weight to fold-changes in the ranking, one could use say:

> fit <- treat(fit,lfc=log2(1.2))
> topTreat(fit,coef=ncol(design))

15.4 Sample quality weights

When a multi-dimensional scaling plot from a designed RNA-seq experiment indicates the presence
of outlier samples, it is possible to combine the observational-level weighting strategy used in voom
with sample-specific quality weights (as described in the section above on Array Quality Weights) to
down-weight outlier samples. This capability is implemented in the voomWithQualityWeights function.

The example below shows its use on an RNA-seq data set where the epigenetic regulator Smchd1
has been knocked-out in lymphona cell-lines. Overall we obtain more differential expression by
applying this combined weighting strategy and the raw p-value and false discovery rate for the
Smchdl gene, which has been knocked out, is smaller.

> plotMDS(x, labels=1:7, col=as.numeric(genotype), main="MDS plot")
> legend("topright", legend=c("WT", "KO0"), col=1:2, pch=15)

MDS plot

Leading logFC dim 2

Leading logFC dim 1

70

v

Analysis with voom only

> des[1:7,]

(Intercept) SmchdlnullvsWt
1 1 1
2 1 1
3 1 1
4 1 1
5 1 0
6 1 0
7 1 0
> v <- voom(x, design=des)
> plotMDS(v, labels=1:7, col=as.numeric(genotype))
> viit <- 1mFit(v)
> vfit <- eBayes(vfit)
> options(digits=3)
> topTable(vfit,coef=2,sort.by="P")

GeneID Symbols logFC AveExpr t P.Value adj.P.Val B

74355 74355 Smchdl -3.12 6.067 -23.35 2.16e-08 0.000266 9.97
18028 18028 Nfib 8.98 1.714 12.60 2.17e-06 0.013355 3.15
75605 75605 Kdmbb -3.55 3.618 -11.75 3.62e-06 0.014857 5.06
667435 667435 Igkvli7-121 -5.35 -1.435 -10.22 9.95e-06 0.025513 2.57
381126 381126 Garem 6.17 0.113 10.08 1.10e-05 0.025513 2.35
381413 381413 Gpr176 -4.02 1.328 -9.90 1.25e-05 0.025513 3.39
75033 75033 Meid4 6.44 0.259 9.69 1.45e-05 0.025513 2.23
69136 69136 Tuscl 5.67 -0.184 8.90 2.67e-05 0.040995 1.87
233552 233552 Gdpd5 -2.82 1.948 -8.56 3.49e-05 0.042754 2.81
80890 80890 Trim2 -1.43 4.491 -8.40 4.00e-05 0.042754 2.72

> top <- topTable(vfit,coef=2,number=Inf,sort.by="P")

> sum(top$adj.P.Val<0.05)

[1]1 12

> # Analysis with combined voom and sample quality weights

> vwts <- voomWithQualityWeights(x, design=des, normalization="none", plot=TRUE)
> vfit2 <- 1mFit(vwts)
> vfit2 <- eBayes(vfit2)
> topTable(vfit2,coef=2,sort.by="P")

GeneID Symbols logFC AveExpr t P.Value adj.P.Val B
74355 74355 Smchdl -3.17 6.067 -28.5 1.61e-09 1.98e-05 12.57
18028 18028 Nfib 9.23 1.714 19.0 4.44e-08 2.73e-04 6.91
381126 381126 Garem 6.45 0.113 15.9 1.85e-07 7.58e-04 6.02
75033 75033 Mei4 6.56 0.259 15.0 2.84e-07 8.73e-04 5.83
69136 69136 Tuscl 5.88 -0.184 13.6 6.16e-07 1.11e-03 5.31
54354 54354 Rassf5 5.74 4.554 13.6 6.26e-07 1.11e-03 6.63
75605 75605 Kdmbb -3.80 3.618 -13.5 6.53e-07 1.11e-03 6.67
58998 58998 Pvrl3 7.69 0.961 13.1 8.46e-07 1.11e-03 5.33
320398 320398 Lrig3 7.39 1.584 13.1 8.49e-07 1.11e-03 5.32
17069 17069 Ly6e 2.63 7.605 13.0 9.01e-07 1.11e-03 6.26
> top2 <- topTable(vfit2,coef=2,number=Inf,sort.by="P")

> sum(top2$adj.P.Val<0.05)
[1]1 1478

71

voom: Mean-variance trend Sample-specific weights

3.5

2.0
3.0

1.5
2.5

1.0
Weight
2.0

Sqrt(standard deviation)
1.5

1.0

0.5

0.5

0
|
|
0

log2(eount size + 0.5 Sample

15.5 Differential splicing

limma can also detect genes that how evidence of differential splicing between conditions. One can
test for differential splicing associated with any contrast for a linear model.

In this case, the matrix of counts should be at the exon level, with a row for each exon. For
example,

> dge <- DGEList(counts=counts)
> dge$genes$GeneID <- GenelD

where counts is a matrix of exon-level counts, and GenelD identifies which gene each exon belongs
to. Then filter and normalize:

> A <- rowSums(dge$counts)
> dge <- dge[A>10, ,keep.lib.sizes=FALSE]
> dge <- calcNormFactors(dge)

Then apply the voom transformation and fit a linear model:

> v <- voom(dge,design,plot=TRUE)
> fit <- ImFit(v,design)

Now we can test for differential splicing associated with any coefficient in the linear model. First
run the diffSplice function:

> ex <- diffSplice(fit, geneid="GeneID")
Then
> topSplice(ex,coef=2,level="gene")

will find genes that show evidence of differential splicing associated with the second coefficient in
the linear model. The output is similar that from the limma topTable function. More detail can be
obtained by

72

> topSplice(ex,coef=2,level="exon")

which will show individual exons that are enriched or depleted relative to other exons in the same
gene. To display the pattern of exons in the top genes:

> plotSplice(ex)

73

Chapter 16

Two-Color Case Studies

16.1 Swirl Zebrafish: A Single-Group Experiment

In this section we consider a case study in which two RNA sources are compared directly on a
set of replicate or dye-swap arrays. The case study includes reading in the data, data display and
exploration, as well as normalization and differential expression analysis. The analysis of differential
expression is analogous to a classical one-sample test of location for each gene.

In this example we assume that the data is provided as a GAL file called fish.gal and raw SPOT
output files and that these files are in the current working directory. The data used for this case
study can be downloaded from http://bioinf.wehi.edu.au/limmaGUI/DataSets.html.

> dir()
[1] "fish.gal" "swirl.1l.spot" "swirl.2.spot" "swirl.3.spot" "swirl.4.spot"
[6] "SwirlSample.txt"

Background. The experiment was carried out using zebrafish as a model organism to study the early
development in vertebrates. Swirl is a point mutant in the BMP2 gene that affects the dorsal/ventral
body axis. The main goal of the Swirl experiment is to identify genes with altered expression in the
Swirl mutant compared to wild-type zebrafish.

The hybridizations. Two sets of dye-swap experiments were performed making a total of four repli-
cate hybridizations. Each of the arrays compares RNA from swirl fish with RNA from normal (“wild
type”) fish. The experimenters have prepared a tab-delimited targets file called SwirlSamples.txt
which describes the four hybridizations:

> library(limma)

> targets <- readTargets("SwirlSample.txt")

> targets

SlideNumber FileName Cy3 Cyb Date
81 swirl.l.spot swirl wild type 2001/9/20
82 swirl.2.spot wild type swirl 2001/9/20
93 swirl.3.spot swirl wild type 2001/11/8
94 swirl.4.spot wild type swirl 2001/11/8

B W N

We see that slide numbers 81, 82, 93 and 94 were used to make the arrays. On slides 81 and 93,
swirl RNA was labelled with green (Cy3) dye and wild type RNA was labelled with red (Cy5) dye.
On slides 82 and 94, the labelling was the other way around.

74

Each of the four hybridized arrays was scanned on an Axon scanner to produce a TIFF image,
which was then processed using the image analysis software SPOT. The data from the arrays are
stored in the four output files listed under FileName. Now we read the intensity data into an RGList
object in R. The default for SPOT output is that Rmean and Gmean are used as foreground intensities
and morphR and morphG are used as background intensities:

> RG <- read.maimages(targets, source="spot")
Read swirl.l.spot
Read swirl.2.spot
Read swirl.3.spot
Read swirl.4.spot
> RG
An object of class "RGList"
$R

swirl.1l swirl.2 swirl.3 swirl.4
[1,] 19538.470 16138.720 2895.1600 14054.5400
[2,] 23619.820 17247.670 2976.6230 20112.2600
[3,] 21579.950 17317.150 2735.6190 12945.8500
[4,] 8905.143 6794.381 318.9524 524.0476
[6,] 8676.095 6043.542 780.6667 304.6190
8443 more rows ...

$G

swirl.1l swirl.2 swirl.3 swirl.4
[1,] 22028.260 19278.770 2727.5600 19930.6500
[2,] 25613.200 21438.960 2787.0330 25426.5800
[3,] 22652.390 20386.470 2419.8810 16225.9500
[4,] 8929.286 6677.619 383.2381 786.9048
[6,] 8746.476 6576.292 901.0000 468.0476
8443 more rows ...

$Rb

swirl.1l swirl.2 swirl.3 swirl.4
[1,] 174 136 82 48
[2,] 174 133 82 48
[3,] 174 133 76 48
[4,] 163 105 61 48
[5,] 140 105 61 49

8443 more rows ...

$Gb

swirl.1l swirl.2 swirl.3 swirl.4
[1,] 182 175 86 97
[2,] 171 183 86 85
[3,] 153 183 86 85
(4,1 153 142 71 87
[5,] 153 142 71 87

8443 more rows ...

$targets

SlideNumber FileName Cy3 Cyb Date
1 81 swirl.1l.spot swirl wild type 2001/9/20
2 82 swirl.2.spot wild type swirl 2001/9/20
3 93 swirl.3.spot swirl wild type 2001/11/8
4 94 swirl.4.spot wild type swirl 2001/11/8

75

$source
[1] n SpOt"

The arrays. The microarrays used in this experiment were printed with 8448 probes (spots),
including 768 control spots. The array printer uses a print head with a 4x4 arrangement of print-tips
and so the microarrays are partitioned into a 4x4 grid of tip groups. Each grid consists of 22x24
spots that were printed with a single print-tip.

Unlike most image analysis software, SPOT does not store probe annotation in the output files,
so we have to read it separately. The gene name associated with each spot is recorded in a GenePix
array list (GAL) file:

> RG$genes <- readGAL("fish.gal")
> RG$genes[1:30,]

Block Row Column ID Name
1 1 1 1 control genol
2 1 1 2 control geno2
3 1 1 3 control geno3
4 1 1 4 control 3XSsC
5 1 1 5 control 3XSSC
6 1 1 6 control EST1
7 1 1 7 control g