
GeneRegionScan

Lasse Folkersen and Diego Diez

October 14, 2015

1 GeneRegionScan

This GeneRegionScan package contains functions for investigating smaller re-
gions of the genome, consisting of one or a few genes, in datasets made with
Affymetrix microarrays. While this does not make use of the entire set of genes,
in the way that most microarray tools are designed, it does provide increased
resolution and control over all data from the region of interest. Importantly
this means that probe level data is the main unit of investigation, and a class
ProbeLevelSet is therefore introduced to include descriptions of the sequence of
each probe, and from which probe set it is derived. Functions are included to
build ProbeLevelSets and to analyse them in relation to their pData.

2 Example of building a ProbeLevelSet

In this section we will walk through the various ways a ProbeLevelSet can be
created. An exampleProbeLevelSet is provided in the package, so if you want
to go straight to testing of analysis functionality you can skip to the next section.
An example data set is provided.

The first thing we will need, is to know which probeset IDs to analyse. This
information can be copy-pasted from various database websites, such as for ex-
ample http://www.netaffx.com, but it can also be obtained with the function
getProbesetsFromRegionOfInterest if we have the annotation library files for
our array type and we know at what position in the genome we want to look.
This is quicker than web-lookup for larger regions.

In this example, we are interested in the gene FN1 and a region extending
1000 kb around it. There is no hard limit on the maximal region size, but the
ProbeLevelSets can become very big if you choose a large region. From http://

www.affymetrix.com/products_services/arrays/specific/exon.affx we down-
load the file HuEx-1 0-st-v2.na26.hg18.transcript.csv, which contains informa-
tion on each metaprobeset in the array type that this example uses. We also
download the HuEx-1 0-st-v2.r2.dt1.hg18.full.mps, which contains information
on the probesets found in each metaprobeset.

> library(GeneRegionScan)

> transcriptClustersFile<-"~/HuEx-1-0-st-v2.na26.hg18.transcript.csv"

> mpsToPsFile<-"~/HuEx-1-0-st-v2.r2.dt1.hg18.full.mps"

> listOfProbesets<-getProbesetsFromRegionOfInterest("HuEx-1-0-st-v2", "chr2", 215889955,216106710, transcriptClustersFile=transcriptClustersFile, mpsToPsFile=mpsToPsFile)

1

http://www.netaffx.com
http://www.affymetrix.com/products_services/arrays/specific/exon.affx
http://www.affymetrix.com/products_services/arrays/specific/exon.affx

If we were working with arrays, such as the 3’IVT type arrays where there ex-
isted a .db annotation database within the Bioconductor framework, this would
have been made much simpler by a call to the relevant database. No downloads
would therefore have been necessary, except for the relevant .db file. However,
for 3’IVT arrays there would also have been fewer probesets, so perhaps we
could just have noted them directly from the web.

Having decided which probe sets we are interested in extracting probe level
data from, we turn to the cel files. In the example you will need to change at
least clfPath and pgfPath to match the paths of some cel files on your computer.
If you are lucky the aptCelExtractPath is already included as a binary in the
package and can be left out. Because of space limitations, this is only true for
some operating systems where people are usually very lazy or very busy.

> aptCelExtractPath<-"~/apt-bin/apt-cel-extract"

> clfPath<-"~/HuEx-1-0-st-v2.r2.clf"

> pgfPath<-"~/HuEx-1-0-st-v2.r2.pgf"

> myProbeLevelSet<-getLocalProbeIntensities(listOfProbesets,"~/test-cels", aptCelExtractPath=aptCelExtractPath, pgfPath=pgfPath, clfPath=clfPath)

This command will run for some time depending on the memory of the
computer in use. By calling Affymetrix Power Tools instead of extracting the
intensities ourselves, using a tool suchs as readCelIntensities from the affx-
parser package, we ensure that the memory requirements are drastically lessened
for the normalization step. Otherwise, we would have to load the entire dataset
into R, even though we only needed a few probes. Affymetrix Power Tools are
available from http://www.affymetrix.com/partners_programs/programs/

developer/tools/powertools.affx.
In addition to obtaining the probe level intensities and normalizing them to

all probes in the cel file using quantiles normalization, the getLocalProbeIn-

tensities also parses the pgf-file supplied and returns the sequence of each of
the probes of interest. These are saved in the featureData of the ProbeLevelSet
and can be obtained as follows:

> getSequence(myProbeLevelSet,1:5)

If you have access to a remote computer with more memory than your local
machine, you can use the getServerProbeIntensities function, which is a
wrapper around getLocalProbeIntensities with the extra functionality that
it sends the hard calculations to the remote computer and automatically re-
trieves the ProbeLevelSet . However, as specified in the documentation the funci-
ton, you will need a few extra command line tools to negotiate the network.

The ProbeLevelSet inherits the ExpressionSet and all the usual methods can
be used with it, for example if we want to include pData. In this package, there
is a specialized possibility of adding pData called addSnpPdata. A main goal of
the package is to be able to investigate splice variants and genotype connections.
This function will parse a SNP data file, which must be of the same format as
exported by www.hapmap.org. It will add its per-sample data content to the
pData section of the ProbeLevelSet / ExpressionSet, and its metadata to the
notes of the set.

2

http://www.affymetrix.com/partners_programs/programs/developer/tools/powertools.affx
http://www.affymetrix.com/partners_programs/programs/developer/tools/powertools.affx
www.hapmap.org

3 Example of using a ProbeLevelSet

In the GeneRegionScan an exampleProbeLevelSet is included. This set was
built as specified in the section above, but contains some fictive pData that we
will use in this section.

> data(exampleProbeLevelSet)

> pData(exampleProbeLevelSet)[1:3,]

age case gender genotype1 genotype2 genotype3

X100.cel 60 Disease Female CC CT AG

X101.cel 70 Disease Female CC TT AG

X102.cel 80 Control Male CT CT AA

The data also contains two nucleotide sequences: mrna and genomic. The
first one is the mRNA sequence of FN1, an isoform known as fibronectin 1
isoform 2 preproprotein. FN1 has at least 16 different known isoforms. The se-
quence was loaded by a call to read.DNAStringSet from the Biostrings package.
The second sequence is the DNA sequence of the gene, with one FASTA entry
per exon. We will return to that later.

The first thing we might want to do was to get an idea if any parts of the
gene are not expressed at all. In this case, we might be investigating the wrong
isoform, and would perhaps be better of finding another mRNA sequence. We
do this by the simplest possible call to plotOnGene:

> plotOnGene(exampleProbeLevelSet, mrna)

[1] "Probe data for 660 probes found as featureData in the expressionset ProbeLevelSet"

[1] "Investigating 8647 bp sequence"

[1] "Found 229 probes matching in matchForwardAntisense"

[1] "Found 25 probes matching in matchReverseSense"

3

0 2000 4000 6000 8000

0
10

0
20

0
30

0
Expression of probes

bp

ex
pr

es
si

on

uc002vfd.1 (FN1) length=8647
Each dot represents the median of probes at the given location

The data is taken from the data set: ProbeLevelSet

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●●
●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●●

● ●
●

●●
●
●●
● ●

●
●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●●

●

●

●
●
●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●●●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●●

●

● ●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

This produces a plot where the x-axis shows the length of gene (in this case
the object mrna) in bp and the y-axis shows the quantiles normalized probe
intensity level i.e. the expression level. With command just given, each dot on
the plot is the median of expression levels in all samples for the probe at the lo-
cation indicated on the x-axis. Summarising by median is a default mechanism,
but perhaps we would be interested in seeing more detail for some part of the
gene:

> plotOnGene(exampleProbeLevelSet, mrna, summaryType="dots", interval=c(500,1000))

[1] "Probe data for 660 probes found as featureData in the expressionset ProbeLevelSet"

[1] "Investigating 501 bp sequence"

[1] "Found 14 probes matching in matchForwardAntisense"

> exonStructure(mrna, genomic)

4

500 600 700 800 900 1000

0
20

0
40

0
60

0
80

0
10

00
Expression of probes

bp

ex
pr

es
si

on

uc002vfd.1 (FN1) length=8647
Each dot represents a sample at the given location

The data is taken from the data set: ProbeLevelSet

●

●

●

●

●

●

●

●
●
●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●●●

●
●

●

●

●
●●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●
●
●●

●

●

●

●

●●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●
●
●
●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●
●
●
●
●
●●

●

●

●●

●
●●
●●
●●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●●●
●●
●

●

●
●

●
●●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●●●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●
●

●

●●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●●●

●
●

●

●

●

●
●
●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●●

●
●●●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●
●
●●●●
●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●●

●

●

●

●

●

●

●
●●
●

●
●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●●●●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●●

●

●
●

●

●
●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●●

●

●●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●●
●

●

●

●●
●●●●
●●

●
●

●●
●

●

●
●

●●

●

●

●

●
●
●
●

●

●●●

●
●

●

●

●●●
●

●
●

●

●

●
●
●

●

●●

●●
●
●

●
●

●

●

●

●

●

●
●

●

●

●
●
●
●●

●

●

●

●

●

●
●

●
●
●●●●
●

●

●

●●

●
●
●●
●

●

●
●
●●

●

●
●

●

●

●●
●

●
●●
●
●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●●
●
●
●●

●

●
●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●
●

●
●

●

●

●

●●
●

●
●

●

●

●

●●

●●
●

●●

●

●
●
●

●
●

●●
●
●

●

●

●

●●
●

●●

●●

●
●●

●
●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●●

●

●

●
●

●
●
●

●

●

●

●

●
●

●
●

●

●

●
●●●

●
●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●
●

●
●
●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●●

●●
●

●●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●
●

●●●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●●

●
●
●

●

|| |
2

| |
3

| |
4

| |
5

|
6

This will zoom in on the first 500 bp of the gene, while preserving the x-axis
labels, and show the expression level of each single sample as a dot. This is
the maximum resolution possible with Affymetrix arrays, but it is rarely seen,
since data is most often summarised by probeset or metaprobeset. In the case
of Human Exon ST 1.0 arrays, like here, a probeset is roughly equal to an exon
- or four probes. This can be seen by adding the exon structure to the plot
using the exonStructure function. A sequence like the one in genomic, which
is divided by exons, allows the visualization of the exon structure on the plots
that we just made. By far the easiest way to obtain sequences like this, is to go to
http://genome.ucsc.edu, find your gene of interest, download first the mRNA
sequence as FASTA, and the genomic sequence as FASTA. When downloading
genomic sequence it will ask for the ”Sequence Retrieval Region Options”. Make
sure you specify exons only and ”One FASTA record per region”.

Instead of just looking at summarized expression values, we will often want
to include sample condition from pData in the plot. This is done with the
’label’ argument, specifying one of the pdata column names. In example below,
’gender’ has been given as the label. In addition, the new argument ’testType’
has been used. This specifies an optional test to employ when searching for
differences. Using this argument will highlight probes that change significantly
between the label groups. In the example below, there is very few probes with
significant change between genders. The ones that are, are indicated by grey
and black circles.

> plotOnGene(exampleProbeLevelSet, mrna, label="gender", testType="wilcoxon", verbose=FALSE)

[1] "Investigating 8647 bp sequence"

[1] "Found 229 probes matching in matchForwardAntisense"

5

http://genome.ucsc.edu

[1] "Found 25 probes matching in matchReverseSense"

> exonStructure(mrna, genomic)

>

0 2000 4000 6000 8000

0
10

0
20

0
30

0

Expression of probes

bp

ex
pr

es
si

on

uc002vfd.1 (FN1) length=8647
Each dot represents the median of probes from the following variables: Female, Male in gender

88 Female samples are blue − 83 Male samples are red
The data is taken from the data set: ProbeLevelSet

●
●

●
●

●●

●●

●●

●
●

●●

●

●

●
●●
●

●●
●●

●
●

●●
●●

●●
●●

●●●●
●●

●●

●●
●
●

●● ●●
●●

●
●

●●

●●

●●

●
●

●
●

●●

●●

●

●

●
● ●

●

●●

●
●

●●

●●

●●

●●
●●

●

●

●●

●

●

●

●

●●
●●

●
●

●●●
●

●
●●
●

●
●

●●●
●

●●●●
●●●
●
●●
●● ●●

●●
●●

●
●

●●●
●●●

●

●

●●
●
●

●
●

●●

●●

●●

●●

●●

●●

●●
●●

●●
●●
●●

●
●●●●●

●●
●●

●●

●●
●●
●●●
●

●●●●●
●
●●

●●

●●

●●

●●
●●

●●

●●

●●

●
●

●●

●●●●

●

●

●
●

●●●
●

●●●●●●●●

●●

●●
●●

●●

●
●

●●

●●
●
●

●
●
●●

●●

●●

●
●

●●

●●

●●

●
●

●●

●●

●●

●●

●●●
●

●●●●

●●

●●

●
●

●●●●

●
●

●●
●●
●●●●●
●

●●

●
●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●
●

●●

●●

●●
●●

●●

●●
●●

●
●

●
●

●●

●●

●●
●●

●
●

●●

●
●

●●
●●

●●

●●

●
●

●●

●●

●

●

●●●
●

●●

●
●

●●
●
●
●●

●● ●
●

●
●

●●

●
●

●●

●
●

●●

●●

●●●●

●
●

●●

●●●●
●●

●●

●●

●
●

●●
●●

●●

●●

●
●

●●

●●

●●

●
●

●●

●●
●●

●●

●
●

●●

●
●

●●

●●
●
●

●●

●●

●●

●●

●
●

●●

●
●

●
●

●●

●
●

●●

●●●●

●●
●●

●
●
●●

Probes that contain significant correlations to variable according to a wilcoxon test are circled

| |
1

| |
2
| |
3
| |
4
| |
5
| |
6
| |

7
| |
8
| |
9
| |
10
| |
11
| |
12
| |
13
| |
14
| |
15
| |
16
||
17
| |
18
| |
19

| |
20

||
21
| |
22
||
23
| |
24
| |
25

| |
26
||
27
| |
28

| |
29
| |
30
| |
31
| |
32
| |
33

| |
34
||
35
| |
36
||
37
| |
38
||
39
| |
40
||
41
| |
42
| |
43
| |
44
||
45
| |
46
| |

47

If the case were that the entire gene was significantly regulated between two
groups of interest, then a standard summarization could just as well have shown
it. However, if only some exons of the gene are regulated, such as in the case of
a transcript isoform, perhaps unknown, that is changed, this kind of plot will
reveal it. One example is included here:

> plotOnGene(exampleProbeLevelSet, mrna, label="genotype1", testType="linear model", verbose=FALSE)

[1] "Investigating 8647 bp sequence"

[1] "Found 229 probes matching in matchForwardAntisense"

[1] "Found 25 probes matching in matchReverseSense"

> exonStructure(mrna, genomic)

Try to run the same example using genotype2 and genotype3 as labels as well.
While the two first genotypes are not related specifically to the localization of the
probes in the gene, the third genotype would only be picked up by investigations
like this, and could be a case of a hitherto unknown transcript isoform.

The final functionality to be demonstrated here, is the plotCoexpression.
This function can be used to investigate coexpression. It works by calculating
the Pearson correlation coefficient of all possible pairwise combinations of probes
found in the gene. It then shows a colour map of all pairings with coefficents
above the correlationCutoff. Furthermore, the function can be instructed to

6

print the probe level information found in the featureData on screen. (In the
example below we use a subset of the gene, because it takes quite a while to
calculate correlation of all pairings of probes in long genes)

> mrna_subset<-mrna[[1]]

> mrna_subset<-mrna_subset[500:1000]

> plotCoexpression(exampleProbeLevelSet, gene=mrna_subset, correlationCutoff=0.5, probeLevelInfo=c("probeid","sequence"), verbose=FALSE)

[1] "A gene was processed for which no name was found in fasta-format, and no name was explicitly given by 'genename' variable. The name 'Unknown genename' was assigned."

[1] "A gene was processed for which no name was found in fasta-format, and no name was explicitly given by 'genename' variable. The name 'Unknown genename' was assigned."

[1] "Investigating 501 bp sequence"

[1] "Found 14 probes matching in matchForwardAntisense"
 4291521 AT

C
TA

A
C

AT
G

A
A

C
G

G
A

C
C

C
T

C
T

T
C

C

 2598634 C
C

T
G

C
G

TA
G

T
G

A
A

C
G

T
G

A
A

G
AT

C
T

T

 3807217 C
T

C
T

T
C

G
G

G
AT

G
G

T
T

C
C

G
A

C
C

TA
C

T

 3549295 C
T

G
A

A
G

G
ATA

C
A

C
C

A
G

C
C

T
C

T
T

T
G

C

 4378621 T
C

G
G

C
T

C
C

A
A

A
AT

T
G

A
C

G
C

T
C

T
C

AT

 6075581 T
G

A
C

C
A

C
C

A
AT

G
TA

C
A

AT
C

T
C

A
C

A
C

 745833 C
A

G
G

AT
G

T
T

C
TA

A
C

C
A

C
T

G
T

G
G

A
C

C

 5752471 C
C

T
C

T
TA

C
C

T
G

G
A

C
G

T
T

C
G

G
G

TAT
C

 5709911 G
G

TA
C

T
T

C
C

C
C

C
A

G
T

C
A

G
G

AT
G

T
T

C

 1807474 A
C

T
C

G
C

A
G

G
AT

T
T

C
T

G
A

G
G

TA
C

TA
G

 965205 A
G

G
TA

C
TA

G
A

C
C

C
T

G
A

C
AT

G
G

A
C

G
T

 3497427 C
G

C
T

C
C

C
T

C
T

TAT
T

C
G

A
C

AT
G

G
TA

G

 5720075 T
G

T
G

A
AT

G
G

C
T

C
A

C
C

C
A

C
T

G
T

G
A

AT

 3136107 TA
C

G
T

T
G

C
TA

G
T

C
C

T
G

T
G

T
T

C
C

T
G

T

Correlation coefficent:
Cutoff: abs(coefficent) > 0.5

−1 −0.5 0 0.5 1

Finally the function geneRegionScan can be used. This is a wrapper that
merges the functionalities we have seen and allows the visualization of multiple
genes in the same pdf-file. It has been tested with up to four genes and is
useful when analysing regions with complicated interactions between different
neighbouring genes.

> geneRegionScan(exampleProbeLevelSet, gene=mrna, genomicData=genomic, label="genotype3", testType="linear model", correlationCutoff=0.5, probeLevelInfo=c("probeid","sequence"), verbose=FALSE)

Session Info

> sessionInfo()

R version 3.2.2 Patched (2015-10-08 r69496)

Platform: x86_64-apple-darwin10.8.0 (64-bit)

7

Running under: OS X 10.6.8 (Snow Leopard)

locale:

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] stats4 parallel stats graphics grDevices utils datasets

[8] methods base

other attached packages:

[1] GeneRegionScan_1.26.0 Biostrings_2.38.0 XVector_0.10.0

[4] IRanges_2.4.0 S4Vectors_0.8.0 Biobase_2.30.0

[7] BiocGenerics_0.16.0

loaded via a namespace (and not attached):

[1] zlibbioc_1.16.0 tools_3.2.2 RColorBrewer_1.1-2 affxparser_1.42.0

>

8

	GeneRegionScan
	Example of building a ProbeLevelSet
	Example of using a ProbeLevelSet

