Package 'chopsticks’

May 10, 2024
Title The 'snp.matrix' and 'X.snp.matrix' Classes
Version 1.70.0
Date 2018-02-05
Author Hin-Tak Leung htl10@users.sourceforge.net
Description Implements classes and methods for large-scale SNP association studies
Maintainer Hin-Tak Leung htl10@users.sourceforge.net
Imports graphics, stats, utils, methods, survival
Suggests hexbin
License GPL-3
URL http://outmodedbonsai.sourceforge.net/
Collate ld.with.R ss.R contingency.table.R glm_test.R ibs.stats.R indata.R ld.snp.R ld.with.R.eml.R misc.R outdata.R qq_chisq.R read.chiamo.R read.HapMap.R read.snps.pedfile.R single.R structure.R wtccc.sample.list.R wtccc.signals.R xstuff.R zzz.R
LazyLoad yes
biocViews Microarray, SNPsAndGeneticVariability, SNP, GeneticVariability
NeedsCompilation yes
git_url https://git.bioconductor.org/packages/chopsticks
git_branch RELEASE_3_19
git_last_commit fffc 376
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-10

Contents

```
snpMatrix-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }
epsout.ld.snp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
```

for.exercise 6
glm.test.control 7
ibs.stats 8
ibsCount 9
ibsDist 10
ld.snp 11
ld.with 13
pair.result.ld.snp 14
plot.snp.dprime 15
qq.chisq 17
read.HapMap.data 19
read.pedfile.info 21
read.pedfile.map 22
read.snps.chiamo 23
read.snps.long 24
read.snps.long.old 26
read.snps.pedfile 28
read.wtccc.signals 29
row.summary 30
single.snp.tests 31
snp-class 33
snp.cbind 34
snp.cor 35
snp.dprime-class 37
snp.lhs.tests 39
snp.matrix-class 41
snp.pre 43
snp.rhs.tests 44
snpMatrix-internal 46
testdata 46
write.snp.matrix 47
wtccc.sample.list 48
X.snp-class 49
X.snp.matrix-class 50
xxt 52
Index 54
snpMatrix-package The snp.matrix and X.snp.matrix classes

Description

Implements classes and some basic methods for large-scale SNP association studies

Details

Package:	snpMatrix
Version:	1.2 .4
Date:	$2008-03-17$
Depends:	R(>=2.3.0), survival, methods
Suggests:	hexbin
Enhances:	genetics
License:	GNU General Public Licence (GPLv3)
URL:	http://www-gene.cimr.cam.ac.uk/clayton/software/
Collate:	ld.with.R ss.R contingency.table.R glm_test.R ibs.stats.R indata.R ld.snp.R ld.with.R.eml.R misc.R outdata.R q
LazyLoad:	yes
biocViews:	Microarray, SNPsAndGeneticVariability
Packaged:	Mon Mar 17 11:46:30 2008; david
Built:	R 2.7.0; i686-pc-linux-gnu; 2008-03-17 11:47:01; unix

Index:

X. snp-class	Class "X.snp"
X.snp.matrix-class	Class "X.snp.matrix"
epsout.ld.snp	Function to write an eps file directly to visualize LD
for.exercise	Data for exercise in use of the snpMatrix package
genotype-class	snpMatrix-internal
glm.test.control	Set up control object for GLM tests
ibs.stats	function to calculate the identity-by-state stats of a group of samples
ibsCount	Count alleles identical by state
ibsDist	Distance matrix based on identity by state (IBS)
ld.snp	Function to calculate pairwise D^{\prime}, \$ $\mathrm{r}^{\wedge} 2 \$$
ld.with	function to calculate the LD measures of specific SNPs against other SNPs
pair.result.ld.snp	Function to calculate the pairwise $\mathrm{D}^{\prime}, \$ r^{\wedge} 2 \$$, LOD of a pair of specified SNPs
plot.snp.dprime qq.chisq	Function to draw the pairwise D^{\prime} in a eps file Quantile-quantile plot for chi-squared tests
read.HapMap.data	function to import HapMap genotype data as snp.matrix
read.pedfile.info	function to read the accompanying info file of a LINKAGE ped file
read.snps.chiamo	Read genotype data from the output of Chiamo
read.snps.long	Read SNP data in long format
read.snps.long.old	Read SNP input data in "long" format (old version)
read.snps.pedfile	Read genotype data from a LINKAGE "pedfile"
read.wtccc.signals	read normalized signals in the WTCCC signal file format

row.summary	Summarize rows of a snp matrix
single.snp.tests	$1-\mathrm{df}$ and 2-df tests for genetic associations with SNPs
snp-class	Class "snp"
snp.cbind	Bind together two or more snp.matrix objects
snp.cor	Correlations with columns of a snp.matrix
snp.dprime-class	Class "snp.dprime" for Results of LD calculation
snp.lhs.tests	Score tests with SNP genotypes as dependent variable
snp.matrix-class	Class "snp.matrix"
snp.pre	Pre- or post-multiply a snp.matrix object by a general matrix
snp.rhs.tests	Score tests with SNP genotypes as independent variable
snpMatrix-package	The snp.matrix and X.snp.matrix classes
testdata	Test data for the snpMatrix package
write.snp.matrix	Write a snp.matrix object as a text file
wtccc.sample.list	read the sample list from the header of the WTCCC signal file format
xxt	X.X-transpose for a normalised snp.matrix

Further information is available in the following vignettes:

$$
\text { snpMatrix-vignette } \quad \text { snpMatrix (source, pdf) }
$$

Author(s)

David Clayton david.clayton@cimr.cam.ac.uk and Hin-Tak Leung htl10@users.sourceforge.net Maintainer: David Clayton david.clayton@cimr.cam.ac.uk
epsout.ld.snp Function to write an eps file directly to visualize $L D$

Description

epsout.ld.snp takes an object of snp.matrix class and a given snp range and depth, draw a eps file to visualize the LD in the same color scheme as haploview's default view. It was the first prototype of this bunch of software. Also, it does not keep any pair-wise data in memory at all, and maybe more suitable where the actual pair-wise LD data is not needed.

Usage

epsout.ld.snp(snpdata, filename, start, end, depth, do.notes=FALSE)

Arguments

snpdata	An object of snp.matrix class with M samples of N snps
filename	The file name of the output, preferably ending with ".eps", but this rule not enforced
start	The index of the start of the range of interest. Should be between 1 and (N-1)
end	The index of the end of the range of interest. Should be between 2 and N .
depth	The depth or lag of pair-wise calculation. Should be between 1 and $\mathrm{N}-1$
do. notes	Boolean for whether to generate pdf annotation-related code

Details

The functinality of this routine has since been split into a two-stage processes involving ld.snp which generates a snp. dprime object which contains the result of the pairwise LD calculation, and plot.snp.dprime (or the plot method of a snp.dprime object) which does the drawing.

Value

return nothing

Author(s)

Hin-Tak Leung htl10@users.sourceforge.net

References

Clayton, D.G. and Leung, Hin-Tak (2007) An R package for analysis of whole-genome association studies. Human Heredity 64:45-51.
GSL (GNU Scientific Library) http: //www.gnu.org/software/gsl/
The postscript language reference manual: http://www.adobe.com/products/postscript/pdfs/ PLRM.pdf
The pdf specification: http://partners.adobe.com/public/developer/en/pdf/PDFReference16. pdf

See Also

snp.dprime-class, ld.snp, plot.snp.dprime

Examples

\#
data(testdata)
epsout.ld.snp(Autosomes, start=1, end=500, depth=50, filename="test.eps")
for.exercise Data for exercise in use of the snpMatrix package

Description

These data have been created artificially from publicly available datasets. The SNPs have been selected from those genotyped by the International HapMap Project (http: //www. hapmap. org) to represent the typical density found on a whole genome association chip, (the Affymetrix 500 K platform, http://www.affymetrix.com/support/technical/sample_data/500k_hapmap_genotype\} _data. affx for a moderately sized chromosome (chromosome 10). A study of 500 cases and 500 controls has been simulated allowing for recombination using beta software from Su and Marchini (http://www.stats.ox.ac.uk/~marchini/software/gwas/hapgen.html). Re-sampling of cases was weighted in such a way as to simulate three "causal" locus on this chromosome, with multiplicative effects of 1.3, 1.4 and 1.5 for each copy of the risk allele.

Usage

```
    data(for.exercise)
```


Format

There are three data objects in the dataset:

- snps. 10 An object of class "snp.matrix" containing a matrix of SNP genotype calls. Rows of the matrix correspond to subjects and columns correspond to SNPs.
- snp. support A conventional R data frame containing information about the SNPs typed (the chromosome position and the nucleotides corresponding to the two alleles of the SNP).
- subject. support A conventional R dataframe containing information about the study subjects. There are two variables; cc gives case/control status (1=case), and stratum gives ethnicity.

Source

The data were obtained from the diabetes and inflammation laboratory (see http://www-gene. cimr.cam.ac.uk/todd)

References

http://www-gene.cimr.cam.ac.uk/clayton

Examples

data(for.exercise)
snps. 10
summary (summary (snps.10))
summary (snp.support)
summary (subject.support)
glm.test. control Set up control object for GLM tests

Description

To carry out a score test for a GLM, we first fit a "base" model using the standard iteratively reweighted least squares (IRLS) algorithm and then carry out a score test for addition of further terms. This function sets various control parameters for this.

Usage

glm.test.control(maxit, epsilon, R2Max)

Arguments

maxit Maximum number of IRLS steps
epsilon Convergence threshold for IRLS algorithm
R2Max R-squared limit for aliasing of new terms

Details

Sometimes (although not always), an iterative scheme is necessary to fit the "base" generalized linear model (GLM) before carrying out a score test for effect of adding new term(s). The maxit parameter sets the maximum number of iterations to be carried out, while the epsilon parameter sets the criterion for determining convergence. After fitting the base model, the new terms are added, but terms judged to be "aliased" are omitted. The method for determining aliasing is as follows (denoting the "design" matrix for the additional terms by Z):

1. Step 1 Regress each column of Z on the base model matrix, using the final GLM weights from the base model fit, and replace Z with the residuals from these regressions.
2. Step 2Consider each column of the new Z matrix in turn, regressing it on the previous columns (again using the weights from the base model fit). If the proportion of the weighted sum of squares "explained" by this regression exceeds R2Max, the term is dropped and not included in the test,

The aim of this procedure to avoid wasting degrees of freedom on columns so strongly aliased that there is little power to detect their effect.

Value

Returns the parameters as a list in the expected order

Author(s)

David Clayton david.clayton@cimr.cam.ac.uk

See Also

snp.lhs.tests, snp.rhs.tests

Description

Given a snp.matrix-class or a X.snp.matrix-class object with \$N\$ samples, calculates some statistics about the relatedness of every pair of samples within.

Usage

ibs.stats(x)

Arguments

$x \quad$ a snp.matrix-class or a X.snp.matrix-class object containing \$N\$ samples

Details

No-calls are excluded from consideration here.

Value

A data.frame containing $\$ \mathrm{~N}(\mathrm{~N}-1) / 2 \$$ rows, where the row names are the sample name pairs separated by a comma, and the columns are:

Count count of identical calls, exclusing no-calls
Fraction fraction of identical calls comparied to actual calls being made in both samples

Warning

In some applications, it may be preferable to subset a (random) selection of SNPs first - the calculation time increases as $\$ \mathrm{~N}(\mathrm{~N}-1) \mathrm{M} / 2 \$$. Typically for $\mathrm{N}=800$ samples and $\mathrm{M}=3000$ SNPs, the calculation time is about 1 minute. A full GWA scan could take hours, and quite unnecessary for simple applications such as checking for duplicate or related samples.

Note

This is mostly written to find mislabelled and/or duplicate samples.
Illumina indexes their SNPs in alphabetical order so the mitochondria SNPs comes first - for most purpose it is undesirable to use these SNPs for IBS purposes.
TODO: Worst-case S 4 subsetting seems to make 2 copies of a large object, so one might want to subset before rbind(), etc; a future version of this routine may contain a built-in subsetting facility to work around that limitation.

Author(s)

Hin-Tak Leung htl10@users.sourceforge.net

Examples

```
data(testdata)
result <- ibs.stats(Autosomes[11:20,])
summary(result)
```

ibsCount Count alleles identical by state

Description

This function counts, for all pairs of subjects and across all SNPs, the total number of alleles which are identical by state (IBS)

Usage

ibsCount (snps)

Arguments

snps An input object of class "snp.matrix" or "X. snp.matrix"

Details

For each pair of subjects the function counts the total number of alleles which are IBS. For autosomal SNPs, each locus contributes 4 comparisons, since each subject carries two copies. For SNPs on the X chromosome, the number of comparisons is also 4 for female:female comparisons, but is 2 for female:male and 1 for male:male comparisons.

Value

If there are N rows in the input matrix, the function returns an $N^{*} N$ matrix. The upper triangle contains the total number of comparisons and the lower triangle contains the number of these which are IBS. The diagonal contains the number of valid calls for each subject.

Note
In genome-wide studies, the SNP data will usually be held as a series of objects (of class "snp.matrix" or "X.snp.matrix"), one per chromosome. Note that the matrices produced by applying the ibsCount function to each object in turn can be added to yield the genome-wide result.

Author(s)

David Clayton david.clayton@cimr.cam.ac.uk

See Also

ibsDist which calculates a distance matrix based on proportion of alleles which are IBS

Examples

```
data(testdata)
ibs.A <- ibsCount(Autosomes[,1:100])
ibs.X <- ibsCount(Xchromosome)
```

 ibsDist \(\quad\) Distance matrix based on identity by state (IBS)

Description

Expresses a matrix of IBS counts (see ibsCount) as a distance matrix. The distance between two samples is returned as the proportion of allele comparisons which are not IBS.

Usage

ibsDist(counts)

Arguments

counts A matrix of IBS counts as produced by the function ibsCount

Value

An object of class "dist" (see dist)

Author(s)

David Clayton david.clayton@cimr.cam.ac.uk

See Also

ibsCount, dist

Examples

```
data(testdata)
ibs <- ibsCount(Xchromosome)
distance <- ibsDist(ibs)
```


Description

ld. snp takes an object of snp.matrix class and suitable range and depth and calculation the pairwise $\mathrm{D}^{\prime}, \$ \mathrm{r}^{\wedge} 2 \$$, LOD and return the result as a snp. dprime object.

Usage

ld.snp(snpdata, depth $=100$, start $=1$, end $=\operatorname{dim}($ snpdata) [2], signed.r=FALSE)

Arguments

snpdata	An object of snp.matrix class with M samples of N snps
depth	The depth or lag of pair-wise calculation. Should be between 1 and N-1; default 100. Using 0 (an invalid value) is the same as picking the maximum
start	The index of the start of the range of interest. Should be between 1 and (N-1); default 1
end	The index of the end of the range of interest. Should be between 2 and N . default N.
signed.r	Boolean for whether to returned signed $\$ \mathrm{r} \$$ values instead of $\$ \mathrm{r}^{\wedge} 2 \$$

Details

The cubic equation and quadratic equation solver code is borrowed from GSL (GNU Scientific Library).

Value

return a snp. dprime object, which is a list of 3 named matrices dprime, rsq2 (or r depending on the input), lod, and an attribute snp. names for the list of snps involved. (Note that if $\$ \mathrm{x} \$ \mathrm{snps}$ are involved, the row numbers of the 3 matrices are $\$(x-1) \$)$. Only one of $r s q 2$ or r is present.

dprime	D^{\prime}
rsq2	$\$ r^{\wedge} 2 \$$
r	signed $\$ r \$$
lod	Log of Odd's

All the matrices are defined such that the $(\$ n, m \$)$ th entry is the pair-wise value between the $(\$ n \$)$ th snp and the $\$(n+m) \$$ th snp. Hence the lower right triangles are always filled with zeros. (See example section for the actual layout)
Invalid values are represented by an out-of-range value - currently we use -1 for $\mathrm{D}^{\prime}, \$ \mathrm{r}^{\wedge} 2 \$$ (both of which are between 0 and 1), and -2 for $\$ \mathrm{r} \$$ (valid values are between -1 and +1). lod is set to zero in most of these invalid cases. (lod can be any value so it is not indicative).

Note

The output snp.dprime object is suitable for input to plot.snp.dprime for drawing.
The speed of "ld.snp" LD calculation, on a single-processor opteron 2.2 GHz box:
unsigned $\$ r^{\wedge} 2 \$, 13191 \mathrm{snps}$, depth $100=36.4 \mathrm{~s}(\sim 1.3$ mil pairs $)$
signed r, 13191 snps , depth $100=40.94 \mathrm{~s}(\sim 1.3$ mil pairs)
signed r , 13191 snps , depth $1500=582 \mathrm{~s}(\sim 18.5$ mil pairs $)$
For depth $=1500$, it uses 500 MB just for the three matrices. So I actually cannot do the full depth at $\sim 13,000$; full depth should be under 50 minutes for 87 mil pairs, even in the signed-r version.

The LD code can be ran outside of R - mainly for debugging:

```
gcc -DWITHOUT_R -o /tmp/hello pairwise_linkage.c solve_cubic.c \
    solve_quadratic.c -lm
```

When used in this form, it takes 9 numbers:

Author(s)

Hin-Tak Leung htl10@users.sourceforge.net

References

Clayton, D.G. and Leung, Hin-Tak (2007) An R package for analysis of whole-genome association studies. Human Heredity 64:45-51.
GSL (GNU Scientific Library) http: //www.gnu.org/software/gsl/

See Also

snp.dprime-class, plot.snp.dprime, ld.with

Examples

\# LD stats between 500 SNPs at a depth of 50
data(testdata)
ldinfo <- ld.snp(Autosomes, start=1, end=500, depth=50)

```
ld.with function to calculate the LD measures of specific SNPs against other SNPs
```


Description

This function calculates the LD measures (\$r^2\$, D’, LOD) of specific SNPs against other SNPs.

Usage

ld.with(data, snps, include.itself = as.logical(length(snps) - 1), signed.r $=$ NULL)

Arguments

data either a snp.dprime-class object or a snp.matrix-class object
snps A list of snps, some of which are found in data
include.itself Whether to include LD measures of SNPs against itself - it is FALSE for one SNP, since in that case, the result is known and trivial; but otherwise TRUE
signed.r Logical, whether to output signed r or $\$ r^{\wedge} 2 \$$

Details

Not all combinations of the include.itself and signed.r make sense, nor fully operational.

Value

The returned value is somewhat similiar to a snp. dprime object, but not the same. It is a list of 3 named matrices dprime, rsq2 (or r depending on the input), lod.

Warning

Because this is really two functions rolled into one, depending on the class of data, not all combinations of the include.itself and signed. r make sense, nor fully operational.

Also, the two versions have slightly different idea about invalid values, e.g. the LOD value for a SNPs against itself, or $\$ \mathrm{r}^{\wedge} 2 \$$ for two monomorphic snps (such as one against itself).

Note

The ld.with function started its life as an extractor function to take the output of ld.snp, a snp.dprime-class object, to rearrange it in a more convenient form to focus on the LD's against specific SNPs, but then evolved to take a snp.matrix-class object alternatively and perform the same task directly and more efficiently.

Author(s)

Hin-Tak Leung htl10@users.sourceforge.net

See Also

ld.snp, snp.dprime-class

Examples

```
data(testdata)
snps10 <- Autosomes[1:10,1:10]
obj.snp.dprime <- ld.snp(snps10)
# result1 and result2 should be almost identical
# except where noted in the warning section above:
result1 <- ld.with(obj.snp.dprime, colnames(snps10))
result2 <- ld.with(snps10, colnames(snps10))
```

pair.result.ld.snp Function to calculate the pairwise $D^{\prime}, \$ r^{\wedge} 2 \$, L O D$ of a pair of speci-
fied SNPs

Description

pair.result.ld.snp.Rd calculates the pairwise $D^{\prime}, \$ r^{\wedge} 2 \$$, LOD of a pair of specified SNPs in a snp.matrix object. This is used mainly for debugging.

Usage

pair.result.ld.snp(snpdata, loc.snpA, loc.snpB)

Arguments

snpdata	An object of snp.matrix class with M samples of N snps
loc.snpA	index of the first snp; should be between 1 and N
loc.snpB	index of the second snp; should be between 1 and N

Value

Returns nothing. Results are displayed in stdout/console.

Note

Not really recommended for daily usage; the result isn't saved anywhere and this routine is primarily for debugging the details and correctness of the calculation.

Author(s)

Hin-Tak Leung htl10@users.sourceforge.net

References

Clayton, D.G. and Leung, Hin-Tak (2007) An R package for analysis of whole-genome association studies. Human Heredity 64:45-51.
GSL (GNU Scientific Library) http://www.gnu.org/software/gsl/

See Also

snp.matrix-class

Examples

```
data(testdata)
pair.result.ld.snp(Autosomes, 1, 2)
```

plot.snp.dprime \quad Function to draw the pairwise D ' in a eps file

Description

plot.snp.dprime takes a snp.dprime object and draw an eps file to visualize the pairwise D', $\$ r^{\wedge} 2 \$$ and LOD.

Usage

\#\# S3 method for class 'snp.dprime'
plot(x, filename, scheme = "standard", do.notes = FALSE, metric=NULL, ...)

Arguments

X
filename
scheme The colour scheme used. Valid values are "standard" for the Haploview default, and "rsq" for grayscale $\$ r^{\wedge} 2 \$$. More may come later
do. notes
metric
An object of class snp. dprime
The output file name, preferably ending with ".eps" (not enforced) Boolean for whether to generate pdf annotation-related code

An integer vector, detailing the chromosome position of the SNP, to drawa scaled metric of the location of the SNP. If NULL, no metric would be drawn place holder

Details

Annotation is a little used pdf features where certain part of a pdf file are hot spots where one can get pop-up balloons containing extra information, which doesn't appear in print. This is written to imitate the extra information one can get from right-clicking in Haploview's GUI.

Value

return nothing. Write a file as a result. And if do.notes is specified, Will also suggest user to execute ps2pdf -dEPSCrop <filename> to get a suitable pdf.

Note

Unfortunately, there are two problems with annotations: only Acrobat Reader (out of all the pdf viewers, e.g. xpdf, kpdf, evince, various ghostscript based viewers) implements the feature, and a few thousand annotations can really make Acrobat Reader crawl.

Also, Acrobat Reader has an implementation limit of 200 inches of the widest dimension of a document. This translates to 1200 snps in the current implementation of the drawing code, hence a warning is emitted that pdf written this way is not viewable by Acrobat Reader.(but viewable by xpdf, etc). A work around is possible based on LaTeX pdfpage, or eps can be included with scaling in another document, to stay inside 200 inches.

In the future, one might want to put some additional scaling code to fit the whole drawing within an A4, for example.

There is a Google Summer of code http://code.google.com/soc/ 2006 project to improve kpdf's annotation support. http://wiki.kde.org/tiki-index.php?page=KDE\ Google\ SoC\% 202006\%20ideas\#id60851 I am involved.

Author(s)

Hin-Tak Leung htl10@users.sourceforge.net

References

Clayton, D.G. and Leung, Hin-Tak (2007) An R package for analysis of whole-genome association studies. Human Heredity 64:45-51.
GSL (GNU Scientific Library) http: //www.gnu.org/software/gsl/
The postscript language reference manual: http://www.adobe.com/products/postscript/pdfs/ PLRM.pdf
The pdf specification: http://partners.adobe.com/public/developer/en/pdf/PDFReference16. pdf

See Also

```
snp.dprime-class
```


Examples

```
data(testdata)
# As for ld.snp example ...
data(testdata)
ldinfo <- ld.snp(Autosomes, start=1, end=500, depth=50)
# Now plot to an eps file
plot.snp.dprime(ldinfo, filename="test.eps")
```

qq.chisq Quantile-quantile plot for chi-squared tests

Description

This function plots ranked observed chi-squared test statistics against the corresponding expected order statistics. It also estimates an inflation (or deflation) factor, lambda, by the ratio of the trimmed means of observed and expected values. This is useful for inspecting the results of whole-genome association studies for overdispersion due to population substructure and other sources of bias or confounding.

Usage

```
qq.chisq(x, df=1, x.max, main="QQ plot",
    sub=paste("Expected distribution: chi-squared (",df," df)", sep=""),
    xlab="Expected", ylab="Observed",
    conc=c(0.025, 0.975), overdisp=FALSE, trim=0.5,
    slope.one=FALSE, slope.lambda=FALSE,
    thin=c(0.25,50), oor.pch=24, col.shade="gray", ...)
```


Arguments

\(\left.$$
\begin{array}{ll}x & \text { A vector of observed chi-squared test values } \\
d f & \text { The degreees of freedom for the tests } \\
x . m a x & \text { If present, truncate the observed value (Y) axis here } \\
\text { main } & \text { The main heading } \\
\text { sub } & \text { The subheading } \\
\text { xlab } & \text { x-axis label (default "Expected") } \\
\text { ylab } & \begin{array}{l}\text { y-axis label (default "Observed") } \\
\text { conc }\end{array}
$$

Lower and upper probability bounds for concentration band for the plot. Set this

to NA to suppress this\end{array}\right]\)| If TRUE, an overdispersion factor, lambda, will be estimated and used in calcu- |
| :--- |
| lating concentration band |

slope.lambda	Is a line of slope lambda to be superimposed?
thin	A pair of numbers indicating how points will be thinned before plotting (see Details). If NA, no thinning will be carried out
oor.pch	Observed values greater than x. max are plotted at x. max. This argument sets the plotting symbol to be used for out-of-range observations
col.shade	The colour with which the concentration band will be filled
\ldots	Further graphical parameter settings to be passed to points()

Details

To reduce plotting time and the size of plot files, the smallest observed and expected points are thinned so that only a reduced number of (approximately equally spaced) points are plotted. The precise behaviour is controlled by the parameter thin, whose value should be a pair of numbers. The first number must lie between 0 and 1 and sets the proportion of the X axis over which thinning is to be applied. The second number should be an integer and sets the maximum number of points to be plotted in this section.
The "concentration band" for the plot is shown in grey. This region is defined by upper and lower probability bounds for each order statistic. The default is to use the 2.5 Note that this is not a simultaneous confidence region; the probability that the plot will stray outside the band at some point exceeds 95
When required, he dispersion factor is estimated by the ratio of the observed trimmed mean to its expected value under the chi-squared assumption.

Value

The function returns the number of tests, the number of values omitted from the plot (greater than x. max), and the estimated dispersion factor, lambda.

Note

All tests must have the same number of degrees of freedom. If this is not the case, I suggest transforming to p -values and then plotting $-2 \log (\mathrm{p})$ as chi-squared on 2 df .

Author(s)

David Clayton david.clayton@cimr.cam.ac.uk

References

Devlin, B. and Roeder, K. (1999) Genomic control for association studies. Biometrics, 55:997-1004

See Also

single.snp.tests, snp.lhs.tests, snp.rhs.tests

Examples

\#\# See example the single.snp.tests() function

Description

Given a URL for HapMap genotype data, read. HapMap. data, download and convert the genotype data into a snp.matrix class object, and saving snp support infomation into an associated data.frame.

Usage

read.HapMap.data(url, verbose=FALSE, save=NULL, ...)

Arguments

url
URL for HapMap data. Web data is to be specified with prefix "http://", ftp data with prefix "ftp://", and local file as "file://"
verbose Where the dnSNPalleles annotation is ambiguous, output more details information about how/why assignment is made. See Notes below.
save filename to save the download - if unspecified, a temporary file will be created but removed afterwards.
.. Place-holder for further switches - currently ignored.

Details

During the conversion, if the dbSNPAlleles entry is exactly of the form " X / Y ", where $\mathrm{X}, \mathrm{Y}=\mathrm{A}$ or C or G or T , then it is used directly for assigning allele 1 and allele 2.
However, about 1 in 1000 entries are more complicated e.g. may involving deletion, e.g. "-/A/G" or "-/A/AGT/G/T". Some heuristics are used in such cases, in which the observed genotypes in the specific snp of the current batch are examined in two passes. The first time to see which bases are present, excluding " N ".
If more than 2 bases are observed in the batch specified in the url, the routine aborts, but so far this possibility has not arisen in tests. If there is exactly two, then allele 1 and 2 are assigned in alphabatical order (dbSNPAlleles entries seems to be always in dictionary order, so the assignment made should agree with a shorten version of the dbSNPAlleles entry). Likewise, if only "A" or "T" is observed, then we know automatically it is the first (assigned as "A/.") or the last allele (assigned as "./T") of a hypothetical pair, without looking at the dbSNPAlleles entry. For other observed cases of 1 base, the routine goes further and look at the dnSNPAlleles entry and see if it begins with "-/X/" or ends with "/X", as a single base, and compare it with the single base observed to see if it should be allele 1 (same as the beginning, or different from the end) and allele 2 (same as the end, or different from the beginning). If no decision can be made for a particular snp entry, the routine aborts with an appropriate message. (For zero observed bases, assignment is "./.", and of course, all observed genotypes of that snp are therefore converted to the equivalent of NA.)
(This heuristics does not cover all grounds, but practically it seems to work. See Notes below.)

Value

Returns a list containing these two items when successful, otherwise returns NULL:
snp.data A snp.matrix-class object containing the snp data
snp.support A data.frame, containing the dbSNPalleles, Chromosome, Position, Strand entries from the hapmap genotype file, together with the actual Assignment used for allele 1 and allele 2 during the conversion (See Details above and Note below).

Note
Using both "file://" for url and save duplicates the file. (i.e. by default, the routine make a copy of the url in any case, but tidy up afterwards if run without save).
Sometimes the assignment may not be unique e.g. dnSNPAlleles entry "A/C/T" and only "C" is observed - this can be assigned " A / C " or " C / T ". (currently it does the former). One needs to be especially careful when joining two sets of snp data and it is imperative to compare the assigment supplementary data to see they are compatible. (e.g. for an "A/C/T" entry, one data set may have " C " only and thus have assignment " A / C " and have all of it assigned Allele 2 homozygotes, whereas another data set contains both " C " and " T " and thus the first set needs to be modified before joining).

A typical run, chromosome 1 for CEU, contains about $\sim 400,000 \mathrm{snps}$ and ~ 100 samples, and the snp.matrix object is about $\sim 60 \mathrm{MB}$ (40 million bytes for snps plus overhead) and similiar for the support data (i.e. $\sim 2 \mathrm{x}$), takes about 30 seconds, and at peak memory usage requires $\sim 4 \mathrm{x}$. The actual download is $\sim 20 \mathrm{MB}$, which is compressed from $\sim 200 \mathrm{MB}$.

Author(s)

Hin-Tak Leung htl10@users.sourceforge.net

References

http://www.hapmap.org/genotypes

See Also

snp.matrix-class

Examples

```
## Not run:
## ** Please be aware that the HapMap project generates new builds from
## ** time to time and the build number in the URL changes.
> library(snpMatrix)
> testurl <- paste0("http://www.hapmap.org/genotypes/latest/fwd_strand/",
    "non-redundant/genotypes_chr1_CEU_r21_nr_fwd.txt.gz")
> result1 <- read.HapMap.data(testurl)
> sum1 <- summary(result1$snp.data)
```

```
> head(sum1[is.finite(sum1$z.HWE),], n=10)
    Calls Call.rate MAF P.AA P.AB P.BB Z.HWE
rs1933024 87 0.9666667 0.005747126 0.0000000 0.01149425 0.9885057 0.05391549
rs11497407 89 0.9888889 0.005617978 0.0000000 0.01123596 0.9887640 0.05329933
rs12565286 88 0.9777778 0.056818182 0.0000000 0.11363636 0.8863636 0.56511033
rs11804171 83 0.9222222 0.030120482 0.0000000 0.06024096 0.9397590 0.28293272
rs2977656 90 1.0000000 0.005555556 0.9888889 0.01111111 0.0000000 0.05299907
rs12138618 89 0.9888889 0.050561798 0.0000000 0.10112360 0.8988764 0.50240136
rs3094315 88 0.9777778 0.136363636 0.7272727 0.27272727 0.0000000 1.48118392
rs17160906 89 0.9888889 0.106741573 0.0000000 0.21348315 0.7865169 1.12733108
rs2519016 85 0.9444444 0.047058824 0.0000000 0.09411765 0.9058824 0.45528615
rs12562034 90 1.0000000 0.088888889 0.0000000 0.17777778 0.8222222 0.92554468
## ** Please be aware that the HapMap project generates new builds from
## ** to time and the build number in the URL changes.
## This URL is broken up into two to fit the width of
## the paper. There is no need in actual usage:
> testurl2 <- paste0("http://www.hapmap.org/genotypes/latest/",
    "fwd_strand/non-redundant/genotypes_chr1_JPT_r21_nr_fwd.txt.gz")
> result2 <- read.HapMap.data(testurl2)
> head(result2$snp.support)
        dbSNPalleles Assignment Chromosome Position Strand
rs10399749 C/T C/T chr1 45162 +
rs2949420 A/T A/T chr1 45257 +
rs4030303 A/G A/G chr1 72434 +
rs4030300 A/C A/C chr1 72515 +
rs3855952 A/G A/G chr1 77689 +
rs940550 C/T C/T chr1 78032 +
## End(Not run)
```

read.pedfile.info function to read the accompanying info file of a LINKAGE ped file

Description

This function read the accompanying info file of a LINKAGE ped file, for the SNP names, position and chromosome.

Usage

read.pedfile.info(file)

Arguments

file An info file

Details

One such info file is the one accompanying the sample ped file of Haploview.

Value

A data frame with columns "snp.names", "position", "chromosome".

Note

This is used internally by read. snps. pedfile to read an accompanying info file.

Author(s)

Hin-Tak Leung htl10@users.sourceforge.net

References

See the documentation and description of ped files in Haploview (http://www.broad.mit.edu/ mpg/haploview/)

See Also

read.snps.pedfile

```
read.pedfile.map
```

function to read the accompanying map file of a LINKAGE ped file

Description

This function read the accompanying map file of a LINKAGE ped file, for the SNP names, position and chromosome.

Usage

read.pedfile.map(file)

Arguments

file
A Plink map file

Details

One such map file is the one accompanying the sample ped file of Haploview.

Value

A data frame with columns "snp.names", "position", "chromosome".

Note

This is used internally by read.snps.pedfile to read an accompanying map file.

Author(s)

Hin-Tak Leung htl10@users.sourceforge.net

References

See the documentation and description of ped files in Haploview (http://www.broad.mit.edu/ mpg/haploview/)

See Also

read.snps.pedfile
read.snps.chiamo Read genotype data from the output of Chiamo

Description

This function reads data from the raw output of Chiamo

Usage

read.snps.chiamo(filename, sample.list, threshold)

Arguments

filename List of file names of output from Chiamo ; the outcome is the concatenation from runs of Chiamo, e.g. on blocks of SNPs, which is often done for practical reasons
sample.list A character vector giving the sample list
threshold Cut-off for the posterior probability for a no-call

Details

The raw output of Chiamo consists of the first 5 columns of read.wtccc.signals, followed by triplets of posterior probabilities of calling $\mathrm{A}-\mathrm{A}, \mathrm{A}-\mathrm{B}$, or $\mathrm{B}-\mathrm{B}$.
The sample list can typically be obtained using wtccc. sample.list, from one of the (smaller) signal files, which are the inputs to Chiamo.

Value

The result is a list of two items:
snp.data The genotype data as a snp.matrix-class object.
snp.support The information from the first 5 columns of read.wtccc.signals.

Author(s)

Hin-Tak Leung htl10@users.sourceforge.net

References

To obtain a copy of the Chiamo software please email Jonathan L. Marchini marchini@stats.ox.ac.uk.

See Also

wtccc.sample.list, read.wtccc.signals

Examples

\#
read.snps.long Read SNP data in long format

Description

Reads SNP data when organized in free format as one call per line. Other than the one call per line requirement, there is considerable flexibility. Multiple input files can be read, the input fields can be in any order on the line, and irrelevant fields can be skipped. The samples and SNPs to be read must be pre-specified, and define rows and columns of an output object of class "snp.matrix".

Usage

```
read.snps.long(files, sample.id = NULL, snp.id = NULL, female = NULL,
                fields = c(sample = 1, snp = 2, genotype = 3, confidence = 4),
                codes = c("0", "1", "2"), threshold = 0.9, lower = TRUE,
                        sep = " ", comment = "#", skip = 0, simplify = c(FALSE,FALSE),
                        verbose = FALSE, every = 1000)
```


Arguments

$$
\left.\begin{array}{ll}
\text { files } & \text { A character vector giving the names of the input files } \\
\text { sample.id } & \begin{array}{l}
\text { A character vector giving the identifiers of the samples to be read } \\
\text { snp.id } \\
\text { female }
\end{array} \\
\text { A character vector giving the names of the SNPs to be read } \\
\text { If the SNPs are on the X chromosome and the data are to be read as such, this } \\
\text { logical vector (of the same length as sample.id should specify whether each } \\
\text { sample was from a female subject }
\end{array}\right\} \begin{aligned}
& \text { A integer vector with named elements specifying the positions of the required } \\
& \text { fields in the input record. The fields are identified by the names sample and } \\
& \text { snp for the sample and SNP identifier fields, confidence for a call confidence } \\
& \text { score (if present) and either genotype if genotype calls occur as a single field, } \\
& \text { or allele1 and allele2 if the two alleles are coded in different fields }
\end{aligned}
$$

codes	Either the single string "nucleotide" denoting that coding in terms of nu- cleotides (A, C, G or T, case insensitive), or a character vector giving genotype or allele codes (see below)
threshold	A numerical value for the calling threshold on the confidence score
lower	If TRUE, then threshold represents a lower bound. Otherwise it is an upper bound
sep	The delimiting character separating fields in the input record
comment	A character denoting that any remaining input on a line is to be ignored
skip	An integer value specifying how many lines are to be skipped at the beginning of each data file
simplify	If TRUE, sample and SNP identifying strings will be shortened by removal of any common leading or trailing sequences when they are used as row and column
names of the output snp.matrix	

Details

If nucleotide coding is not used, the codes argument should be a character array giving the valid codes. For genotype coding of autosomal SNPs, this should be an array of length 3 giving the codes for the three genotypes, in the order homozygous(AA), heterozygous(AB), homozygous(BB). All other codes will be treated as "no call". The default codes are " 0 ", " 1 ", " 2 ". For X SNPs, males are assumed to be coded as homozygous, unless an additional two codes are supplied (representing the AY and BY genotypes). For allele coding, the codes array should be of length 2 and should specify the codes for the two alleles. Again, any other code is treated as "missing" and, for X SNPs, males should be coded either as homozygous or by omission of the second allele.

Although the function allows for reading of data for the X chromosome directly into an object of class "X. snp.matrix", it will often be preferable to read such data as a "snp.matrix" (i.e. as autosomal) and to coerce it to an object of type "X. snp.matrix" later using as(. . . "X. snp.matrix") or new("X.snp.matrix", . . , female=...).
The vectors sample.id and snp.id must be in the same order as they vary on the input file(s) and this ordering must be consistent. However, there is no requirement that either SNP or sample should vary fastest; this is detected from the input. Each file may represent a separate sample or SNP, in which case the appropriate .id argument can be omitted and row or column names taken from the file names.

Value

An object of class "snp.matrix" or "X. snp.matrix".

Note

The function will read gzipped files.
This function has replaced and earlier version which was much less flexible. Because all features have not been fully tested, the older version has been retained as read.snps.long. old.

Author(s)

David Clayton david.clayton@cimr.cam.ac.uk

```
See Also
    read.HapMap.dataread.snps.pedfile, read.snps.chiamo,read.snps.long, snp.matrix-class,
    X.snp.matrix-class
```

 read.snps.long.old Read SNP input data in "long" format (old version)

Description

This function reads SNP genotype data and creates an object of class "snp. matrix" or "X. snp. matrix". Input data are assumed to be arranged as one line per SNP-call (without any headers). This function can read gzipped files.

Usage

$$
\begin{aligned}
& \text { read.snps.long.old(file, chip.id, snp.id, codes, female, } \\
& \text { conf }=1 \text {, threshold }=0.9 \text {, drop=FALSE, } \\
& \text { sorted=FALSE, progress=interactive()) }
\end{aligned}
$$

Arguments

file	Name of file containing the input data. Input files which have been compressed by the gzip utility are recognized Array of type "character" containing (unique) identifiers for the chips, sam- ples, or subjects for which calls are to be read. Other samples in the input data will be ignored
chip.id	Array of type "character" containing (unique) identifiers of the SNPs for which data will be read. Again, further SNPs in the input data will be ignored
snp.id	For autosomal SNPs, an array of length 3 giving the codes for the three geno- types, in the order homozygous(AA), heterozygous(AB), homozygous(BB). For
codes	X SNPs, an additional two codes for the male genotypes (AY and BY) must be supplied. All other codes will be treated as "no call". The default codes are "0", "1", "2" [,"0", "2"]
female	If the data to be read refer to SNPs on the X chromosome, this argument must be supplied and should indicate whether each row of data refers to a female (TRUE) or to a male (FALSE). The output object will then be of class "X. snp.matrix".
conf	Confidence score. See details
drop	If TRUE, any rows or columns without genotype calls will be dropped from the output matrix. Otherwise the full matrix, with rows and columns defined by the chip.id and snp.id arguments, will be returned
threshold	Acceptance threshold for confidence score
sorted	Is input file already sorted into the correct order (see details)?
mrogress	If TRUE, progress will be reported to the standard output stream

Details

Data are assumed to be input with one line per call, in free format:
<chip-id> <snp-id> <code for genotype call> [<confidence>] ...
Currently, any fields following the first three (or four) are ignored. If the argument sorted is TRUE, the file is assumed to be sorted with snp-id as primary key and chip-id as secondary key using the current locale. The rows and columns of the returned matrix will also be ordered in this manner. If sorted is set to FALSE, then an algorithm which avoids this assumption is used. The rows and columns of the returned matrix will then be in the same order as the input chip_id and snp_id vectors. Calls in which both id fields match elements in the chip.id and snp.id arguments are read in, after (optionally) checking that the level of confidence achieves a given threshold. Confidence level checking is controlled by the conf argument. conf=0 indicates that no confidence score is present and no checking is done. conf>0 indicates that calls with scores above threshold are accepted, while conf<0 indicates that only calls with scores below threshold should be accepted.
The routine is case-sensitive and it is important that the <chip-id> and <snp-id> match the cases of chip.id and snp.id exactly.

Value

An object of class snp.matrix.

Note

If more than one instance of any combination of chip_id element and snp_id element passes the confidence threshold, the called to be used is decided by the following rules:

1. 1Any call trumps "no-call"
2. 2In the event of call conflict, "no-call" is returned

Use of sorted=TRUE is usually discouraged since the alternative algorithm is safer and, usually, not appreciably slower. However, if the input file is to be read multiple times and there is a reasonably close correspondence between cells of the matrix to be returned and lines of the input file, the sorted option can be faster.

This function has been replaced by the more flexible function read. snps.long.

Author(s)

David Clayton david.clayton@cimr.cam.ac.uk and Hin-Tak Leung

References

http://www-gene.cimr.cam.ac.uk/clayton

See Also

snp.matrix-class, X.snp.matrix-class

Description

This function reads data arranged as a LINKAGE "pedfile" with some restrictions and returns a list of three objects: a data frame containing the initial 6 fields giving pedigree structure, sex and disease status, a vector or a data frame containing snp assignment and possibly other snp infomation, and an object of class "snp.matrix" or "X. snp.matrix" containing the genotype data

Usage

read.snps.pedfile(file, snp.names=NULL, assign=NULL, missing=NULL, X=FALSE, sep=".", low.mem = FALSE)

Arguments

file
The file name for the input pedfile

X
sep The character separating the family and member identifiers in the constructed row names; not used
low.mem Switch over to input with a routine which requires less memory to run, but takes a little longer. This option also has the disadvantage that assignment of A / B genotype is somewhat non-deterministic and depends the listed order of samples.

Details

Input variables are assumed to take the usual codes, with the restriction that the family (or pedigree) identifiers will be held as strings, but identifiers for members within families must be coded as integers. Genotype should be coded as pairs of single character allele codes (which can be alphameric or numeric), from either ' A ', ' C ', ' G^{\prime}, ' T ' or ' 1 ', ' 2 ', ' 3 ', ' 4 ', with ' N ', '-' and ' 0 ' denoting a missing; everything else is considered invalid and would invalidate the whole snp; also more than 2 alleles also cause the snp to be marked invalid.

Row names of the output objects are constructed by concatenation of the pedigree and member identifiers, "Family", "Individual" joined by ".", e.g. "Family.Adams.Individual.0".

Value

snps The output "snp.matrix" or "X.snp.matrix" subject. support

A data frame containing the first six fields of the pedfile

Author(s)

Hin-Tak Leung

See Also

snp.matrix-class, X.snp.matrix-class, read.snps.long, read.HapMap.data, read.pedfile.info, read.pedfile.map

```
read.wtccc.signals read normalized signals in the WTCCC signal file format
```


Description

read.wtccc.signals takes a file and a list of snp ids (either Affymetrix ProbeSet IDs or rs numbers), and extract the entries into a form suitable for plotting and further analysis

Usage

read.wtccc.signals(file, snp.list)

Arguments

file file contains the signals. There is no need to gunzip.
snp.list A list of snp id's. Some Affymetrix SNPs don't have rsnumbers both rsnumbers and Affymetrix ProbeSet IDs are accepted

Details

Do not specify both rs number and Affymetrix Probe Set ID in the input; one of them is enough.
The signal file is formatted as follows, with the first 5 columns being the Affymetrix Probe Set ID, rs number, chromosome position, AlleleA and AlleleB. The rest of the header containing the sample id appended with " \backslash A" and " \backslash B".

| AFFYID | RSID | pos AlleleA AlleleB | 12999A2_A | $12999 A 2 _B$ | \ldots | |
| :--- | :--- | :--- | :---: | :---: | :---: | :--- | :--- | :--- |
| SNP_A-4295769 | rs915677 | 14433758 | C | T | 0.318183 | 0.002809 |
| SNP_A-1781681 | rs9617528 | 14441016 | A | G | 1.540461 | 0.468571 |
| SNP_A-1928576 | rs11705026 | 14490036 | G | T | 0.179653 | 2.261650 |

The routine matches the input list against the first and the 2nd column.
(some early signal files, have the first "AFFYID" missing - this routine can cope with that also)

Value

The routine returns a list of named matrices, one for each input SNP (NULL if the SNP is not found); the row names are sample IDs and columns are "A", "B" signals.

Note

TODO: There is a built-in limit to the input line buffer (65535) which should be sufficient for 2000 samples and 30 characters each. May want to seek backwards, re-read and dynamically expand if the buffer is too small.

Author(s)

Hin-Tak Leung htl10@users.sourceforge.net

References

http://www.wtccc.org.uk

Examples

```
    ## Not run:
    answer <-
    read.wtccc.signals("NBS_22_signals.txt.gz", c("SNP_A-4284341","rs4239845"))
    > summary(answer)
            Length Class Mode
    SNP_A-4284341 2970 -none- numeric
    rs4239845 2970 -none- numeric
    > head(a$"SNP_A-4284341")
            A B
    12999A2 1.446261 0.831480
    12999A3 1.500956 0.551987
    12999A4 1.2836520.722847
    12999A5 1.549140 0.604957
    12999A6 1.213645 0.966151
    12999A8 1.439892 0.509547
    >
    ## End(Not run)
```

 row. summary Summarize rows of a snp matrix

Description

This function calculates call rates and heterozygosity for each row of a an object of class "snp.matrix"

Usage

row.summary (object)

Arguments

```
    object genotype data as a snp.matrix-class or X.snp.matrix-class object
```


Value

A data frame with rows corresponding to rows of the input object and with columns/elements:
Call.rate Proportion of SNPs called
Heterozygosity Proportion of called SNPs which are heterozygous

Note

The current version does not deal with the X chromosome differently, so that males are counted as homozygous

Author(s)

David Clayton david.clayton@cimr.cam.ac.uk

Examples

```
data(testdata)
rs <- row.summary(Autosomes)
summary(rs)
rs <- row.summary(Xchromosome)
summary(rs)
```

single.snp.tests 1-df and 2-df tests for genetic associations with SNPs

Description

This function carries out tests for association between phenotype and a series of single nucleotide polymorphisms (SNPs), within strata defined by a possibly confounding factor. SNPs are considered one at a time and both 1-df and 2-df tests are calculated. For a binary phenotype, the 1-df test is the Cochran-Armitage test (or, when stratified, the Mantel-extension test).

Usage

single.snp.tests(phenotype, stratum, data = sys.parent(), snp.data, subset, snp. subset)

Arguments

phenotype A vector containing the values of the phenotype
stratum Optionally, a factor defining strata for the analysis
data A dataframe containing the phenotype and stratum data. The row names of this are linked with the row names of the snps argument to establish correspondence of phenotype and genotype data. If this argument is not supplied, phenotype and stratum are evaluated in the calling environment and should be in the same order as rows of snps
snp.data An object of class "snp.matrix" containing the SNP genotypes to be tested
subset A vector or expression describing the subset of subjects to be used in teh analysis. This is evaluated in the same environment as the phenotype and stratum arguments
snp. subset A vector describing the subset of SNPs to be considered. Default action is to test all SNPs.

Details

Formally, the test statistics are score tests for generalized linear models with canonical link. That is, they are inner products between genotype indicators and the deviations of phenotypes from their stratum means. Variances (and covariances) are those of the permutation distribution obtained by randomly permuting phenotype within stratum.
The subset argument can either be a logical vector of length equal to the length of the vector of phenotypes, an integer vector specifying positions in the data frame, or a character vector containing names of the selected rows in the data frame. Similarly, the snp. subset argument can be a logical, integer, or character vector.

Value

A dataframe, with columns

chi2.1df	Cochran-Armitage type test for additive genetic component
chi2.2df	Chi-squared test for both additive and dominance components
N	The number of valid data points used

Note

The behaviour of this function for objects of class X. snp. matrix is as described by Clayton (2008). Males are treated as homozygous females and corrected variance estimates are used.

Author(s)

David Clayton david.clayton@cimr.cam.ac.uk

References

Clayton (2008) Testing for association on the X chromosome Biostatistics (In press)

See Also

```
snp.lhs.tests, snp.rhs.tests
```


Examples

```
data(testdata)
results <- single.snp.tests(cc, stratum=region, data=subject.data,
                                    snp.data=Autosomes, snp.subset=1:10)
summary(results)
# QQ plot - see help(qq.chisq)
qq.chisq(results$chi2.1df)
qq.chisq(results$chi2.2df)
```

```
snp-class Class "snp"
```


Description

Compact representation of data concerning single nucleotide polymorphisms (SNPs)

Objects from the Class

Objects can be created by calls of the form new("snp", . .) or by subset selection from an object of class "snp.matrix". Holds one row or column of an object of class "snp.matrix"

Slots

.Data: The genotype data coded as $0,1,2$, or 3

Methods

coerce signature (from = "snp", to = "character"): map to codes "A/A", "A/B", "B/B", or ""
coerce signature (from = "snp", to $=$ "numeric" $)$: map to codes $0,1,2$, or NA
coerce signature (from = "snp", to = "genotype"): maps a single SNP to an object of class "genotype". See the "genetics" package.
show signature (object $=$ "snp") : shows character representation of the object
is.na signature $(x=$ "snp"): returns a logical vector of missing call indicators

Author(s)

David Clayton david.clayton@cimr.cam.ac.uk

References

http://www-gene.cimr.cam.ac.uk/clayton

See Also

```
snp.matrix-class, X.snp.matrix-class, X.snp-class
```


Examples

```
## data(testdata)
## s <- autosomes[,1]
## class(s)
## s
```

```
snp.cbind Bind together two or more snp.matrix objects
```


Description

These functions bind together two or more objects of class "snp.matrix" or "X.snp.matrix".

Usage

snp.cbind(...)
snp.rbind(...)

Arguments

... Objects of class "snp.matrix" or "X. snp.matrix".

Details

These functions reproduce the action of the standard functions cbind and rbind. These are constrained to work by recursive calls to the generic functions cbind2 and rbind2 which take just two arguments. This is somewhat inefficient in both time and memory use when binding more than two objects, so the functions snp.cbind and snp.rbind, which take multiple arguments, are also supplied.
When matrices are bound together by column, row names must be identical, column names must not be duplicated and, for objects of class X.snp.matrix the contents of the Female slot much match. When matrices are bound by row, column names must be identical. and duplications of row names generate warnings.

Value

A new matrix, of the same type as the input matrices.

Author(s)

David Clayton david.clayton@cimr.cam.ac.uk

See Also

cbind, rbind

Examples

```
data(testdata)
# subsetting ( Autosomes[c(1:9,11:19,21:29),] ) is quicker. this is just for illustrating
# rbind and cbind
first <- Autosomes[1:9,]
second <- Autosomes[11:19,]
third <- Autosomes[21:29,]
result1 <- rbind(first, second, third)
result2 <- snp.rbind(first, second, third)
all.equal(result1, result2)
result3 <- Autosomes[c(1:9,11:19,21:29),]
all.equal(result1, result3)
first <- Autosomes[,1:9]
second <- Autosomes[,11:19]
third <- Autosomes[,21:29]
result1 <- cbind(first, second, third)
result2 <- snp.cbind(first, second, third)
all.equal(result1, result2)
result3 <- Autosomes[,c(1:9,11:19,21:29)]
all.equal(result1, result3)
first <- Xchromosome[1:9,]
second <- Xchromosome[11:19,]
third <- Xchromosome[21:29,]
result1 <- rbind(first, second, third)
result2 <- snp.rbind(first, second, third)
all.equal(result1, result2)
result3 <- Xchromosome[c(1:9,11:19,21:29),]
all.equal(result1, result3)
first <- Xchromosome[,1:9]
second <- Xchromosome[,11:19]
third <- Xchromosome[,21:29]
result1 <- cbind(first, second, third)
result2 <- snp.cbind(first, second, third)
all.equal(result1, result2)
result3 <- Xchromosome[,c(1:9,11:19,21:29)]
all.equal(result1, result3)
```


Description

This function calculates Pearson correlation coefficients between columns of a snp.matrix and columns of an ordinary matrix. The two matrices must have the same number of rows. All valid pairs are used in the computation of each correlation coefficient.

Usage

snp. $\operatorname{cor}(x, y)$

Arguments

x An N by M snp.matrix
$y \quad$ An N by P general matrix

Details

This can be used together with xxt and eigen to calculate standardized loadings in the principal components

Value

An M by P matrix of correlation coefficients

Note

This version cannot handle X chromosomes

Author(s)

David Clayton david.clayton@cimr.cam.ac.uk

See Also

xxt

Examples

```
# make a snp.matrix with a small number of rows
data(testdata)
small <- Autosomes[1:100,]
# Calculate the X.X-transpose matrix
xx <- xxt(small, correct.for.missing=TRUE)
# Calculate the principal components
pc <- eigen(xx, symmetric=TRUE)$vectors
# Calculate the loadings in first 10 components,
# for eaxample to plot against chromosome position
loadings <- snp.cor(small, pc[,1:10])
```


Description

The snp.dprime class encapsulates results returned by ld.snp (— routine to calculate $\mathrm{D}^{\prime}, \$ \mathrm{r}^{\wedge} 2 \$$ and LOD of a snp. matrix-class object, given a range and a depth) and is based on a list of three named matrices.

The lower right triangle of the snp.dprime object returned by ld. snp always consists zeros. This is delibrate. The associated plotting routine would not normally access those elements either.

Value

The snp.dprime class is a list of 3 named matrices dprime, rsq2 or r, lod, and an attribute snp.names for the list of snps involved. (Note that if $\$ \mathrm{x} \$ \mathrm{snps}$ are involved, the row numbers of the 3 matrices are $\$(x-1) \$)$. Only one of r or $r s q 2$ is present.

dprime	D^{\prime}
rsq2	$\$ r^{\wedge} 2 \$$
r	signed $\$ r^{\wedge} 2 \$$
lod	Log of Odd's
attr $(*$, class $)$	"snp.dprime"
attr $(*$, snp.names $)$	

character vectors of the snp names involved
All the matrices are defined such that the ($\$ n, m \$$)th entry is the pair-wise value between the $(\$ n \$)$ th snp and the $\$(n+m) \$$ th snp. Hence the lower right triangles are always filled with zeros.

Invalid values are represented by an out-of-range value - currently we use -1 for $\mathrm{D}^{\prime}, \$ \mathrm{r}^{\wedge} 2 \$$ (both of which are between 0 and 1), and -2 for $\$ \mathrm{r} \$($ valid values are between -1 and +1). lod is set to zero in most of these invalid cases. (lod can be any value so it is not indicative).

Methods

See plot.snp.dprime.

Note

TODO: Need a subsetting operator.
TODO: an assemble operator

Author(s)

Hin-Tak Leung htl10@users.sourceforge.net

Source

$\sim \sim$ reference to a publication or URL from which the data were obtained $\sim \sim$

References

~~ possibly secondary sources and usages $\sim \sim$

Examples

```
data(testdata)
snps20.20 <- Autosomes[11:20,11:20]
obj.snp.dprime <- ld.snp(snps20.20)
class(obj.snp.dprime)
summary(obj.snp.dprime)
## Not run:
# The following isn't executable-as-is example, so these illustrations
# are commented out to stop R CMD check from complaining:
> d<- ld.snp(all, 3, 10, 15)
rows = 48, cols = 132
... Done
> d
$dprime
    [,1] [,2] [,3]
[1,] 1
[2,] }1
[3,] 1 1 1
[4,] 1 1 0
[5,] 1 0 0
$rsq2
            [,1] [,2] [,3]
[1,] 1.0000000 0.9323467 1.0000000
[2,] 0.9285714 1.0000000 0.1540670
[3,] 0.9357278 0.1854481 0.9357278
[4,] 0.1694915 1.0000000 0.0000000
[5,] 0.1694915 0.0000000 0.0000000
$lod
            [,1] [,2] [,3]
[1,] 16.793677 11.909686 16.407120
[2,] 10.625650 15.117962 2.042668
[3,] 12.589586 2.144780 12.589586
[4,] 2.706318 16.781859 0.000000
[5,] 2.706318 0.000000 0.000000
attr(,"class")
[1] "snp.dprime"
attr(,"snp.names")
[1] "dil118" "dil119" "dil5904" "dil121" "dil5905" "dil5906"
```

```
## End(Not run)
```


Description

Under the assumption of Hardy-Weinberg equilibrium, a SNP genotype is a binomial variate with two trials for an autosomal SNP or with one or two trials (depending on sex) for a SNP on the X chromosome. With each SNP in an input "snp.matrix" as dependent variable, this function first fits a "base" logistic regression model and then carries out a score test for the addition of further term(s). The Hardy-Weinberg assumption can be relaxed by use of a "robust" option.

Usage

snp.lhs.tests(snp.data, base.formula, add.formula, subset, snp.subset, data = sys.parent(), robust $=$ FALSE, control=glm.test.control(maxit=20, epsilon=1.e-4, R2Max=0.98))

Arguments

snp.data The SNP data, as an object of class "snp.matrix" or "X. snp.matrix"
base.formula A formula object describing the base model, with dependent variable omitted
add. formula A formula object describing the additional terms to be tested, also with dependent variable omitted
subset An array describing the subset of observations to be considered
snp. subset An array describing the subset of SNPs to be considered. Default action is to test all SNPs.
data The data frame in which base.formula, add.formula and subset are to be evaluated
robust If TRUE, a test which does not assume Hardy-Weinberg equilibrium will be used
control An object giving parameters for the IRLS algorithm fitting of the base model and for the acceptable aliasing amongst new terms to be tested. See\ codeglm.test.control

Details

The tests used are asymptotic chi-squared tests based on the vector of first and second derivatives of the log-likelihood with respect to the parameters of the additional model. The "robust" form is a generalized score test in the sense discussed by $\operatorname{Boos}(1992)$. If a data argument is supplied, the snp. data and data objects are aligned by rowname. Otherwise all variables in the model formulae are assumed to be stored in the same order as the columns of the snp. data object.

Value

A data frame containing, for each SNP,
Chi.squared The value of the chi-squared test statistic
Df The corresponding degrees of freedom
Df.residual The residual degrees of freedom for the base model; i.e. the number of observations minus the number of parameters fitted

For the logistic model, the base model can, in some circumstances, lead to perfect prediction of some observations (i.e. fitted probabilities of 0 or 1). These observations are ignored in subsequent calculations; in particular they are not counted in the residual degrees of freedom.

Note

A factor (or several factors) may be included as arguments to the function strata(...) in the base.formula. This fits all interactions of the factors so included, but leads to faster computation than fitting these in the normal way. Additionally, a cluster (. . .) call may be included in the base model formula. This identifies clusters of potentially correlated observations (e.g. for members of the same family); in this case, an appropriate robust estimate of the variance of the score test is used.

Author(s)

David Clayton david.clayton@cimr.cam.ac.uk

References

Boos, Dennis D. (1992) On generalized score tests. The American Statistician, 46:327-333.

See Also

glm.test. control,snp.rhs.tests single.snp.tests, snp.matrix-class, X. snp.matrix-class

Examples

```
data(testdata)
library(survival)
slt1 <- snp.lhs.tests(Autosomes[,1:10], ~cc, ~region, data=subject.data)
print(slt1)
slt2 <- snp.lhs.tests(Autosomes[,1:10], ~strata(region), ~cc,
    data=subject.data)
print(slt2)
```

```
snp.matrix-class Class "snp.matrix"
```


Description

This class defines objects holding large arrays of single nucleotide polymorphism (SNP) genotypes generated using array technologies.

Objects from the Class

Objects can be created by calls of the form new ("snp.matrix", x) where x is a matrix with storage mode "raw". Chips (usually corresponding to samples or subjects) define rows of the matrix while polymorphisms (loci) define columns. Rows and columns will usually have names which can be used to link the data to further data concerning samples and SNPs

Slots

.Data: Object of class "matrix" and storage mode raw Internally, missing data are coded 00 and SNP genotypes are coded 01,02 or 03 .

Extends

Class "matrix", from data part. Class "structure", by class "matrix". Class "array", by class "matrix". Class "vector", by class "matrix", with explicit coerce. Class "vector", by class "matrix", with explicit coerce.

Methods

[] signature($x=$ "snp.matrix"): subset operations. Currently rather slow owing to excessive copying.
cbind2 signature ($x=$ "snp.matrix", $y=$ "snp.matrix"): S4 generic function to provide cbind() for two or more matrices together by column. Row names must match and column names must not coincide. If the matrices are of the derived class X. snp.matrix-class, the Female slot values must also agree
coerce signature(from = "snp.matrix", to = "numeric"): map to codes $0,1,2$, or NA
coerce signature(from = "snp.matrix", to = "character"): map to codes "A/A", "A/B", "B/B", ""
coerce signature (from = "matrix", to = "snp.matrix"): maps numeric matrix (coded $0,1,2$ or NA) to a snp.matrix
coerce signature (from = "snp.matrix", to = "X. snp.matrix"): maps a snp.matrix to an X.snp.matrix. Sex is inferred from the genotype data since males should not be heterozygous at any locus. After inferring sex, heterozygous calls for males are set to NA
is.na signature ($x=$ "snp.matrix"): returns a logical matrix indicating whether each element is NA
rbind2 signature($x=$ "snp.matrix", $y=$ "snp.matrix"): S4 generic function to provide rbind() for two or more matrices by row. Column names must match and duplicated row names prompt warnings
show signature (object = "snp.matrix"): shows the size of the matrix (since most objects will be too large to show in full)
summary signature (object = "snp.matrix"): calculate call rates, allele frequencies, genotype frequencies, and z-tests for Hardy-Weinberg equilibrium. Results are returned as a dataframe with column names Calls, Call.rate, MAF, P.AA, P.AB, P.BB, and z.HWE
is.na signature ($x=$ "snp.matrix"): returns a logical matrix of missing call indicators
show signature(object = "snp.matrix"): ...
summary signature(object = "snp.matrix"): ...

Note

This class requires at least version 2.3 of R

Author(s)

David Clayton david.clayton@cimr.cam.ac.uk

References

http://www-gene.cimr.cam.ac.uk/clayton

See Also

```
snp-class, X.snp-class, X.snp.matrix-class
```


Examples

```
data(testdata)
summary(summary(Autosomes))
# Just making it up - 3-10 will be made into NA during conversion
snps.class<-new("snp.matrix", matrix(1:10))
snps.class
if(!isS4(snps.class)) stop("constructor is not working")
pretend.X <- as(Autosomes, 'X.snp.matrix')
if(!isS4(pretend.X)) stop("coersion to derived class is not S4")
if(class(pretend.X) != 'X.snp.matrix') stop("coersion to derived class is not working")
pretend.A <- as(Xchromosome, 'snp.matrix')
if(!isS4(pretend.A)) stop("coersion to base class is not S4")
if(class(pretend.A) != 'snp.matrix') stop("coersion to base class is not working")
```


Description

These functions first standardize the input snp.matrix in the same way as does the function xxt. The standardized matrix is then either pre-multiplied (snp.pre) or post-multiplied (snp. post) by a general matrix. Allele frequencies for standardizing the input snp.matrix may be supplied but, otherwise, are calculated from the input snp.matrix

Usage

```
snp.pre(snps, mat, frequency=NULL)
```

snp.post(snps, mat, frequency=NULL)

Arguments

snps An object of class "snp.matrix" or "X. snp.matrix"
mat A general (numeric) matrix
frequency A numeric vector giving the allele (relative) frequencies to be used for standardizing the columns of snps. If NULL, allele frequencies will be calculated internally. Frequencies should refer to the second (B) allele

Details

The two matrices must be conformant, as with standard matrix multiplication. The main use envisaged for these functions is the calculation of factor loadings in principal component analyses of large scale SNP data, and the application of these loadings to other datasets. The use of externally supplied allele frequencies for standardizing the input snp.matrix is required when applying loadings calculated from one dataset to a different dataset

Value

The resulting matrix product

Author(s)

David Clayton david.clayton@cimr.cam.ac.uk

See Also

Examples

```
##--
##-- Calculate first two principal components and their loading, and verify
##--
# Make a snp.matrix with a small number of rows
data(testdata)
small <- Autosomes[1:20,]
# Calculate the X.X-transpose matrix
xx <- xxt(small, correct.for.missing=FALSE)
# Calculate the first two principal components and corresponding eigenvalues
eigvv <- eigen(xx, symmetric=TRUE)
pc <- eigvv$vectors[,1:2]
ev <- eigvv$values[1:2]
# Calculate loadings for first two principal components
Dinv <- diag(1/sqrt(ev))
loadings <- snp.pre(small, Dinv %*% t(pc))
# Now apply loadings back to recalculate the principal components
pc.again <- snp.post(small, t(loadings) %*% Dinv)
print(cbind(pc, pc.again))
```

snp.rhs.tests Score tests with SNP genotypes as independent variable

Description

This function fits a generalized linear model with phenotype as dependent variable and, optionally, one or more potential confounders of a phenotype-genotype association as independent variable. A series of SNPs (or small groups of SNPs) are then tested for additional association with phenotype. In order to protect against misspecification of the variance function, "robust" tests may be selected.

Usage

```
snp.rhs.tests(formula, family = "binomial", link, weights, subset,
                data = parent.frame(), snp.data, tests=NULL, robust = FALSE,
                        control = glm.test.control(maxit=20, epsilon=1e-4, R2Max=0.98),
                        allow.missing = 0.01)
```


Arguments

formula The base model formula, with phenotype as dependent variable
family A string defining the generalized linear model family. This currently should (partially) match one of "binomial", "Poisson", "Gaussian" or "gamma" (caseinsensitive)
link A string defining the link function for the GLM. This currently should (partially) match one of "logit", "log", "identity" or "inverse". The default action is to use the "canonical" link for the family selected
data The dataframe in which the base model is to be fitted

```
snp.data An object of class "snp.matrix" or "X.snp.matrix" containing the SNP data
tests Either a vector of column names or numbers for the SNPs to be tested, or a list of
    short vectors defining groups of SNPs to be tested (again by name or number).
    The default action is to carry out all single SNP tests, but single.snp.tests
    will often achieve the same result much faster
weights "Prior" weights in the generalized linear model
subset Array defining the subset of rows of data to use
robust If TRUE, robust tests will be carried out
control An object giving parameters for the IRLS algorithm fitting of the base model and
    for the acceptable aliasing amongst new terms to be tested. See\ codeglm.test.control
allow.missing The maximum proportion of SNP genotype that can be missing before it be-
    comes necessary to refit the base model
```


Details

The tests used are asymptotic chi-squared tests based on the vector of first and second derivatives of the log-likelihood with respect to the parameters of the additional model. The "robust" form is a generalized score test in the sense discussed by Boos(1992). The "base" model is first fitted, and a score test is performed for addition of one or more SNP genotypes to the model. Homozygous SNP genotypes are coded 0 or 2 and heterozygous genotypes are coded 1. For SNPs on the X chromosome, males are coded as homozygous females. For X SNPs, it will often be appropriate to include sex of subject in the base model (this is not done automatically).
If a data argument is supplied, the snp. data and data objects are aligned by rowname. Otherwise all variables in the model formulae are assumed to be stored in the same order as the columns of the snp.data object.

Value

A data frame containing, for each SNP,
Chi.squared The value of the chi-squared test statistic
Df The corresponding degrees of freedom
Df.residual The residual degrees of freedom for the base model; i.e. the number of observations minus the number of parameters fitted

For the binomial family model, the base model can, in some circumstances, lead to perfect prediction of some observations (i.e. fitted probabilities of 0 or 1). These observations are ignored in subsequent calculations; in particular they are not counted in the residual degrees of freedom. Similarly for Poisson means fitted exactly to zero.

Note

A factor (or several factors) may be included as arguments to the function strata(...) in the formula. This fits all interactions of the factors so included, but leads to faster computation than fitting these in the normal way. Additionally, a cluster (...) call may be included in the base model formula. This identifies clusters of potentially correlated observations (e.g. for members of the same family); in this case, an appropriate robust estimate of the variance of the score test is used.

Author(s)

David Clayton david.clayton@cimr.cam.ac.uk

References

Boos, Dennis D. (1992) On generalized score tests. The American Statistician, 46:327-333.

See Also

```
single.snp.tests, snp.lhs.tests, snp.matrix-class, X.snp.matrix-class
```


Examples

```
data(testdata)
library(survival) # strata
slt3 <- snp.rhs.tests(cc~strata(region), family="binomial",
        data=subject.data, snp.data = Autosomes, tests=1:10)
print(slt3)
```

snpMatrix-internal snpMatrix-internal

Description

All the dirty details that doesn't belong elsewhere. At the moment just for hiding references to the genotype-class and haplotype-class class which is in the genetics package.

```
testdata Test data for the snpMatrix package
```


Description

This dataset comprises several data frames from a fictional (and unrealistically small) study. The dataset started off as real data from a screen of non-synonymous SNPs for association with type 1 diabetes, but the original identifiers have been removed and a random case/control status has been generated.

Usage

```
    data(testdata)
```


Format

There are five data objects in the dataset:

- AutosomesAn object of class "snp.matrix" containing genotype calls for 400 subjects at 9445 autosomal SNPs
- XchromosomeAn object of class "X. snp.matrix" containing genotype calls for 400 subjects at 155 SNPs on the X chromosome
- AsnpsA dataframe containing information about the autosomal SNPs. Here it contains only one variable, chromosome, indicating the chromosomes on which the SNPs are located
- XsnpsA dataframe containing information about the X chromosome SNPs. Here it is empty and is only included for completeness
- subject. dataA dataframe containing information about the subjects from whom each row of SNP data was obtained. Here it contains:
- ccCase-control status
- sexSex
- regionGeographical region of residence

Source

The data were obtained from the diabetes and inflammation laboratory (see http://www-gene. cimr.cam.ac.uk/todd)

References

http://www-gene.cimr.cam.ac.uk/clayton

Examples

```
data(testdata)
Autosomes
Xchromosome
summary(Asnps)
summary(Xsnps)
summary(subject.data)
summary(summary(Autosomes))
summary(summary(Xchromosome))
```

write.snp.matrix Write a snp.matrix object as a text file

Description

This function is closely modelled on write.table. It writes an object of class snp.matrix as a text file with one line for each row of the matrix. Genotpyes are written in numerical form, i.e. as 0,1 or 2 (where 1 denotes heterozygous).

Usage

write.snp.matrix(x, file, append = FALSE, quote $=$ TRUE, sep $=" "$, eol = " $\mathrm{ln} "$, na = "NA", row. names = TRUE

Arguments

$x \quad$ The object to be written
file The name of the output file
append If TRUE, the output is appended to the designated file. Otherwise a new file is opened
quote If TRUE, row and column names will be enclosed in quotes
sep The string separating entries within a line
eol The string terminating each line
na The string written for missing genotypes
row. names If TRUE, each row will commence with the row name
col.names If TRUE, the first line will contain all the column names

Value

A numeric vector giving the dimensions of the matrix written

Author(s)

David Clayton david.clayton@cimr.cam.ac.uk

See Also

write.table, snp.matrix-class, X.snp.matrix-class

```
wtccc.sample.list read the sample list from the header of the WTCCC signal file format
```


Description

This is a convenience function for constructing the sample list from the header of a WTCCC signal file.

Usage

wtccc.sample.list(infile)

Arguments

infile
One of the signal files in a set of 23 (it is advisable to use the smaller ones such as number 22, although it shouldn't matter).

Details

The header of a WTCCC signal file is like this:
AFFYID RSID pos AlleleA AlleleB 12999A2_A 12999A2_B ...
The first 5 fields are discarded. There after, every other token is retained, with the " $\backslash _A$ " or " $\backslash _B$ " part removed to give the sample list.
See also read.wtccc.signals for more details.

Value

The value returned is a character vector contain the sample names or the plate-well names as appropriate.

Author(s)

Hin-Tak Leung htl10@users.sourceforge.net

References

http://www.wtccc.org.uk

See Also
read.wtccc.signals
X.snp-class Class "X.snp"

Description

Compact representation of data concerning single nucleotide polymorphisms (SNPs) on the X chromosome

Objects from the Class

Objects can be created by calls of the form new("snp", . . . , Female=...) or by subset selection from an object of class "X.snp.matrix". Holds one row or column of an object of class "X.snp.matrix"

Slots

.Data: The genotype data coded as $0,1,2$, or 3 . For males are coded as homozygious females Female: A logical array giving the sex of the sample(s)

Extends

Class "snp", directly. Class "raw", by class "snp". Class "vector", by class "snp".

Methods

```
coerce signature(from = "X.snp", to = "character"): map to codes "A/A", "A/B", "B/B",
    "A/Y", "B/Y", or ""
coerce signature(from = "X.snp", to = "numeric"): map to codes 0, 1, 2, or NA
coerce signature(from = "X.snp", to = "genotype"): Yet to be implemented
show signature(object = "X.snp"): shows character representation of the object
```


Author(s)

David Clayton david.clayton@cimr.cam.ac.uk

References

http://www-gene.cimr.cam.ac.uk/clayton

See Also

```
X.snp.matrix-class, snp.matrix-class, snp-class
```


Examples

```
data(testdata)
s <- Xchromosome[,1]
class(s)
s
```

X.snp.matrix-class Class "X.snp.matrix"

Description

This class extends the snp.matrix-class to deal with SNPs on the X chromosome.

Objects from the Class

Objects can be created by calls of the form new("X.snp.matrix", x, Female). Such objects have an additional slot to objects of class "snp.matrix" consisting of a logical array of the same length as the number of rows. This array indicates whether the sample corresponding to that row came from a female (TRUE) or a male (FALSE).

Slots

.Data: Object of class "matrix" and storage mode "raw"
Female: Object of class "logical" indicating sex of samples

Extends

Class "snp.matrix", directly, with explicit coerce. Class "matrix", by class "snp.matrix". Class "structure", by class "snp.matrix". Class "array", by class "snp.matrix". Class "vector", by class "snp.matrix", with explicit coerce. Class "vector", by class "snp.matrix", with explicit coerce.

Methods

[] signature ($\mathrm{x}=$ "X. snp.matrix"): subset operations. Currently rather slow owing to excessive copying
[<- signature ($\mathrm{X}=$ "X. snp.matrix"): subset assignment operation to replace part of an object
coerce signature (from = "X. snp.matrix", to = "character"): map to codes $0,1,2$, or NA
coerce signature(from = "snp.matrix", to = "X. snp.matrix"): maps a snp.matrix to an X.snp.matrix. Sex is inferred from the genotype data since males should not be heterozygous at any locus. After inferring sex, heterozygous calls for males are set to NA
show signature (object = "X. snp.matrix"): map to codes "A/A", "A/B", "B/B", "A/Y", "B/Y" or ""
summary signature(object = "X.snp.matrix"): calculate call rates, allele frequencies, genotype frequencies, and chi-square tests for Hardy-Weinberg equilibrium. Genotype frequencies are calculated for males and females separately and Hardy-Weinberg equilibrium tests use only the female data. Allele frequencies are calculated using data from both males and females. Results are returned as a dataframe with column names Calls, Call. rate, MAF, P.AA, P.AB, P.BB, P.AY, P.BY, and z.HWE

Author(s)

David Clayton david.clayton@cimr.cam.ac.uk

References

http://www-gene.cimr.cam.ac.uk/clayton

See Also

X.snp-class, snp.matrix-class, snp-class

Examples

```
data(testdata)
summary(summary(Xchromosome))
```

xxt X.X-transpose for a normalised snp.matrix

Description

The input snp.matrix is first normalised by subtracting the mean from each call and dividing by the expected standard deviation under Hardy-Weinberg equilibrium. It is then post-multiplied by its transpose. This is a preliminary step in the computation of principal components.

Usage

xxt(snps, correct.for.missing = FALSE, lower.only = FALSE)

Arguments

snps The input matrix, of type "snp.matrix"
correct.for.missing
If TRUE, an attempt is made to correct for the effect of missing data by use of inverse probability weights. Otherwise, missing observations are scored zero in the normalised matrix
lower.only If TRUE, only the lower triangle of the result is returned and the upper triangle is filled with zeros. Otherwise, the complete symmetric matrix is returned

Details

This computation forms the first step of the calculation of principal components for genome-wide SNP data. As pointed out by Price et al. (2006), when the data matrix has more rows than columns it is most efficient to calculate the eigenvectors of $X . X$-transpose, where X is a snp. matrix whose columns have been normalised to zero mean and unit variance. For autosomes, the genotypes are given codes 0,1 or 2 after subtraction of the mean, $2 p$, are divided by the standard deviation $\operatorname{sqrt}(2 p(1-p))(p$ is the estimated allele frequency). For SNPs on the X chromosome in male subjects, genotypes are coded 0 or 2 . Then the mean is still $2 p$, but the standard deviation is $2 \operatorname{sqrt}(p(1-p))$.
Missing observations present some difficulty. Price et al. (2006) recommended replacing missing observations by their means, this being equivalent to replacement by zeros in the normalised matrix. However this results in a biased estimate of the complete data result. Optionally this bias can be corrected by inverse probability weighting. We assume that the probability that any one call is missing is small, and can be predicted by a multiplicative model with row (subject) and column (locus) effects. The estimated probability of a missing value in a given row and column is then given by $m=R C / T$, where R is the row total number of no-calls, C is the column total of nocalls, and T is the overall total number of no-calls. Non-missing contributions to X. X-transpose are then weighted by $w=1 /(1-m)$ for contributions to the diagonal elements, and products of the relevant pairs of weights for contributions to off-diagonal elements.

Value

A square matrix containing either the complete X.X-transpose matrix, or just its lower triangle

Warning

The correction for missing observations can result in an output matrix which is not positive semidefinite. This should not matter in the application for which it is intended

Note

In genome-wide studies, the SNP data will usually be held as a series of objects (of class "snp.matrix" or"X.snp.matrix"), one per chromosome. Note that the $X . X$-transpose matrices produced by applying the xxt function to each object in turn can be added to yield the genome-wide result.

Author(s)

David Clayton david.clayton@cimr.cam.ac.uk

References

Price et al. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 38:904-9

Examples

```
# make a snp.matrix with a small number of rows
data(testdata)
small <- Autosomes[1:100,]
# Calculate the X.X-transpose matrix
xx <- xxt(small, correct.for.missing=TRUE)
# Calculate the principal components
pc <- eigen(xx, symmetric=TRUE)$vectors
```


Index

```
* IO
    read.HapMap.data,19
    read.pedfile.info,21
    read.pedfile.map, 22
    read.snps.chiamo, 23
    read.snps.long, 24
    read.snps.long.old, }2
    read.snps.pedfile, 28
    read.wtccc.signals, 29
    write.snp.matrix,47
    wtccc.sample.list,48
* array
    snp.cor, 35
    snp.pre, 43
    xxt, 52
* classes
    snp-class, }3
    snp.dprime-class, 37
    snp.matrix-class, 41
    X.snp-class,49
    X.snp.matrix-class, 50
* cluster
    ibsCount,9
    ibsDist, 10
* datasets
    for.exercise, 6
    testdata,46
* dplot
    epsout.ld.snp,4
    ld.snp, 11
    ld.with, 13
    pair.result.ld.snp,14
* file
    read.HapMap.data,19
    read.pedfile.info,21
    read.pedfile.map, 22
    read.snps.chiamo, 23
    read.snps.long, 24
    read.snps.long.old, 26
```

read.snps.pedfile, 28
read.wtccc.signals, 29
write.snp.matrix, 47
wtccc.sample.list, 48

* hplot
epsout.ld.snp, 4
plot.snp.dprime, 15
qq.chisq, 17
* htest
epsout.ld.snp, 4
ld.snp, 11
pair.result.ld.snp, 14
plot.snp.dprime, 15
single.snp.tests, 31
snp.lhs.tests, 39
snp.rhs.tests, 44
* manip
ld.with, 13
read.HapMap.data, 19
read. pedfile.info, 21
read.pedfile.map, 22
read.snps.long, 24
read.snps.long.old, 26
write.snp.matrix, 47
* models
epsout.ld.snp, 4
ld.snp, 11
ld.with, 13
pair.result.ld.snp, 14
plot.snp.dprime, 15
* multivariate
snp.cor, 35
snp.pre, 43
xxt, 52
* package
snpMatrix-internal, 46
snpMatrix-package, 2
* utilities
glm.test.control, 7

```
    ibs.stats,8
    read.snps.long, 24
    read.snps.long.old, 26
    row.summary, 30
    snp.cbind, }3
    write.snp.matrix, 47
[,X.snp.matrix, ANY,ANY,ANY-method
    (snp.matrix-class), 41
[,X.snp.matrix-method
    (X.snp.matrix-class), 50
[, snp.matrix,ANY,ANY,ANY-method
    (snp.matrix-class), 41
[,snp.matrix-method(snp.matrix-class),
    4 1
[<-, X.snp.matrix, ANY, ANY, X.snp.matrix-method haplotype-class (snpMatrix-internal), 46
    (X.snp.matrix-class), 50
Asnps (testdata), 46
Autosomes (testdata),46
cbind, 34, 35
cbind (snp.cbind), 34
cbind,snp.matrix-method
    (snp.matrix-class), 41
cbind2, 34
cbind2 (snp.cbind), 34
cbind2,snp.matrix,snp.matrix-method
    (snp.matrix-class), 41
coerce,matrix,snp.matrix-method
    (snp.matrix-class), 41
coerce, snp,character-method
    (snp-class), 33
coerce, snp,genotype-method (snp-class),
    33
coerce,snp,numeric-method (snp-class),
    33
coerce,snp.matrix, character-method
    (snp.matrix-class), 41
coerce,snp.matrix,numeric-method
    (snp.matrix-class), 41
coerce,snp.matrix,X.snp.matrix-method
    (X.snp.matrix-class), 50
coerce,X.snp,character-method
            (X.snp-class),49
coerce,X.snp,genotype-method
            (X.snp-class),49
coerce,X.snp,numeric-method
            (X.snp-class),49
    coerce,X.snp.matrix,character-method
        (X.snp.matrix-class), 50
convert.snpMatrix(snpMatrix-internal),
        46
    dist,}1
eigen,36
epsout.ld.snp,4
for.exercise, 6
genotype-class(snpMatrix-internal), 46
glm.test.control, 7, 39, 40, 45
ibs.stats, }
ibsCount, 9, 10
ibsDist, 9, 10
initialize,snp.matrix-method
        (snp.matrix-class), 41
initialize,X.snp.matrix-method
        (X.snp.matrix-class), 50
is.na,snp.matrix-method
            (snp.matrix-class), 41
ld.snp, 5, 11, 13, 14, 37
ld.with, 12, 13
ld.with, snp.matrix, character-method
        (ld.with), }1
niceprint(snp.dprime-class), 37
pair.result.ld.snp,14
plot.snp.dprime, 5, 12, 15, 37
print.snp.dprime(snp.dprime-class), 37
qq.chisq, 17
rbind, 34, 35
rbind (snp.cbind), 34
rbind,snp.matrix-method
            (snp.matrix-class), 41
rbind2, 34
rbind2(snp.cbind), 34
rbind2,snp.matrix,snp.matrix-method
    (snp.matrix-class), 41
read.HapMap.data, 19, 26, }2
read.pedfile.info, 21,29
read.pedfile.map, 22, 29
```

```
read.snps.chiamo, 23, 26
read.snps.long, 24, 26, 27, }2
read.snps.long.old, 25, }2
read.snps.pedfile, 22, 23, 26, }2
read.wtccc.signals, 23, 24, 29,49
row.summary, 30
show, snp-method (snp-class), 33
show, snp.matrix-method
    (snp.matrix-class), 41
show, X.snp-method (X.snp-class), 49
show,X.snp.matrix-method
    (X.snp.matrix-class), 50
single.snp.tests, 18, 31, 40, 45, 46
snp-class, }3
snp.cbind, }3
snp.cor, }3
snp.dprime, 5, 11-13, 15
snp.dprime-class, 37
snp.lhs.tests, 7, 18, 33, 39, 46
snp.matrix-class, 8,41
snp.post (snp.pre),43
snp.pre, 43
snp.rbind(snp.cbind), 34
snp.rhs.tests, 7, 18, 33, 40, 44
snp.support(for.exercise), 6
snpMatrix(snpMatrix-package), 2
snpMatrix-internal,46
snpMatrix-package, 2
snps.10(for.exercise), 6
subject.data (testdata), 46
subject.support(for.exercise), 6
summary, snp.matrix-method
    (snp.matrix-class), 41
summary, X.snp.matrix-method
    (X.snp.matrix-class), 50
testdata,46
write.snp.matrix,47
write.table,48
wtccc.sample.list, 23, 24, 48
X.snp-class,49
X.snp.matrix-class, 8,50
Xchromosome (testdata),46
Xsnps (testdata), 46
xxt, 36, 43, 52
```

