
Normalizing Illumina Infinium Human Methylation
450k for multiple cell types with funtooNorm

Celia Greenwood1,2, Stepan Grinek1, Raphael Poujol1, Maxime Turgeon2, Kathleen Oros
Klein1

[1] Lady Davis Institute of Research, Montreal Quebec. [2] McGill University, Montreal
Quebec.

2017-10-02

Contents
Introduction 1

Normalization 1
Terminology . 1
Loading Raw Data . 2
Example . 2

FuntooNorm and the minfi package 4
Using minfi to find differentially methylated CpG . 4
Creating GenomicRatioSet . 5

References 7

Introduction

The funtooNorm package provides a function for normalization of Illumina Infinium Human Methylation 450
BeadChip (Illumina 450K) data when there are samples from multiple tissues or cell types. The algorithm in
this package represents an extension of a normalization method introduced recently by (Fortin et al. 2014;
Aryee et al. 2014). In addition to the percentile-specific adjustments implemented in funNorm, funtooNorm is
specifically designed to allow flexibility in the adjustments for different cell types or tissue types. Percentiles
of methylation levels may vary across cell types and hence the original funNorm may not be ideal if applied
to all samples simultaneously. Normalization separately for each cell type may introduce unwanted variability
if sample sizes are small. Therefore, this algorithm provides flexibility while optimizing the sample size used
to estimate the corrections.

Note that the current version of the package does not do a good job of normalizing the Y chromosome probes;
the funNorm method performs better. In a subsequent version of the package we will address this issue.

Normalization

Terminology

As described in the minfi vignette, the 450k array contains two types of probes:

CpGs measured using a Type I design are measured using a single color,
with two different probes in the same color channel providing
the methylated and the unmethylated measurements. CpGs measured

1

using a Type II design are measured using a single probe, and two
different colors provide the methylated and the unmethylated
measurements.

Therefore, we separate the 6 types of signals in our method : AIGrn, BIGrn, AIRed, BIRed, AII and BII,
where the A (methylated) and B (unmethylated) are on Green or Red channel depending on the 3 types :
Type I Red, Type I Green or Type II. We will be careful to use position when referring to a CpG and
not probe since the number of probes per position depends on the probe type of these position.

Loading Raw Data

The first step is to create a new SampleSet for your data. The SampleSet is an object of class S3, defined for
the purpose of running the funtooNorm algorithm. The SampleSet object contains the chip data and the cell
type for each sample. There are two ways to load your data into R, depending on whether your files our in
.csv or .idat format.

1. csv files: csv files are generated from the Genome Studio software. After loading the data into Genome
Studio, export the control probes file and the signal intensity file. These csv files will contain the sample
names as well as column headers. Both files should contain the exact same samples in the same order.

Use the function fromGenStudFiles. The first argument should be the control probe file, the second
the signal file and last argument should be a vector containing the cell types. In order to avoid any
assignment error, the vector elements should be named with the exact same sample labels as the
Genome Studio files.

2. idat files: Using the minfi package, create a RGChannelSet object containing all your samples and use
the function fromRGChannelSet to create your SampleSet. Please refer to the minfi vignette on how to
create a RGChannelSet. The phenotype data of your object should contain a column name cell_type,
you can access it using the pData function

There must be at least two different cell or tissue types in the data or the program will terminate with a
warning.

Example

We have provided a small data set containing N = 6 samples from the Illumina 450K to demonstrate
funtooNorm. Since the sample are all the same cell type, this example will not produce meaningful results.

require(funtooNorm)
require(minfiData)
We randomly assign cell types for the purpose of this example.
pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3)
mySampleSet=fromRGChannelSet(RGsetEx)

The above script prepares your sampleSet object and your data is ready for normalization. Raw beta values
can be extracted at this point. get the Beta value before normalization.

origBeta <- getRawBeta(mySampleSet)
origBeta[1:3,1:3]

5723646052_R02C02 5723646052_R04C01 5723646052_R05C02
cg00008945 0.01681778 0.4511749 0.06168549
cg00026186 0.01123767 0.5445124 0.02027104
cg00072288 0.02706664 0.5885229 0.01681831

Before normalizing with funtooNorm you need to choose the ideal number of components, ncmp, for your
data. We have set 4 as the default value for ncmp.

2

Choice of the number of components can be facilitated by examining a series of fits with different numbers
of components: Calling the plotValidationGraph function with type.fits = "PCR" produces a set of
plots, showing the root mean squared errors from cross-validated fits, for different numbers of components,
separately for each type of signal AIGrn, BIGrn, AIRed, BIRed, AII, and BII. The ideal ncmp would be the
smallest value where the cross-validated root mean squared error is fairly small across all the quantiles.

Figure 1. Cross-validated root mean squared errors across percentiles of the signal distributions for different
numbers of PCR components. signal A and B; probe type I red, probe type I green and probe type II.

Figure 1: valPCR

By default, funtooNorm will perform 10-fold cross-validation, but this can be changed with the parameter
ncv.fold. Since this step can be very lengthy, we advice you to set the output of your plot to a pdf file:
file = "validationcurve.pdf". The default fit type is PCR, you can change it with type.fits="PLS".

3

plotValidationGraph(mySampleSet, type.fits="PCR")

pdf
2

Below is a basic call to the function funtooNorm: funtooNorm will fit either principal component regression
(PCR) or partial least squares regression (PLS) by specifying type.fits="PCR" or type.fits="PLS". The
default is set to PCR, to match funNorm. An important user-chosen parameter is ncmp, the number of
components to be included in either of these two models; these components are calculated from the control
probe data and cell type data.

mySampleSet=funtooNorm(mySampleSet,type.fits="PCR",ncmp=3)
mySampleSet

SampleSet object built from minfi
Data: 485577 positions and 6 samples
cell type: type1 type2
528 quantiles
funtooNorm Normalization was applied

normBeta <- getNormBeta(mySampleSet)
normBeta[1:3,1:3]

5723646052_R02C02 5723646052_R04C01 5723646052_R05C02
cg00008945 0.02311210 0.4619684 0.06307128
cg00026186 0.01359405 0.5495726 0.02009510
cg00072288 0.03179749 0.5957099 0.01635315

To assess the performance of the normalization, if technical replicates are available, one can use a measure of
intra-replicate differences M, described in (Oros Klein et al. 2016). We provide a function agreement to
implement calculation of this measure. The function requires two arguments: a matrix of beta values and a
vector of individual ID’s. Technical replicates will have identical individual ID’s. The returned value of M is
expected to be more similar for the data after normalization:

#technical replicates are fictional, just for demonstration purposes.
agreement(origBeta, c(1:5,5)) # M for data before the normalization

[1] 0.0281463

agreement(normBeta, c(1:5,5)) # M for data after normalization

[1] 0.02351814

FuntooNorm and the minfi package

The minfi package (Aryee et al. 2014) contains several tools for analyzing and visualizing Illumina’s 450k
array data. This section shows how to incorporate the funtooNorm and minfi packages.

Using minfi to find differentially methylated CpG

Here we demonstrate the use of dmpFinder on the M values: log(Meth/nmeth)
library(minfi)

age=pData(RGsetEx)$age

4

dmp=dmpFinder(getNormM(mySampleSet), age, type="continuous")
dmp[1:2,]

intercept beta t pval qval
cg08422471 1.412644 0.02978811 36.31539 3.432385e-06 0.9999887
cg19137649 -3.784871 0.07245625 31.37784 6.147863e-06 0.9999887

Creating GenomicRatioSet

Since normalization is rarely the final goal, this section illustrates how to convert the output of funtooNorm
(the funtooNorm object created in section 2.3) to a GenomicRatioSet object, so that it can be used by other
tools in minfi::bumphunter or minfi::blockFinder.

First we extract the phenotype data provided in the RGset from the initial minfi example. Then we create
the GenomicRatioSet which includes the normalized values and the phenotype data.
phenoData <- pData(RGsetEx)[,c("age","sex","status")]
genomerange <- getGRanges(mySampleSet)
grs <- GenomicRatioSet(gr=genomerange,

Beta=normBeta,
preprocessMethod="funtooNorm",
metadata=list(pData=phenoData))

grs

class: GenomicRatioSet
dim: 485512 6
metadata(1): pData
assays(1): Beta
rownames(485512): cg00008945 cg00026186 ... cg27611726 cg27636129
rowData names(0):
colnames(6): 5723646052_R02C02 5723646052_R04C01 ...
5723646053_R05C02 5723646053_R06C02
colData names(0):
Annotation
array:
Preprocessing
Method: NA
minfi version: NA
Manifest version: NA

The default print method of a GenomicRatioSet object shows basic information of that object. In this
example things were kept simple in order to show the bare necessities.

R Under development (unstable) (2017-09-18 r73311)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.3 LTS
##
Matrix products: default
BLAS: /usr/lib/libblas/libblas.so.3.6.0
LAPACK: /usr/lib/lapack/liblapack.so.3.6.0
##
locale:
[1] LC_CTYPE=en_CA.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_CA.UTF-8 LC_COLLATE=en_CA.UTF-8
[5] LC_MONETARY=en_CA.UTF-8 LC_MESSAGES=en_CA.UTF-8

5

[7] LC_PAPER=en_CA.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_CA.UTF-8 LC_IDENTIFICATION=C
##
attached base packages:
[1] stats4 parallel stats graphics grDevices utils datasets
[8] methods base
##
other attached packages:
[1] minfiData_0.23.0
[2] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.6.0
[3] IlluminaHumanMethylation450kmanifest_0.4.0
[4] funtooNorm_1.1.1
[5] minfi_1.23.3
[6] bumphunter_1.17.2
[7] locfit_1.5-9.1
[8] iterators_1.0.8
[9] foreach_1.4.3
[10] Biostrings_2.45.4
[11] XVector_0.17.1
[12] SummarizedExperiment_1.7.8
[13] DelayedArray_0.3.19
[14] matrixStats_0.52.2
[15] Biobase_2.37.2
[16] GenomicRanges_1.29.14
[17] GenomeInfoDb_1.13.4
[18] IRanges_2.11.16
[19] S4Vectors_0.15.8
[20] BiocGenerics_0.23.1
##
loaded via a namespace (and not attached):
[1] httr_1.3.1 nor1mix_1.2-3
[3] bit64_0.9-7 splines_3.5.0
[5] assertthat_0.2.0 doRNG_1.6.6
[7] blob_1.1.0 GenomeInfoDbData_0.99.1
[9] Rsamtools_1.29.1 yaml_2.1.14
[11] progress_1.1.2 RSQLite_2.0
[13] backports_1.1.0 lattice_0.20-35
[15] quadprog_1.5-5 limma_3.33.9
[17] digest_0.6.12 RColorBrewer_1.1-2
[19] htmltools_0.3.6 preprocessCore_1.39.3
[21] Matrix_1.2-11 plyr_1.8.4
[23] GEOquery_2.43.0 siggenes_1.51.0
[25] XML_3.98-1.9 biomaRt_2.33.4
[27] genefilter_1.59.0 zlibbioc_1.23.0
[29] xtable_1.8-2 BiocParallel_1.11.8
[31] annotate_1.55.0 openssl_0.9.7
[33] tibble_1.3.4 beanplot_1.2
[35] pkgmaker_0.22 GenomicFeatures_1.29.9
[37] survival_2.41-3 magrittr_1.5
[39] mclust_5.3 memoise_1.1.0
[41] evaluate_0.10.1 nlme_3.1-131
[43] MASS_7.3-47 data.table_1.10.4
[45] tools_3.5.0 registry_0.3

6

[47] prettyunits_1.0.2 stringr_1.2.0
[49] rngtools_1.2.4 AnnotationDbi_1.39.3
[51] base64_2.0 pls_2.6-0
[53] compiler_3.5.0 rlang_0.1.2
[55] grid_3.5.0 RCurl_1.95-4.8
[57] bitops_1.0-6 rmarkdown_1.6
[59] codetools_0.2-15 multtest_2.33.0
[61] DBI_0.7 reshape_0.8.7
[63] R6_2.2.2 illuminaio_0.19.0
[65] GenomicAlignments_1.13.6 knitr_1.17
[67] rtracklayer_1.37.3 bit_1.1-12
[69] rprojroot_1.2 stringi_1.1.5
[71] Rcpp_0.12.12

References

Aryee, M. J., A. E. Jaffe, H. Corrada-Bravo, C. Ladd-Acosta, A. P. Feinberg, K. D. Hansen, and R. A. Irizarry.
2014. “Minfi: A Flexible and Comprehensive Bioconductor Package for the Analysis of Infinium Dna Methy-
lation Microarrays.” Journal Article. Bioinformatics 30 (10): 1363–9. doi:10.1093/bioinformatics/btu049.

Fortin, J. P., A. Labbe, M. Lemire, B. W. Zanke, T. J. Hudson, E. J. Fertig, C. M. Greenwood, and K. D.
Hansen. 2014. “Functional Normalization of 450k Methylation Array Data Improves Replication in Large
Cancer Studies.” Journal Article. Genome Biol 15 (12): 503. doi:10.1186/s13059-014-0503-2.

Oros Klein, K., S. Grinek, S. Bernatsky, L. Bouchard, A. Ciampi, I. Colmegna, J. P. Fortin, et al. 2016.
“FuntooNorm: An R Package for Normalization of Dna Methylation Data When There Are Multiple Cell or
Tissue Types.” Journal Article. Bioinformatics 32 (4): 593–5. doi:10.1093/bioinformatics/btv615.

7

https://doi.org/10.1093/bioinformatics/btu049
https://doi.org/10.1186/s13059-014-0503-2
https://doi.org/10.1093/bioinformatics/btv615

	Introduction
	Normalization
	Terminology
	Loading Raw Data
	Example

	FuntooNorm and the minfi package
	Using minfi to find differentially methylated CpG
	Creating GenomicRatioSet

	References

