Contents

1 Installation and use

This package is available in Bioconductor version 3.15 and later. The following code installs cellxgenedp as well as other packages required for this vignette.

pkgs <- c("cellxgenedp", "zellkonverter", "SingleCellExperiment", "HDF5Array")
required_pkgs <- pkgs[!pkgs %in% rownames(installed.packages())]
BiocManager::install(required_pkgs)

Use the following pkgs vector to install from GitHub (latest, unchecked, development version) instead

pkgs <- c(
    "mtmorgan/cellxgenedp", "zellkonverter", "SingleCellExperiment", "HDF5Array"
)

Load the package into your current R session. We make extensive use of the dplyr packages, and at the end of the vignette use SingleCellExperiment and zellkonverter, so load those as well.

suppressPackageStartupMessages({
    library(zellkonverter)
    library(SingleCellExperiment) # load early to avoid masking dplyr::count()
    library(dplyr)
    library(cellxgenedp)
})

2 cxg() Provides a ‘shiny’ interface

The following sections outline how to use the cellxgenedp package in an R script; most functionality is also available in the cxg() shiny application, providing an easy way to identify, download, and visualize one or several datasets. Start the app

cxg()

choose a project on the first tab, and a dataset for visualization, or one or more datasets for download!

3 Collections, datasets and files

Retrieve metadata about resources available at the cellxgene data portal using db():

db <- db()

Printing the db object provides a brief overview of the available data, as well as hints, in the form of functions like collections(), for further exploration.

db
## cellxgene_db
## number of collections(): 105
## number of datasets(): 540
## number of files(): 1612

The portal organizes data hierarchically, with ‘collections’ (research studies, approximately), ‘datasets’, and ‘files’. Discover data using the corresponding functions.

collections(db)
## # A tibble: 105 × 16
##    collec…¹ acces…² conta…³ conta…⁴ curat…⁵ data_…⁶ descr…⁷ genes…⁸ links  name 
##    <chr>    <chr>   <chr>   <chr>   <chr>   <chr>   <chr>   <lgl>   <list> <chr>
##  1 03f821b… READ    km16@s… Kersti… Batuha… 2.0     It is … NA      <list> Loca…
##  2 43d4bb3… READ    raymon… Raymon… Batuha… 2.0     Pertur… NA      <list> Tran…
##  3 0434a9d… READ    avilla… Alexan… Batuha… 2.0     The va… NA      <list> Acut…
##  4 3472f32… READ    wongcb… Raymon… Batuha… 2.0     The re… NA      <list> A si…
##  5 2902f08… READ    lopes@… S. M. … Wei Kh… 2.0     The ov… NA      <list> Sing…
##  6 83ed3be… READ    tom.ta… Tom Ta… Jennif… 2.0     During… NA      <list> Inte…
##  7 2b02dff… READ    miriam… Miriam… Batuha… 2.0     Clinic… NA      <list> Sing…
##  8 eb735cc… READ    rv4@sa… Roser … Batuha… 2.0     Human … NA      <list> Samp…
##  9 44531dd… READ    tallul… Tallul… Jennif… 2.0     The cr… NA      <list> Sing…
## 10 e75342a… READ    nhuebn… Norber… Jennif… 2.0     Pathog… NA      <list> Path…
## # … with 95 more rows, 6 more variables: publisher_metadata <list>,
## #   visibility <chr>, created_at <date>, published_at <date>,
## #   revised_at <date>, updated_at <date>, and abbreviated variable names
## #   ¹​collection_id, ²​access_type, ³​contact_email, ⁴​contact_name, ⁵​curator_name,
## #   ⁶​data_submission_policy_version, ⁷​description, ⁸​genesets
datasets(db)
## # A tibble: 540 × 28
##    dataset_id     colle…¹ donor…² assay  cell_…³ cell_…⁴ datas…⁵ devel…⁶ disease
##    <chr>          <chr>   <list>  <list>   <int> <list>  <chr>   <list>  <list> 
##  1 edc8d3fe-153c… 03f821… <list>  <list>  236977 <list>  https:… <list>  <list> 
##  2 2a498ace-872a… 03f821… <list>  <list>  422220 <list>  https:… <list>  <list> 
##  3 f512b8b6-369d… 43d4bb… <list>  <list>   68036 <list>  https:… <list>  <list> 
##  4 fa8605cf-f27e… 0434a9… <list>  <list>   59506 <list>  https:… <list>  <list> 
##  5 d5c67a4e-a8d9… 3472f3… <list>  <list>   19694 <list>  https:… <list>  <list> 
##  6 1f1c5c14-5949… 2902f0… <list>  <list>   20676 <list>  https:… <list>  <list> 
##  7 11ff73e8-d3e4… 83ed3b… <list>  <list>   71732 <list>  https:… <list>  <list> 
##  8 36c867a7-be10… 2b02df… <list>  <list>   32458 <list>  https:… <list>  <list> 
##  9 c2a461b1-0c15… eb735c… <list>  <list>   97499 <list>  https:… <list>  <list> 
## 10 0895c838-e550… 44531d… <list>  <list>     146 <list>  https:… <list>  <list> 
## # … with 530 more rows, 19 more variables: is_primary_data <chr>,
## #   is_valid <lgl>, linked_genesets <lgl>, mean_genes_per_cell <dbl>,
## #   name <chr>, organism <list>, processing_status <list>, published <lgl>,
## #   revision <int>, schema_version <chr>, self_reported_ethnicity <list>,
## #   sex <list>, suspension_type <list>, tissue <list>, tombstone <lgl>,
## #   created_at <date>, published_at <date>, revised_at <date>,
## #   updated_at <date>, and abbreviated variable names ¹​collection_id, …
files(db)
## # A tibble: 1,612 × 8
##    file_id          datas…¹ filen…² filet…³ s3_uri user_…⁴ created_at updated_at
##    <chr>            <chr>   <chr>   <chr>   <chr>  <lgl>   <date>     <date>    
##  1 8c4737ab-cd8d-4… edc8d3… explor… CXG     s3://… TRUE    2022-10-18 2022-10-18
##  2 15fda108-90fd-4… edc8d3… local.… RDS     s3://… TRUE    2022-10-18 2022-10-18
##  3 4a052f7b-7de0-4… edc8d3… local.… H5AD    s3://… TRUE    2022-10-18 2022-10-18
##  4 e6fd765c-bcfe-4… 2a498a… local.… H5AD    s3://… TRUE    2022-10-18 2022-10-18
##  5 9a8737f1-775f-4… 2a498a… explor… CXG     s3://… TRUE    2022-10-18 2022-10-18
##  6 aeb40efc-77ae-4… 2a498a… local.… RDS     s3://… TRUE    2022-10-18 2022-10-18
##  7 8eabe485-be71-4… f512b8… local.… H5AD    s3://… TRUE    2022-10-28 2022-10-28
##  8 33dfa406-132a-4… f512b8… local.… RDS     s3://… TRUE    2022-10-28 2022-10-28
##  9 454e0b3c-e207-4… f512b8… explor… CXG     s3://… TRUE    2022-10-28 2022-10-28
## 10 b50c48f1-ef5e-4… fa8605… local.… H5AD    s3://… TRUE    2022-10-20 2022-10-20
## # … with 1,602 more rows, and abbreviated variable names ¹​dataset_id,
## #   ²​filename, ³​filetype, ⁴​user_submitted

Each of these resources has a unique primary identifier (e.g., file_id) as well as an identifier describing the relationship of the resource to other components of the database (e.g., dataset_id). These identifiers can be used to ‘join’ information across tables.

3.1 Using dplyr to navigate data

A collection may have several datasets, and datasets may have several files. For instance, here is the collection with the most datasets

collection_with_most_datasets <-
    datasets(db) |>
    count(collection_id, sort = TRUE) |>
    slice(1)

We can find out about this collection by joining with the collections() table.

left_join(
    collection_with_most_datasets |> select(collection_id),
    collections(db),
    by = "collection_id"
) |> glimpse()
## Rows: 1
## Columns: 16
## $ collection_id                  <chr> "8e880741-bf9a-4c8e-9227-934204631d2a"
## $ access_type                    <chr> "READ"
## $ contact_email                  <chr> "jmarshal@broadinstitute.org"
## $ contact_name                   <chr> "Jamie L Marshall"
## $ curator_name                   <chr> "Jennifer Yu-Sheng Chien"
## $ data_submission_policy_version <chr> "2.0"
## $ description                    <chr> "High resolution spatial transcriptomic…
## $ genesets                       <lgl> NA
## $ links                          <list> [["", "RAW_DATA", "https://www.ncbi.nlm…
## $ name                           <chr> "High Resolution Slide-seqV2 Spatial Tr…
## $ publisher_metadata             <list> [[["Marshall", "Jamie L."], ["Noel", "T…
## $ visibility                     <chr> "PUBLIC"
## $ created_at                     <date> 2021-05-28
## $ published_at                   <date> 2021-12-09
## $ revised_at                     <date> 2022-10-24
## $ updated_at                     <date> 2022-10-24

We can take a similar strategy to identify all datasets belonging to this collection

left_join(
    collection_with_most_datasets |> select(collection_id),
    datasets(db),
    by = "collection_id"
)
## # A tibble: 129 × 28
##    collection_id  datas…¹ donor…² assay  cell_…³ cell_…⁴ datas…⁵ devel…⁶ disease
##    <chr>          <chr>   <list>  <list>   <int> <list>  <chr>   <list>  <list> 
##  1 8e880741-bf9a… ff77ee… <list>  <list>   38024 <list>  https:… <list>  <list> 
##  2 8e880741-bf9a… 5c451b… <list>  <list>   13147 <list>  https:… <list>  <list> 
##  3 8e880741-bf9a… 4ebe33… <list>  <list>   17909 <list>  https:… <list>  <list> 
##  4 8e880741-bf9a… 88b7da… <list>  <list>   44588 <list>  https:… <list>  <list> 
##  5 8e880741-bf9a… 230eee… <list>  <list>   22430 <list>  https:… <list>  <list> 
##  6 8e880741-bf9a… 1831d8… <list>  <list>   22458 <list>  https:… <list>  <list> 
##  7 8e880741-bf9a… 868026… <list>  <list>   31194 <list>  https:… <list>  <list> 
##  8 8e880741-bf9a… b62755… <list>  <list>   22502 <list>  https:… <list>  <list> 
##  9 8e880741-bf9a… 348383… <list>  <list>   27814 <list>  https:… <list>  <list> 
## 10 8e880741-bf9a… 4f420b… <list>  <list>   19886 <list>  https:… <list>  <list> 
## # … with 119 more rows, 19 more variables: is_primary_data <chr>,
## #   is_valid <lgl>, linked_genesets <lgl>, mean_genes_per_cell <dbl>,
## #   name <chr>, organism <list>, processing_status <list>, published <lgl>,
## #   revision <int>, schema_version <chr>, self_reported_ethnicity <list>,
## #   sex <list>, suspension_type <list>, tissue <list>, tombstone <lgl>,
## #   created_at <date>, published_at <date>, revised_at <date>,
## #   updated_at <date>, and abbreviated variable names ¹​dataset_id, ²​donor_id, …

3.2 facets() provides information on ‘levels’ present in specific columns

Notice that some columns are ‘lists’ rather than atomic vectors like ‘character’ or ‘integer’.

datasets(db) |>
    select(where(is.list))
## # A tibble: 540 × 11
##    donor_id   assay  cell_…¹ devel…² disease organ…³ processing…⁴ self_…⁵ sex   
##    <list>     <list> <list>  <list>  <list>  <list>  <list>       <list>  <list>
##  1 <list>     <list> <list>  <list>  <list>  <list>  <named list> <list>  <list>
##  2 <list>     <list> <list>  <list>  <list>  <list>  <named list> <list>  <list>
##  3 <list [9]> <list> <list>  <list>  <list>  <list>  <named list> <list>  <list>
##  4 <list>     <list> <list>  <list>  <list>  <list>  <named list> <list>  <list>
##  5 <list [3]> <list> <list>  <list>  <list>  <list>  <named list> <list>  <list>
##  6 <list [5]> <list> <list>  <list>  <list>  <list>  <named list> <list>  <list>
##  7 <list [5]> <list> <list>  <list>  <list>  <list>  <named list> <list>  <list>
##  8 <list>     <list> <list>  <list>  <list>  <list>  <named list> <list>  <list>
##  9 <list>     <list> <list>  <list>  <list>  <list>  <named list> <list>  <list>
## 10 <list [4]> <list> <list>  <list>  <list>  <list>  <named list> <list>  <list>
## # … with 530 more rows, 2 more variables: suspension_type <list>,
## #   tissue <list>, and abbreviated variable names ¹​cell_type,
## #   ²​development_stage, ³​organism, ⁴​processing_status, ⁵​self_reported_ethnicity

This indicates that at least some of the datasets had more than one type of assay, cell_type, etc. The facets() function provides a convenient way of discovering possible levels of each column, e.g., assay, organism, self_reported_ethnicity, or sex, and the number of datasets with each label.

facets(db, "assay")
## # A tibble: 32 × 4
##    facet label                          ontology_term_id     n
##    <chr> <chr>                          <chr>            <int>
##  1 assay 10x 3' v3                      EFO:0009922        189
##  2 assay 10x 3' v2                      EFO:0009899        164
##  3 assay Slide-seqV2                    EFO:0030062        129
##  4 assay 10x 5' v1                      EFO:0011025         43
##  5 assay Smart-seq2                     EFO:0008931         36
##  6 assay Visium Spatial Gene Expression EFO:0010961         35
##  7 assay 10x multiome                   EFO:0030059         24
##  8 assay Drop-seq                       EFO:0008722         12
##  9 assay 10x 3' transcription profiling EFO:0030003          9
## 10 assay 10x 5' v2                      EFO:0009900          9
## # … with 22 more rows
facets(db, "self_reported_ethnicity")
## # A tibble: 18 × 4
##    facet                   label                                   ontol…¹     n
##    <chr>                   <chr>                                   <chr>   <int>
##  1 self_reported_ethnicity unknown                                 unknown   211
##  2 self_reported_ethnicity European                                HANCES…   181
##  3 self_reported_ethnicity na                                      na        176
##  4 self_reported_ethnicity Asian                                   HANCES…    67
##  5 self_reported_ethnicity African American                        HANCES…    37
##  6 self_reported_ethnicity multiethnic                             multie…    24
##  7 self_reported_ethnicity Greater Middle Eastern  (Middle Easter… HANCES…    21
##  8 self_reported_ethnicity Hispanic or Latin American              HANCES…    16
##  9 self_reported_ethnicity African American or Afro-Caribbean      HANCES…     5
## 10 self_reported_ethnicity East Asian                              HANCES…     4
## 11 self_reported_ethnicity African                                 HANCES…     3
## 12 self_reported_ethnicity South Asian                             HANCES…     2
## 13 self_reported_ethnicity Chinese                                 HANCES…     1
## 14 self_reported_ethnicity Eskimo                                  HANCES…     1
## 15 self_reported_ethnicity Finnish                                 HANCES…     1
## 16 self_reported_ethnicity Han Chinese                             HANCES…     1
## 17 self_reported_ethnicity Oceanian                                HANCES…     1
## 18 self_reported_ethnicity Pacific Islander                        HANCES…     1
## # … with abbreviated variable name ¹​ontology_term_id
facets(db, "sex")
## # A tibble: 3 × 4
##   facet label   ontology_term_id     n
##   <chr> <chr>   <chr>            <int>
## 1 sex   male    PATO:0000384       458
## 2 sex   female  PATO:0000383       317
## 3 sex   unknown unknown             49

3.3 Filtering faceted columns

Suppose we were interested in finding datasets from the 10x 3’ v3 assay (ontology_term_id of EFO:0009922) containing individuals of African American ethnicity, and female sex. Use the facets_filter() utility function to filter data sets as needed

african_american_female <-
    datasets(db) |>
    filter(
        facets_filter(assay, "ontology_term_id", "EFO:0009922"),
        facets_filter(self_reported_ethnicity, "label", "African American"),
        facets_filter(sex, "label", "female")
    )

Use nrow(african_american_female) to find the number of datasets satisfying our criteria. It looks like there are up to

african_american_female |>
    summarise(total_cell_count = sum(cell_count))
## # A tibble: 1 × 1
##   total_cell_count
##              <int>
## 1          2608650

cells sequenced (each dataset may contain cells from several ethnicities, as well as males or individuals of unknown gender, so we do not know the actual number of cells available without downloading files). Use left_join to identify the corresponding collections:

## collections
left_join(
    african_american_female |> select(collection_id) |> distinct(),
    collections(db),
    by = "collection_id"
)
## # A tibble: 7 × 16
##   collect…¹ acces…² conta…³ conta…⁴ curat…⁵ data_…⁶ descr…⁷ genes…⁸ links  name 
##   <chr>     <chr>   <chr>   <chr>   <chr>   <chr>   <chr>   <lgl>   <list> <chr>
## 1 c9706a92… READ    hnaksh… Harikr… Jennif… 2.0     "Singl… NA      <list> A si…
## 2 2f75d249… READ    rsatij… Rahul … Jennif… 2.0     "This … NA      <list> Azim…
## 3 b9fc3d70… READ    bruce.… Bruce … Jennif… 2.0     "Numer… NA      <list> A We…
## 4 62e8f058… READ    chanj3… Joseph… Jennif… 2.0     "155,0… NA      <list> HTAN…
## 5 625f6bf4… READ    a5wang… Allen … Jennif… 2.0     "Large… NA      <list> Lung…
## 6 b953c942… READ    icobos… Inma C… Jennif… 2.0     "Tau a… NA      <list> Sing…
## 7 bcb61471… READ    info@k… KPMP    Jennif… 2.0     "Under… NA      <list> An a…
## # … with 6 more variables: publisher_metadata <list>, visibility <chr>,
## #   created_at <date>, published_at <date>, revised_at <date>,
## #   updated_at <date>, and abbreviated variable names ¹​collection_id,
## #   ²​access_type, ³​contact_email, ⁴​contact_name, ⁵​curator_name,
## #   ⁶​data_submission_policy_version, ⁷​description, ⁸​genesets

4 Visualizing data in cellxgene

Discover files associated with our first selected dataset

selected_files <-
    left_join(
        african_american_female |> select(dataset_id),
        files(db),
        by = "dataset_id"
    )
selected_files
## # A tibble: 63 × 8
##    dataset_id       file_id filen…¹ filet…² s3_uri user_…³ created_at updated_at
##    <chr>            <chr>   <chr>   <chr>   <chr>  <lgl>   <date>     <date>    
##  1 de985818-285f-4… 15e9d9… local.… H5AD    s3://… TRUE    2022-10-21 2022-10-21
##  2 de985818-285f-4… 0d3974… explor… CXG     s3://… TRUE    2022-10-21 2022-10-21
##  3 de985818-285f-4… e254f9… local.… RDS     s3://… TRUE    2022-10-21 2022-10-21
##  4 f72958f5-7f42-4… 59bd46… local.… RDS     s3://… TRUE    2022-10-18 2022-10-18
##  5 f72958f5-7f42-4… 3a2467… explor… CXG     s3://… TRUE    2022-10-18 2022-10-18
##  6 f72958f5-7f42-4… d9f9d0… local.… H5AD    s3://… TRUE    2022-10-18 2022-10-18
##  7 bc2a7b3d-f04e-4… f6d9f2… local.… H5AD    s3://… TRUE    2022-10-18 2022-10-18
##  8 bc2a7b3d-f04e-4… 46de9c… explor… CXG     s3://… TRUE    2022-10-18 2022-10-18
##  9 bc2a7b3d-f04e-4… 5331f2… local.… RDS     s3://… TRUE    2022-10-18 2022-10-18
## 10 96a3f64b-0ee9-4… b77452… local.… H5AD    s3://… TRUE    2022-10-18 2022-10-18
## # … with 53 more rows, and abbreviated variable names ¹​filename, ²​filetype,
## #   ³​user_submitted

The filetype column lists the type of each file. The cellxgene service can be used to visualize datasets that have CXG files.

selected_files |>
    filter(filetype == "CXG") |>
    slice(1) |> # visualize a single dataset
    datasets_visualize()

Visualization is an interactive process, so datasets_visualize() will only open up to 5 browser tabs per call.

5 File download and use

Datasets usually contain CXG (cellxgene visualization), H5AD (files produced by the python AnnData module), and Rds (serialized files produced by the R Seurat package). There are no public parsers for CXG, and the Rds files may be unreadable if the version of Seurat used to create the file is different from the version used to read the file. We therefore focus on the H5AD files. For illustration, we download one of our selected files.

local_file <-
    selected_files |>
    filter(
        dataset_id == "3de0ad6d-4378-4f62-b37b-ec0b75a50d94",
        filetype == "H5AD"
    ) |>
    files_download(dry.run = FALSE)
basename(local_file)
## [1] "f69ba4b3-fc45-483c-8a7c-434fd056aeed.H5AD"

These are downloaded to a local cache (use the internal function cellxgenedp:::.cellxgenedb_cache_path() for the location of the cache), so the process is only time-consuming the first time.

H5AD files can be converted to R / Bioconductor objects using the zellkonverter package.

h5ad <- readH5AD(local_file, use_hdf5 = TRUE)
## + '/home/biocbuild/.cache/R/basilisk/1.10.0/0/bin/conda' 'create' '--yes' '--prefix' '/home/biocbuild/.cache/R/basilisk/1.10.0/zellkonverter/1.8.0/zellkonverterAnnDataEnv-0.8.0' 'python=3.8.13' '--quiet' '-c' 'conda-forge'
## + '/home/biocbuild/.cache/R/basilisk/1.10.0/0/bin/conda' 'install' '--yes' '--prefix' '/home/biocbuild/.cache/R/basilisk/1.10.0/zellkonverter/1.8.0/zellkonverterAnnDataEnv-0.8.0' 'python=3.8.13'
## + '/home/biocbuild/.cache/R/basilisk/1.10.0/0/bin/conda' 'install' '--yes' '--prefix' '/home/biocbuild/.cache/R/basilisk/1.10.0/zellkonverter/1.8.0/zellkonverterAnnDataEnv-0.8.0' '-c' 'conda-forge' 'python=3.8.13' 'anndata=0.8.0' 'h5py=3.6.0' 'hdf5=1.12.1' 'natsort=8.1.0' 'numpy=1.22.3' 'packaging=21.3' 'pandas=1.4.2' 'python=3.8.13' 'scipy=1.7.3' 'sqlite=3.38.2'
## Warning: 'X' matrix does not support transposition and has been skipped
h5ad
## class: SingleCellExperiment 
## dim: 26329 46500 
## metadata(3): cell_type_ontology_term_id_colors schema_version title
## assays(1): X
## rownames(26329): ENSG00000182308 ENSG00000124827 ... ENSG00000155229
##   ENSG00000105609
## rowData names(4): feature_is_filtered feature_name feature_reference
##   feature_biotype
## colnames(46500): D032_AACAAGACAGCCCACA D032_AACAGGGGTCCAGCGT ...
##   D231_CGAGTGCTCAACCCGG D231_TTCGCTGAGGAACATT
## colData names(26): nCount_RNA nFeature_RNA ... self_reported_ethnicity
##   development_stage
## reducedDimNames(1): X_umap
## mainExpName: NULL
## altExpNames(0):

The SingleCellExperiment object is a matrix-like object with rows corresponding to genes and columns to cells. Thus we can easily explore the cells present in the data.

h5ad |>
    colData(h5ad) |>
    as_tibble() |>
    count(sex, donor_id)
## # A tibble: 9 × 3
##   sex    donor_id     n
##   <fct>  <fct>    <int>
## 1 female D088      5903
## 2 female D139      5217
## 3 female D175      1778
## 4 female D231      4680
## 5 male   D032      4970
## 6 male   D046      8894
## 7 male   D062      4852
## 8 male   D122      3935
## 9 male   D150      6271

6 Next steps

The Orchestrating Single-Cell Analysis with Bioconductor online resource provides an excellent introduction to analysis and visualization of single-cell data in R / Bioconductor. Extensive opportunities for working with AnnData objects in R but using the native python interface are briefly described in, e.g., ?AnnData2SCE help page of zellkonverter.

The hca package provides programmatic access to the Human Cell Atlas data portal, allowing retrieval of primary as well as derived single-cell data files.

Session info

## R version 4.2.1 (2022-06-23)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.5 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.16-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.16-bioc/R/lib/libRlapack.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] cellxgenedp_1.2.0           dplyr_1.0.10               
##  [3] SingleCellExperiment_1.20.0 SummarizedExperiment_1.28.0
##  [5] Biobase_2.58.0              GenomicRanges_1.50.0       
##  [7] GenomeInfoDb_1.34.0         IRanges_2.32.0             
##  [9] S4Vectors_0.36.0            BiocGenerics_0.44.0        
## [11] MatrixGenerics_1.10.0       matrixStats_0.62.0         
## [13] zellkonverter_1.8.0         BiocStyle_2.26.0           
## 
## loaded via a namespace (and not attached):
##  [1] httr_1.4.4             sass_0.4.2             jsonlite_1.8.3        
##  [4] here_1.0.1             bslib_0.4.0            shiny_1.7.3           
##  [7] assertthat_0.2.1       BiocManager_1.30.19    GenomeInfoDbData_1.2.9
## [10] yaml_2.3.6             pillar_1.8.1           lattice_0.20-45       
## [13] glue_1.6.2             reticulate_1.26        digest_0.6.30         
## [16] promises_1.2.0.1       XVector_0.38.0         htmltools_0.5.3       
## [19] httpuv_1.6.6           Matrix_1.5-1           pkgconfig_2.0.3       
## [22] dir.expiry_1.6.0       rjsoncons_1.0.0        bookdown_0.29         
## [25] zlibbioc_1.44.0        xtable_1.8-4           later_1.3.0           
## [28] tibble_3.1.8           generics_0.1.3         ellipsis_0.3.2        
## [31] DT_0.26                cachem_1.0.6           withr_2.5.0           
## [34] cli_3.4.1              magrittr_2.0.3         mime_0.12             
## [37] evaluate_0.17          fansi_1.0.3            tools_4.2.1           
## [40] lifecycle_1.0.3        basilisk.utils_1.10.0  stringr_1.4.1         
## [43] DelayedArray_0.24.0    compiler_4.2.1         jquerylib_0.1.4       
## [46] rlang_1.0.6            grid_4.2.1             RCurl_1.98-1.9        
## [49] htmlwidgets_1.5.4      bitops_1.0-7           rmarkdown_2.17        
## [52] basilisk_1.10.0        DBI_1.1.3              curl_4.3.3            
## [55] R6_2.5.1               knitr_1.40             fastmap_1.1.0         
## [58] utf8_1.2.2             filelock_1.0.2         rprojroot_2.0.3       
## [61] stringi_1.7.8          parallel_4.2.1         Rcpp_1.0.9            
## [64] vctrs_0.5.0            png_0.1-7              tidyselect_1.2.0      
## [67] xfun_0.34