
Package ‘basilisk’
April 10, 2023

Version 1.10.2

Date 2022-11-08

Title Freezing Python Dependencies Inside Bioconductor Packages

Imports utils, methods, parallel, reticulate, dir.expiry,
basilisk.utils

Suggests knitr, rmarkdown, BiocStyle, testthat, callr

biocViews Infrastructure

Description Installs a self-
contained conda instance that is managed by the R/Bioconductor installation machinery.
This aims to provide a consistent Python environment that can be used reliably by Bioconduc-
tor packages.
Functions are also provided to enable smooth interoperability of multiple Python environ-
ments in a single R session.

License GPL-3

RoxygenNote 7.2.1

StagedInstall false

VignetteBuilder knitr

BugReports https://github.com/LTLA/basilisk/issues

git_url https://git.bioconductor.org/packages/basilisk

git_branch RELEASE_3_16

git_last_commit 9c9ad75

git_last_commit_date 2022-11-08

Date/Publication 2023-04-10

Author Aaron Lun [aut, cre, cph],
Vince Carey [ctb]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

1

https://github.com/LTLA/basilisk/issues

2 BasiliskEnvironment-class

R topics documented:
BasiliskEnvironment-class . 2
basiliskStart . 3
configureBasiliskEnv . 7
createLocalBasiliskEnv . 9
findPersistentEnv . 10
getBasiliskFork . 10
listPackages . 12
obtainEnvironmentPath . 13
PyPiLink . 14
setupBasiliskEnv . 14
useBasiliskEnv . 16

Index 18

BasiliskEnvironment-class

The BasiliskEnvironment class

Description

The BasiliskEnvironment class provides a simple structure containing all of the information to
construct a basilisk environment. It is used by basiliskStart to perform lazy installation.

Constructor

BasiliskEnvironment(envname, pkgname, packages) will return a BasiliskEnvironment object,
given:

• envname, string containing the name of the environment. Environment names starting with an
underscore are reserved for internal use.

• pkgname, string containing the name of the package that owns the environment.

• packages, character vector containing the names of the required Python packages from conda,
see setupBasiliskEnv for requirements.

• channels, character vector specifying the Conda channels to search.

• pip, character vector containing names of additional Python packages from PyPi, see setupBasiliskEnv
for requirements.

• paths, character vector containing relative paths to Python packages to be installed via pip.
These paths are interpreted relative to the system directory of pkgname, i.e., they are appended
to the output of system.file.

Author(s)

Aaron lun

basiliskStart 3

Examples

BasiliskEnvironment("my_env1", "AaronPackage",
packages=c("scikit-learn=1.1.1", "pandas=1.43.1"))

basiliskStart Start and stop basilisk-related processes

Description

Creates a basilisk process in which Python operations (via reticulate) can be safely performed with
the correct versions of Python packages.

Usage

basiliskStart(
env,
fork = getBasiliskFork(),
shared = getBasiliskShared(),
testload = NULL

)

basiliskStop(proc)

basiliskRun(
proc = NULL,
fun,
...,
env,
persist = FALSE,
fork = getBasiliskFork(),
shared = getBasiliskShared(),
testload = NULL

)

Arguments

env A BasiliskEnvironment object specifying the basilisk environment to use.
Alternatively, a string specifying the path to an environment, though this should
only be used for testing purposes.
Alternatively, NULL to indicate that the base Conda installation should be used
as the environment.

fork Logical scalar indicating whether forking should be performed on non-Windows
systems, see getBasiliskFork. If FALSE, a new worker process is created using
communication over sockets.

shared Logical scalar indicating whether basiliskStart is allowed to load a shared
Python instance into the current R process, see getBasiliskShared.

4 basiliskStart

testload Character vector specifying the Python packages to load into the process during
set-up. This is used to check that packages can be correctly loaded, switching to
a fallback on GLIBCXX dynamic linking failures.

proc A process object generated by basiliskStart.

fun A function to be executed in the basilisk process. This should return a “pure R”
object, see details.

... Further arguments to be passed to fun.

persist Logical scalar indicating whether to pass a persistent store to fun. If TRUE, fun
should accept a store argument.

Details

These functions ensure that any Python operations in fun will use the environment specified by
envname. This avoids version conflicts in the presence of other Python instances or environ-
ments loaded by other packages or by the user. Thus, basilisk clients are not affected by (and
if shared=FALSE, do not affect) the activity of other R packages.

It is good practice to call basiliskStop once computation is finished to terminate the process.
Any Python-related operations between basiliskStart and basiliskStop should only occur via
basiliskRun. Calling reticulate functions directly will have unpredictable consequences, Simi-
larly, it would be unwise to interact with proc via any function other than the ones listed here.

If proc=NULL in basiliskRun, a process will be created and closed automatically. This may be
convenient in functions where persistence is not required. Note that doing so requires specification
of pkgname and envname.

If the base Conda installation provided with basilisk satisfies the requirements of the client package,
developers can set env=NULL in this function to use that base installation rather than constructing a
separate environment.

Value

basiliskStart returns a process object, the exact nature of which depends on fork and shared.
This object should only be used in basiliskRun and basiliskStop.

basiliskRun returns the output of fun(...), possibly executed inside the separate process.

basiliskStop stops the process in proc.

Choice of process type

• If shared=TRUE and no Python version has already been loaded, basiliskStart will load
Python directly into the R session from the specified environment. Similarly, if the existing
environment is the same as the requested environment, basiliskStart will use that directly.
This mode is most efficient as it avoids creating any new processes, but the use of a shared
Python configuration may prevent non-basilisk packages from working correctly in the same
session.

• If fork=TRUE, no Python version has already been loaded and we are not on Windows, basiliskStart
will create a new process by forking. In the forked process, basiliskStart will load the spec-
ified environment for operations in Python. This is less efficient as it needs to create a new
process but it avoids forcing a Python configuration on other packages in the same R session.

basiliskStart 5

• Otherwise, basiliskStart will create a parallel socket process containing a separate R ses-
sion. In the new process, basiliskStart will load the specified environment for Python
operations. This is the least efficient as it needs to transfer data over sockets but is guaranteed
to work.

Developers can control these choices directly by explicitly specifying shared and fork, while users
can control them indirectly with setBasiliskFork and related functions.

Testing package loads

If testload is provided, basiliskStart will attempt to load those Python packages into the newly
created process. This is used to detect loading failures due to differences in the versions of the shared
libraries. Most typically, a conda-supplied Python package (often scipy submodules) will have been
compiled against a certain version of libstdc++ but R is compiled against an older version. R’s
version takes precedence when reticulate attempts to load the Python package, causing cryptic
“GLIBCXX version not found” errors.

By checking the specified testload, basiliskStart can check for loading failures in potentially
problematic packages. Upon any failure, basiliskStart will fall back to a separate socket process
running a conda-supplied R installation. The idea is that, if both Python and R are sourced from
conda, they will be using the same version of libstdc++ and other libraries. This avoids loading
errors and/or segmentation faults due to version mismatches.

Use of this "last resort fallback" overrides any choice of process type from fork and shared. If no
failures are encountered, a process will be created using the current R installation.

Note that the fallback R installation is very minimalistic; only reticulate is guaranteed to be avail-
able. This places some limitations on the code that can be executed inside fun for basilisk environ-
ments that might trigger use of the fallback.

Constraints on user-defined functions

In basiliskRun, there is no guarantee that fun has access to basiliskRun’s calling environment.
This has several consequences for code in the body of fun:

• Variables used inside fun should be explicitly passed as an argument to fun. Developers
should not rely on closures to capture variables in the calling environment of basiliskRun.

• Developers should not attempt to pass complex objects to memory in or out of fun. This
mostly refers to objects that contain custom pointers to memory, e.g., file handles, pointers to
reticulate objects. Both the arguments and return values of fun should be pure R objects.

• Functions or variables from non-base R packages should be prefixed with the package name
via ::, or those packages should be reloaded inside fun. However, if fun loads Python pack-
ages that might trigger the last resort fallback, no functions or variables should be used from
non-base R packages.

Developers can test that their function behaves correctly in basiliskRun by setting setBasiliskShared
and setBasiliskFork to FALSE. This forces the execution of fun in a new process; any incorrect
assumption of shared environments will cause errors. If fun involves fallback-inducing Python
packages, developers can further set setBasiliskForceFallback before running basiliskRun.
This tests that fun works with the minimal conda-supplied R installation.

6 basiliskStart

Persisting objects across calls

Objects created inside fun can be persisted across calls to basiliskRun by setting persist=TRUE.
This will instruct basiliskRun to pass a store argument to fun that can be used to store arbitrary
objects. Those same objects can be retrieved from store in later calls to basiliskRun using the
same proc. Any object can be stored in .basilisk.store but will remain strictly internal to proc.

This capability is primarily useful when a Python workflow is split across multiple basiliskRun
calls. Each subsequent call can pick up from temporary intermediate objects generated by the
previous call. In this manner, basilisk enables modular function design where developers can easily
mix and match different basiliskRun invocations. See Examples for a working demonstration.

Use of lazy installation

If the specified basilisk environment is not present and env is a BasiliskEnvironment object, the
environment will be created upon first use of basiliskStart. If the base Conda installation is not
present, it will also be installed upon first use of basiliskStart. We do not provide Conda with the
basilisk package binaries to avoid portability problems with hard-coded paths (as well as potential
licensing issues from redistribution).

By default, both the base conda installation and the environments will be placed in an external user-
writable directory defined by rappdirs via getExternalDir. The location of this directory can be
changed by setting the BASILISK_EXTERNAL_DIR environment variable to the desired path. This
may occasionally be necessary if the file path to the default location is too long for Windows, or if
the default path has spaces that break the Miniconda/Anaconda installer.

Advanced users may consider setting the environment variable BASILISK_USE_SYSTEM_DIR to 1
when installing basilisk and its client packages from source. This will place both the base installa-
tion and the environments in the R system directory, which simplifies permission management and
avoids duplication in enterprise settings.

Persistence of environment variables

When shared=TRUE and if no Python instance has already been loaded into the current R session,
a side-effect of basiliskStart is that it will modify a number of environment variables. This is
done to mimic activation of the Conda environment located at env. Importantly, old values for these
variables will not be restored upon basiliskStop.

This behavior is intentional as (i) the correct use of the Conda-derived Python depends on activa-
tion and (ii) the loaded Python persists for the entire R session. It may not be safe to reset the
environment variables and “deactivate” the environment while the Conda-derived Python instance
is effectively still in use. (In practice, lack of activation is most problematic on Windows due to its
dependence on correct PATH specification for dynamic linking.)

If persistence is not desirable, users should set shared=FALSE via setBasiliskShared. This will
limit any modifications to the environment variables to a separate R process.

Author(s)

Aaron Lun

configureBasiliskEnv 7

See Also

setupBasiliskEnv, to set up the conda environments.

getBasiliskFork and getBasiliskShared, to control various global options.

Examples

Creating an environment (note, this is not necessary
when supplying a BasiliskEnvironment to basiliskStart):
tmploc <- file.path(tempdir(), "my_package_A")
if (!file.exists(tmploc)) {

setupBasiliskEnv(tmploc, c('pandas=1.4.3'))
}

Pulling out the pandas version, as a demonstration:
cl <- basiliskStart(tmploc, testload="pandas")
basiliskRun(proc=cl, function() {

X <- reticulate::import("pandas"); X$`__version__`
})
basiliskStop(cl)

This happily co-exists with our other environment:
tmploc2 <- file.path(tempdir(), "my_package_B")
if (!file.exists(tmploc2)) {

setupBasiliskEnv(tmploc2, c('pandas=1.4.2'))
}

cl2 <- basiliskStart(tmploc2, testload="pandas")
basiliskRun(proc=cl2, function() {

X <- reticulate::import("pandas"); X$`__version__`
})
basiliskStop(cl2)

Persistence of variables is possible within a Start/Stop pair.
cl <- basiliskStart(tmploc)
basiliskRun(proc=cl, function(store) {

store$snake.in.my.shoes <- 1
invisible(NULL)

}, persist=TRUE)
basiliskRun(proc=cl, function(store) {

return(store$snake.in.my.shoes)
}, persist=TRUE)
basiliskStop(cl)

configureBasiliskEnv Configure client environments

8 configureBasiliskEnv

Description

Configure the basilisk environments in the configure file of client packages.

Usage

configureBasiliskEnv(src = "R/basilisk.R")

Arguments

src String containing path to a R source file that defines one or more BasiliskEnvi-
ronment objects.

Details

This function is designed to be called in the configure file of client packages, triggering the con-
struction of basilisk environments during package installation. It will only run if the BASILISK_USE_SYSTEM_DIR
environment variable is set to "1".

We take a source file as input to avoid duplicated definitions of the BasiliskEnvironments. These
objects are used in basiliskStart in the body of the package, so they naturally belong in R/;
we then ask configure to pull out that file (named "basilisk.R" by convention) to create these
objects during installation.

The source file in src should be executable on its own, i.e., you can source it without loading any
other packages (beside basilisk, obviously). Non-BasiliskEnvironment objects can be created but
are simply ignored in this function.

Value

One or more basilisk environments are created corresponding to the BasiliskEnvironment objects
in src. A NULL is invisibly returned.

Author(s)

Aaron Lun

See Also

setupBasiliskEnv, which does the heavy lifting of setting up the environments.

Examples

Not run:
configureBasiliskEnv()

End(Not run)

createLocalBasiliskEnv 9

createLocalBasiliskEnv

Create a local conda environment manually

Description

Manually create a local conda environment with versioning and thread safety. This is intended for
use in analysis workflows rather than package development.

Usage

createLocalBasiliskEnv(dir, ...)

Arguments

dir String containing the path to a directory in which the local environment is to be
stored.

... Further arguments to pass to setupBasiliskEnv.

Details

This function is intended for end users who wish to use the basilisk machinery for coordinating one
or more Python environments in their analysis workflows. It can be inserted into, e.g., Rmarkdown
reports to automatically provision and cache an environment on first compilation, which will be au-
tomatically re-used in later compilations. Some care is taken to ensure that the cached environment
is refreshed when basilisk is updated, and that concurrent access to the environment is done safely.

Value

String containing a path to the newly created environment, or to an existing environment if one was
previously created. This can be used in basiliskRun.

Author(s)

Aaron Lun

Examples

tmploc <- file.path(tempdir(), "my_package_C")
tmp <- createLocalBasiliskEnv(tmploc, packages="pandas==1.4.3")
basiliskRun(env=tmp, fun=function() {

X <- reticulate::import("pandas"); X$`__version__`
}, testload="pandas")

10 getBasiliskFork

findPersistentEnv Find the persistent environment

Description

Previously used to find a persistent environment inside a basiliskRun call, to allow variables to be
passed across calls. This is deprecated in favor of setting persist=TRUE in basiliskRun, which
will explicitly pass an environment in which to store persistent variables.

Usage

findPersistentEnv()

Value

A defunct error message is raised.

Author(s)

Aaron Lun

getBasiliskFork Options for basilisk

Description

Options controlling run-time behavior of basilisk. Unlike the various environment variables, these
options can be turned on or off by users without requiring reinstallation of the basilisk ecosystem.

Usage

getBasiliskFork()

setBasiliskFork(value)

getBasiliskShared()

setBasiliskShared(value)

getBasiliskForceFallback()

setBasiliskForceFallback(value)

setBasiliskCheckVersions(value)

getBasiliskCheckVersions()

getBasiliskFork 11

Arguments

value Logical scalar:

• For setBasiliskFork, whether forking should be used when available.
• For setBasiliskShared, whether the shared Python instance can be set in

the R session.
• For setBasiliskForceFallback, whether to force the use of the last resort

fallback.
• For setBasiliskCheckVersions, whether to check for properly versioned

package strings in setupBasiliskEnv.

Value

All functions return a logical scalar indicating whether the specified option is enabled.

Controlling process creation

By default, basiliskStart will attempt to load a shared Python instance into the R session. This
avoids the overhead of setting up a new process but will potentially break any reticulate-dependent
code outside of basilisk. To guarantee that non-basilisk code can continue to execute, users can
set setBasiliskShared(FALSE). This will load the Python instance into a self-contained basilisk
process.

If a new process must be generated by basiliskStart, forking is used by default. This is generally
more efficient than socket communication when it is available (i.e., not on Windows), but can be less
efficient if any garbage collection occurs inside the new process. In such cases, users or developers
may wish to turn off forking with setBasiliskFork(FALSE), e.g., in functions where many R-
based memory allocations are performed inside basiliskRun.

If many basilisk-dependent packages are to be used together on Unix systems, setting setBasiliskShared(FALSE)
may be beneficial. This allows each package to fork to create a new process as no Python has been
loaded in the parent R process (see ?basiliskStart). In contrast, if any package loads Python
sharedly, the others are forced to use parallel socket processes. This results in a tragedy of the
commons where the efficiency of all other packages is reduced.

Developers may wish to set setBasiliskShared(FALSE) and setBasiliskFork(FALSE) during
unit testing, to ensure that their functions do not make incorrect assumptions about the calling en-
vironment used in basiliskRun. Similarly, setting setBasiliskForceFallback(TRUE) is useful
for testing that basiliskRun works inside a minimalistic R installation.

Disabling package version checks

By default, setupBasiliskEnv requires versions for all requested Python packages. However, in
some cases, the exact version of the packages may not be known beforehand. Developers can
set setBasiliskCheckVersions(FALSE) to disable all version checks, instead allowing conda
to choose appropriate versions for the initial installation. The resulting environment can then be
queried using listPackages to obtain the explicit versions of all Python packages.

Needless to say, this option should only be used during the initial phases of developing a basilisk
client. Once a suitable environment is created by conda, Python package versions should be pinned
in setupBasiliskEnv. This ensures that all users are creating the intended environment for greater
reproducibility (and easier debugging).

12 listPackages

Author(s)

Aaron Lun

See Also

basiliskStart, where these options are used.

Examples

getBasiliskFork()
getBasiliskShared()

listPackages List packages

Description

List the set of Python packages (and their version numbers) that are installed in an conda environ-
ment.

Usage

listPackages(env = NULL)

listCorePackages()

listPythonVersion(env = NULL)

Arguments

env A BasiliskEnvironment object specifying the basilisk environment to use.
Alternatively, a string specifying the path to an environment, though this should
only be used for testing purposes.
Alternatively, NULL to indicate that the base Conda installation should be used
as the environment.

Details

This is provided for informational purposes only; developers should not expect the same core pack-
ages to be present across operating systems. ?installConda has some more comments on the
version of the conda installer used for each operating system.

Value

For listPackages, a data.frame containing the full, a versioned package string, and package, the
package name.

For listPythonVersion, a string containing the default version of Python.

obtainEnvironmentPath 13

Author(s)

Aaron Lun

Examples

listPackages()
listPythonVersion()

obtainEnvironmentPath Obtain the environment path

Description

Obtain a path to a Conda environment, lazily installing it if necessary.

Usage

obtainEnvironmentPath(env)

Arguments

env A BasiliskEnvironment object specifying the environment. Alternatively a string
containing a path to an existing environment.

Value

String containing the path to an instantiated Conda environment.

For a BasiliskEnvironment env, the function will also lazily create the environment if useSystemDir()
returns FALSE and the environment does not already exist.

Author(s)

Aaron Lun

Examples

tmploc <- file.path(tempdir(), "my_package_A")
if (!file.exists(tmploc)) {

setupBasiliskEnv(tmploc, c('pandas=1.4.3'))
}
obtainEnvironmentPath(tmploc)

env <- BasiliskEnvironment("test_env", "basilisk",
packages=c("scikit-learn=1.1.1", "pandas=1.43.1"))

Not run: obtainEnvironmentPath(env)

14 setupBasiliskEnv

PyPiLink Link to PyPi

Description

Helper function to create a Markdown link to the PyPi landing page for a Python package. Intended
primarily for use inside vignettes.

Usage

PyPiLink(package)

Arguments

package String containing the name of the Python package.

Value

String containing a Markdown link to the package’s landing page.

Author(s)

Aaron Lun

Examples

PyPiLink("pandas")
PyPiLink("scikit-learn")

setupBasiliskEnv Set up basilisk-managed environments

Description

Set up a conda environment for isolated execution of Python code with appropriate versions of all
Python packages.

Usage

setupBasiliskEnv(
envpath,
packages,
channels = "conda-forge",
pip = NULL,
paths = NULL

)

setupBasiliskEnv 15

Arguments

envpath String containing the path to the environment to use.

packages Character vector containing the names of conda packages to install into the en-
vironment. Version numbers must be included.

channels Character vector containing the names of additional conda channels to search.
Defaults to the conda-forge repository.

pip Character vector containing the names of additional packages to install from
PyPi using pip. Version numbers must be included.

paths Character vector containing absolute paths to Python package directories, to be
installed by pip.

Details

Developers of client packages should never need to call this function directly. For typical usage,
setupBasiliskEnv is automatically called by basiliskStart to perform lazy installation. Devel-
opers should also create configure(.win) files to call configureBasiliskEnv, which will call
setupBasiliskEnv during R package installation when BASILISK_USE_SYSTEM_DIR=1.

Pinned version numbers must be present for all desired conda packages in packages. This improves
predictability and simplifies debugging across different systems. Note that the version notation for
conda packages uses a single =, while the notation for Python packages uses ==; any instances of
the latter will be coerced to the former automatically.

It is possible to use the pip argument to install additional packages from PyPi after all the conda
packages are installed. All packages listed here are also expected to have pinned versions, this time
using the == notation. However, some caution is required when mixing packages from conda and
pip, see https://www.anaconda.com/using-pip-in-a-conda-environment for more details.

It is further possible to install Python packages from directories. In the package development con-
text, this typically assumes that the Python directories are included in the inst subdirectory of the
R package. basiliskStart will then convert the relative path to an absolute path before calling
this function - see BasiliskEnvironment for details.

It is also good practice to explicitly list the versions of the dependencies of all desired packages.
This protects against future changes in the behavior of your code if conda’s solver decides to use a
different version of a dependency. To identify appropriate versions of dependencies, we suggest:

1. Creating a fresh conda environment with the desired packages, using packages= in setupBasiliskEnv.

2. Calling listPackages on the environment to identify any relevant dependencies and their
versions.

3. Including those dependencies in the packages= argument for future use. (It is helpful to
mark dependencies in some manner, e.g., with comments, to distinguish them from the actual
desired packages.)

The only reason that pinned dependencies are not mandatory is because some dependencies are
OS-specific, requiring some manual pruning of the output of listPackages.

If versions for the desired conda packages are not known beforehand, developers may use setBasiliskCheckVersions(FALSE)
before running setupBasiliskEnv. This instructs conda to create an environment with appropriate
versions of all unpinned packages, which can then be read out via listPackages for insertion in

https://www.anaconda.com/using-pip-in-a-conda-environment

16 useBasiliskEnv

the packages= argument as described above. We stress that this option should not be used in any
release of the R package, it is a development-phase-only utility.

If no Python version is listed, the version in the base conda installation is used by default - check
listPythonVersion for the version number. However, it is often prudent to explicitly list the
desired version of Python in packages, even if this is already version-compatible with the default
(e.g., "python=3.8"). This protects against changes to the Python version in the base installation,
e.g., if administrators override the choice of conda installation with certain environment variables.
Of course, it is possible to specify an entirely different version of Python in packages by supplying,
e.g., "python=2.7.10".

Value

A conda environment is created at envpath containing the specified packages. A NULL is invisibly
returned.

See Also

listPackages, to list the packages in the conda environment.

Examples

tmploc <- file.path(tempdir(), "my_package_A")
if (!file.exists(tmploc)) {

setupBasiliskEnv(tmploc, c('pandas=1.4.3'))
}

useBasiliskEnv Use basilisk environments

Description

Use basilisk environments for isolated execution of Python code with appropriate versions of all
Python packages.

Usage

useBasiliskEnv(envpath)

Arguments

envpath String containing the path to the basilisk environment to use.

Details

It is unlikely that developers should ever need to call useBasiliskEnv directly. Rather, this inter-
action should be automatically handled by basiliskStart.

This function will modify a suite of environment variables as a side effect - see “Persistence of
environment variables” in ?basiliskStart for the rationale.

useBasiliskEnv 17

Value

The function will attempt to load the specified basilisk environment into the R session, possibly
with the modification of some environment variables (see Details). A NULL is invisibly returned.

Author(s)

Aaron Lun

See Also

basiliskStart, for how these basilisk environments should be used.

Examples

tmploc <- file.path(tempdir(), "my_package_A")
if (!file.exists(tmploc)) {

setupBasiliskEnv(tmploc, c('pandas==1.4.3'))
}

This may or may not work, depending on whether a Python instance
has already been loaded into this R session.
try(useBasiliskEnv(tmploc))

This will definitely not work, as the available Python is already set.
baseloc <- basilisk.utils::getCondaDir()
status <- try(useBasiliskEnv(baseloc))

... except on Windows, which somehow avoids tripping the error.
stopifnot(is(status, "try-error") || basilisk.utils::isWindows())

Index

BasiliskEnvironment, 3, 6, 8, 12, 13, 15
BasiliskEnvironment

(BasiliskEnvironment-class), 2
BasiliskEnvironment-class, 2
basiliskRun, 9–11
basiliskRun (basiliskStart), 3
basiliskStart, 2, 3, 8, 11, 12, 15–17
basiliskStop (basiliskStart), 3

configureBasiliskEnv, 7, 15
createLocalBasiliskEnv, 9

findPersistentEnv, 10

getBasiliskCheckVersions
(getBasiliskFork), 10

getBasiliskForceFallback
(getBasiliskFork), 10

getBasiliskFork, 3, 7, 10
getBasiliskShared, 3, 7
getBasiliskShared (getBasiliskFork), 10
getExternalDir, 6

installConda, 12

listCorePackages (listPackages), 12
listPackages, 11, 12, 15, 16
listPythonVersion, 16
listPythonVersion (listPackages), 12

obtainEnvironmentPath, 13

PyPiLink, 14

setBasiliskCheckVersions, 15
setBasiliskCheckVersions

(getBasiliskFork), 10
setBasiliskForceFallback, 5
setBasiliskForceFallback

(getBasiliskFork), 10
setBasiliskFork, 5

setBasiliskFork (getBasiliskFork), 10
setBasiliskShared, 5, 6
setBasiliskShared (getBasiliskFork), 10
setupBasiliskEnv, 2, 7–9, 11, 14
source, 8
system.file, 2

useBasiliskEnv, 16, 16

18

	BasiliskEnvironment-class
	basiliskStart
	configureBasiliskEnv
	createLocalBasiliskEnv
	findPersistentEnv
	getBasiliskFork
	listPackages
	obtainEnvironmentPath
	PyPiLink
	setupBasiliskEnv
	useBasiliskEnv
	Index

