The ReactomeGSA package is a client to the web-based Reactome Analysis System. Essentially, it performs a gene set analysis using the latest version of the Reactome pathway database as a backend.
This vignette shows how the ReactomeGSA package can be used to perform a pathway analysis of cell clusters in single-cell RNA-sequencing data.
To cite this package, use
Griss J. ReactomeGSA, https://github.com/reactome/ReactomeGSA (2019)
The ReactomeGSA
package can be directly installed from
Bioconductor:
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
if (!require(ReactomeGSA))
::install("ReactomeGSA")
BiocManager#> Loading required package: ReactomeGSA
# install the ReactomeGSA.data package for the example data
if (!require(ReactomeGSA.data))
::install("ReactomeGSA.data")
BiocManager#> Loading required package: ReactomeGSA.data
#> Loading required package: limma
#> Loading required package: edgeR
#> Loading required package: Seurat
#> Attaching SeuratObject
#> Attaching sp
For more information, see https://bioconductor.org/install/.
As an example we load single-cell RNA-sequencing data of B cells extracted from the dataset published by Jerby-Arnon et al. (Cell, 2018).
Note: This is not a complete Seurat object. To decrease the size, the object only contains gene expression values and cluster annotations.
library(ReactomeGSA.data)
data(jerby_b_cells)
jerby_b_cells#> An object of class Seurat
#> 23686 features across 920 samples within 1 assay
#> Active assay: RNA (23686 features, 0 variable features)
The pathway analysis is at the very end of a scRNA-seq workflow. This means, that any Q/C was already performed, the data was normalized and cells were already clustered.
The ReactomeGSA package can now be used to get pathway-level expression values for every cell cluster. This is achieved by calculating the mean gene expression for every cluster and then submitting this data to a gene set variation analysis.
All of this is wrapped in the single analyse_sc_clusters
function.
library(ReactomeGSA)
<- analyse_sc_clusters(jerby_b_cells, verbose = TRUE)
gsva_result #> Calculating average cluster expression...
#> Converting expression data to string... (This may take a moment)
#> Conversion complete
#> Submitting request to Reactome API...
#> Compressing request data...
#> Reactome Analysis submitted succesfully
#> Converting dataset Seurat...
#> Mapping identifiers...
#> Performing gene set analysis using ssGSEA
#> Analysing dataset 'Seurat' using ssGSEA
#> Retrieving result...
The resulting object is a standard
ReactomeAnalysisResult
object.
gsva_result#> ReactomeAnalysisResult object
#> Reactome Release: 82
#> Results:
#> - Seurat:
#> 1748 pathways
#> 11011 fold changes for genes
#> No Reactome visualizations available
#> ReactomeAnalysisResult
pathways
returns the pathway-level expression values per
cell cluster:
<- pathways(gsva_result)
pathway_expression
# simplify the column names by removing the default dataset identifier
colnames(pathway_expression) <- gsub("\\.Seurat", "", colnames(pathway_expression))
1:3,]
pathway_expression[#> Name Cluster_1 Cluster_10 Cluster_11
#> R-HSA-1059683 Interleukin-6 signaling 0.1083024 0.09933853 0.1419717
#> R-HSA-109606 Intrinsic Pathway for Apoptosis 0.1120826 0.10765166 0.1129437
#> R-HSA-109703 PKB-mediated events 0.1269551 0.05260470 0.1062727
#> Cluster_12 Cluster_13 Cluster_2 Cluster_3 Cluster_4 Cluster_5
#> R-HSA-1059683 0.11064768 0.10186327 0.11589537 0.11294177 0.11265002 0.10465541
#> R-HSA-109606 0.11687392 0.12568517 0.10688977 0.10872405 0.11113868 0.10329639
#> R-HSA-109703 0.09538291 0.07349972 0.08298411 0.08385108 0.05546712 0.04589538
#> Cluster_6 Cluster_7 Cluster_8 Cluster_9
#> R-HSA-1059683 0.09748855 0.12269029 0.13386683 0.10123911
#> R-HSA-109606 0.10807664 0.11563910 0.11937031 0.11260225
#> R-HSA-109703 0.12357026 0.07697748 0.07796547 0.01425426
A simple approach to find the most relevant pathways is to assess the maximum difference in expression for every pathway:
# find the maximum differently expressed pathway
<- do.call(rbind, apply(pathway_expression, 1, function(row) {
max_difference <- as.numeric(row[2:length(row)])
values return(data.frame(name = row[1], min = min(values), max = max(values)))
}))
$diff <- max_difference$max - max_difference$min
max_difference
# sort based on the difference
<- max_difference[order(max_difference$diff, decreasing = T), ]
max_difference
head(max_difference)
#> name min
#> R-HSA-350864 Regulation of thyroid hormone activity -0.4876458
#> R-HSA-8964540 Alanine metabolism -0.5061431
#> R-HSA-190374 FGFR1c and Klotho ligand binding and activation -0.3434411
#> R-HSA-140180 COX reactions -0.3450976
#> R-HSA-9024909 BDNF activates NTRK2 (TRKB) signaling -0.3746819
#> R-HSA-5263617 Metabolism of ingested MeSeO2H into MeSeH -0.1941002
#> max diff
#> R-HSA-350864 0.3752821 0.8629279
#> R-HSA-8964540 0.2551881 0.7613312
#> R-HSA-190374 0.4157735 0.7592146
#> R-HSA-140180 0.3721532 0.7172508
#> R-HSA-9024909 0.3232355 0.6979174
#> R-HSA-5263617 0.4938569 0.6879571
The ReactomeGSA package contains two functions to visualize these pathway results. The first simply plots the expression for a selected pathway:
plot_gsva_pathway(gsva_result, pathway_id = rownames(max_difference)[1])
For a better overview, the expression of multiple pathways can be
shown as a heatmap using gplots
heatmap.2
function:
# Additional parameters are directly passed to gplots heatmap.2 function
plot_gsva_heatmap(gsva_result, max_pathways = 15, margins = c(6,20))
The plot_gsva_heatmap
function can also be used to only
display specific pahtways:
# limit to selected B cell related pathways
<- c("R-HSA-983170", "R-HSA-388841", "R-HSA-2132295", "R-HSA-983705", "R-HSA-5690714")
relevant_pathways plot_gsva_heatmap(gsva_result,
pathway_ids = relevant_pathways, # limit to these pathways
margins = c(6,30), # adapt the figure margins in heatmap.2
dendrogram = "col", # only plot column dendrogram
scale = "row", # scale for each pathway
key = FALSE, # don't display the color key
lwid=c(0.1,4)) # remove the white space on the left
This analysis shows us that cluster 8 has a marked up-regulation of B Cell receptor signalling, which is linked to a co-stimulation of the CD28 family. Additionally, there is a gradient among the cluster with respect to genes releated to antigen presentation.
Therefore, we are able to further classify the observed B cell subtypes based on their pathway activity.
The pathway-level expression analysis can also be used to run a
Principal Component Analysis on the samples. This is simplified through
the function plot_gsva_pca
:
plot_gsva_pca(gsva_result)
In this analysis, cluster 11 is a clear outlier from the other B cell subtypes and therefore might be prioritised for further evaluation.
sessionInfo()
#> R version 4.2.1 Patched (2022-07-09 r82577)
#> Platform: x86_64-apple-darwin17.0 (64-bit)
#> Running under: macOS Big Sur ... 10.16
#>
#> Matrix products: default
#> BLAS: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
#> LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
#>
#> locale:
#> [1] C/en_US.UTF-8/en_US.UTF-8/C/en_GB/en_US.UTF-8
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] ReactomeGSA.data_1.11.0 sp_1.5-0 SeuratObject_4.1.2
#> [4] Seurat_4.2.0 edgeR_3.40.0 limma_3.54.0
#> [7] ReactomeGSA_1.12.0
#>
#> loaded via a namespace (and not attached):
#> [1] Rtsne_0.16 colorspace_2.0-3 deldir_1.0-6
#> [4] ellipsis_0.3.2 ggridges_0.5.4 rgdal_1.5-32
#> [7] spatstat.data_3.0-0 farver_2.1.1 leiden_0.4.3
#> [10] listenv_0.8.0 ggrepel_0.9.1 fansi_1.0.3
#> [13] codetools_0.2-18 splines_4.2.1 cachem_1.0.6
#> [16] knitr_1.40 polyclip_1.10-4 jsonlite_1.8.3
#> [19] ica_1.0-3 cluster_2.1.4 png_0.1-7
#> [22] rgeos_0.5-9 uwot_0.1.14 shiny_1.7.3
#> [25] sctransform_0.3.5 spatstat.sparse_3.0-0 BiocManager_1.30.19
#> [28] compiler_4.2.1 httr_1.4.4 assertthat_0.2.1
#> [31] Matrix_1.5-1 fastmap_1.1.0 lazyeval_0.2.2
#> [34] cli_3.4.1 later_1.3.0 prettyunits_1.1.1
#> [37] htmltools_0.5.3 tools_4.2.1 igraph_1.3.5
#> [40] gtable_0.3.1 glue_1.6.2 RANN_2.6.1
#> [43] reshape2_1.4.4 dplyr_1.0.10 Rcpp_1.0.9
#> [46] scattermore_0.8 jquerylib_0.1.4 vctrs_0.5.0
#> [49] nlme_3.1-160 progressr_0.11.0 lmtest_0.9-40
#> [52] spatstat.random_3.0-0 xfun_0.34 stringr_1.4.1
#> [55] globals_0.16.1 mime_0.12 miniUI_0.1.1.1
#> [58] lifecycle_1.0.3 irlba_2.3.5.1 gtools_3.9.3
#> [61] goftest_1.2-3 future_1.28.0 MASS_7.3-58.1
#> [64] zoo_1.8-11 scales_1.2.1 spatstat.core_2.4-4
#> [67] hms_1.1.2 promises_1.2.0.1 spatstat.utils_3.0-1
#> [70] parallel_4.2.1 RColorBrewer_1.1-3 curl_4.3.3
#> [73] yaml_2.3.6 reticulate_1.26 pbapply_1.5-0
#> [76] gridExtra_2.3 ggplot2_3.3.6 sass_0.4.2
#> [79] rpart_4.1.19 stringi_1.7.8 highr_0.9
#> [82] caTools_1.18.2 rlang_1.0.6 pkgconfig_2.0.3
#> [85] matrixStats_0.62.0 bitops_1.0-7 evaluate_0.17
#> [88] lattice_0.20-45 tensor_1.5 ROCR_1.0-11
#> [91] purrr_0.3.5 labeling_0.4.2 patchwork_1.1.2
#> [94] htmlwidgets_1.5.4 cowplot_1.1.1 tidyselect_1.2.0
#> [97] parallelly_1.32.1 RcppAnnoy_0.0.20 plyr_1.8.7
#> [100] magrittr_2.0.3 R6_2.5.1 gplots_3.1.3
#> [103] generics_0.1.3 DBI_1.1.3 mgcv_1.8-41
#> [106] pillar_1.8.1 fitdistrplus_1.1-8 abind_1.4-5
#> [109] survival_3.4-0 tibble_3.1.8 future.apply_1.9.1
#> [112] crayon_1.5.2 KernSmooth_2.23-20 utf8_1.2.2
#> [115] spatstat.geom_3.0-3 plotly_4.10.0 rmarkdown_2.17
#> [118] progress_1.2.2 locfit_1.5-9.6 grid_4.2.1
#> [121] data.table_1.14.4 digest_0.6.30 xtable_1.8-4
#> [124] tidyr_1.2.1 httpuv_1.6.6 munsell_0.5.0
#> [127] viridisLite_0.4.1 bslib_0.4.0