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1 Running QDNAseq
This is a short tutorial on how to use the QDNAseq package. It covers an example run using
the included data set of chromosomes 7–10 of a low grade glioma (LGG) sample. First step
is naturally to load the package.
> library(QDNAseq)

1.1 Bin annotations
Then we need to obtain bin annotations. These are available pre-calculated for genome build
hg19 and bin sizes 1, 5, 10, 15, 30, 50, 100, 500, and 1000 kbp. They are available in the
QDNAseq.hg19 package, which has to be installed from Bioconductor separately. With that
package installed, the bin annotations can be acquired as:
> bins <- getBinAnnotations(binSize=15)

Loaded bin annotations for genome 'hg19', bin size 15 kbp, and

http://bioconductor.org/packages/QDNAseq
http://bioconductor.org/packages/QDNAseq.hg19
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experiment type 'SR50' from annotation package QDNAseq.hg19 v1.14.0

> bins

QDNAseq bin annotations for Hsapiens, build hg19.

Created by Ilari Scheinin with QDNAseq 0.7.5, 2014-02-06 12:48:04.

An object of class 'AnnotatedDataFrame'

rowNames: 1:1-15000 1:15001-30000 ... Y:59370001-59373566 (206391

total)

varLabels: chromosome start ... use (9 total)

varMetadata: labelDescription

If you are working with another genome build (or another species), see the section on gener-
ating the bin annotations.

1.2 Processing BAM files
Next step is to load the sequencing data from BAM files. This can be done for example with
one of the commands below.
> readCounts <- binReadCounts(bins)

> # all files ending in .bam from the current working directory

>

> # or

>

> readCounts <- binReadCounts(bins, bamfiles="tumor.bam")

> # file 'tumor.bam' from the current working directory

>

> # or

>

> readCounts <- binReadCounts(bins, path="tumors")

> # all files ending in .bam from the subdirectory 'tumors'

This will return an object of class QDNAseqReadCounts. If the same BAM files will be used
as input in future R sessions, option cache=TRUE can be used to cache intermediate files,
which will speed up future analyses. Caching is done with package R.cache.
For large BAM files it is advisable to use the chunkSize parameter to control memory usage.
A non-NULL, non-numeric value will use the length of the longest chromosome, effectively
chunking by chromosome. A numeric value will use that many reads at a time. Note that
total peak memory usage is controlled both by the chunk size and the number of parallel
workers. See section 2.
For the purpose of this tutorial, we load an example data set of chromosomes 7–10 of low
grade glioma sample LGG150.
> data(LGG150)

> readCounts <- LGG150

> readCounts

QDNAseqReadCounts (storageMode: lockedEnvironment)

assayData: 38819 features, 1 samples

element names: counts

protocolData: none

phenoData

2
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sampleNames: LGG150

varLabels: name reads used.reads

expected.variance

varMetadata: labelDescription

featureData

featureNames: 7:1-15000

7:15001-30000 ...

10:135525001-135534747 (38819

total)

fvarLabels: chromosome start ...

use (9 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation:

Plot a raw copy number profile (read counts across the genome), and highlight bins that will
be removed with default filtering (Figure 1).
> plot(readCounts, logTransform=FALSE, ylim=c(-50, 200))

Plotting sample LGG150 (1 of 1) ...

> highlightFilters(readCounts, logTransform=FALSE,

+ residual=TRUE, blacklist=TRUE)

Highlighted 3,375 bins.

Apply filters and plot median read counts as a function of GC content and mappability (Fig-
ure 2). As the example data set only contains a subset of the chromosomes, the distribution
looks slightly less smooth than expected for the entire genome.
> readCountsFiltered <- applyFilters(readCounts, residual=TRUE, blacklist=TRUE)

38,819 total bins

38,819 of which in selected chromosomes

36,722 of which with reference sequence

33,347 final bins

> isobarPlot(readCountsFiltered)

Plotting sample LGG150 median read counts

Estimate the correction for GC content and mappability, and make a plot for the relationship
between the observed standard deviation in the data and its read depth (Figure 3). The
theoretical expectation is a linear relationship, which is shown in the plot with a black line.
Samples with low-quality DNA will be noisier than expected and appear further above the
line than good-quality samples.
> readCountsFiltered <- estimateCorrection(readCountsFiltered)

Calculating correction for GC content and mappability

Calculating fit for sample LGG150 (1 of 1) ...

Done.
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Figure 1: Read counts per bins
Highlighted with red are bins that will be filtered out.

> noisePlot(readCountsFiltered)

Next, we apply the correction for GC content and mappability. This will return a QDNAseq-
CopyNumbers object, which we then normalize, smooth outliers, and plot the copy number
profile (Figure 4).
> copyNumbers <- correctBins(readCountsFiltered)

> copyNumbers

QDNAseqCopyNumbers (storageMode: lockedEnvironment)

assayData: 38819 features, 1 samples

element names: copynumber

protocolData: none

phenoData

sampleNames: LGG150

varLabels: name reads ...

loess.family (6 total)

varMetadata: labelDescription

featureData

4



Introduction to QDNAseq

Figure 2: Median read counts per bin shown as a function of GC content and mappability

featureNames: 7:1-15000

7:15001-30000 ...

10:135525001-135534747 (38819

total)

fvarLabels: chromosome start ...

use (9 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation:

> copyNumbersNormalized <- normalizeBins(copyNumbers)

Applying median normalization ...

> copyNumbersSmooth <- smoothOutlierBins(copyNumbersNormalized)

Smoothing outliers ...

> plot(copyNumbersSmooth)

Plotting sample LGG150 (1 of 1) ...
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Figure 3: The relationship between sequence depth and noise

Data is now ready to be analyzed with a downstream package of choice. For analysis with
an external program or for visualizations in IGV, the data can be exported to a file.
> exportBins(copyNumbersSmooth, file="LGG150.txt")

> exportBins(copyNumbersSmooth, file="LGG150.igv", format="igv")

> exportBins(copyNumbersSmooth, file="LGG150.bed", format="bed")

1.3 Downstream analyses
Segmentation with the CBS algorithm from DNAcopy , and calling copy number aberrations
with CGHcall or cutoffs have been implemented for convenience.
By default, segmentation uses a log2-transformation, but a sqrt(x + 3/8) can also be used
as it stabilizes the variance of a Poisson distribution (Anscombe transform):
> copyNumbersSegmented <- segmentBins(copyNumbersSmooth, transformFun="sqrt")

Performing segmentation:

Segmenting: LGG150 (1 of 1) ...

> copyNumbersSegmented <- normalizeSegmentedBins(copyNumbersSegmented)

6
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Figure 4: Copy number profile after correcting for GC content and mappability

> plot(copyNumbersSegmented)

Plotting sample LGG150 (1 of 1) ...

Tune segmentation parameters and iterate until satisfied. Next, call aberrations, and plot the
final results.
> copyNumbersCalled <- callBins(copyNumbersSegmented)

[1] "Total number of segments present in the data: 14"

[1] "Number of segments used for fitting the model: 11"

> plot(copyNumbersCalled)

Plotting sample LGG150 (1 of 1) ...

Called data can be exported as VCF file or SEG for further downstream analysis.
> exportBins(copyNumbersCalled, format="vcf")

> exportBins(copyNumbersCalled, format="seg")

7
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Figure 5: Copy number profile after segmenting

It should be noted that CGHcall (which callBins() uses by default) was developed for the
analysis of sets of cancer samples. It is based on a mixture model, and when there are not
enough aberrations present in the data, model fitting can fail. This can happen especially
with non-cancer samples, and/or when analyzing individual cases instead of larger data sets.
If CGHcall fails, callBins() can also perform simple cutoff-based calling by setting parameter
method="cutoff". The default cutoff values are based on the assumption of uniform cell
populations, and in case of cancer samples will most likely need calibration by adjusting
parameter cutoffs.
Finally, for other downstream analyses, such as running CGHregions, it might be useful to
convert to a cghCall object.
> cgh <- makeCgh(copyNumbersCalled)

> cgh

cghCall (storageMode: lockedEnvironment)

assayData: 33347 features, 1 samples

element names: calls, copynumber, probamp, probdloss, probgain, probloss, probnorm, segmented

protocolData: none

phenoData

8
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Figure 6: Copy number profile after calling gains and losses

sampleNames: LGG150

varLabels: name reads ...

loess.family (6 total)

varMetadata: labelDescription

featureData

featureNames: 7:45001-60000

7:60001-75000 ...

10:135420001-135435000 (33347

total)

fvarLabels: Chromosome Start ...

use (9 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation:

This command can also be used to generate cghRaw or cghSeg objects by running it before
segmentation or calling.
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2 Parallel computation
QDNAseq supports parallel computing via the future package. All that is required is to select
an appropriate plan.
The instructions below apply to all of QDNAseq’s own functions that support parallel process-
ing. At the moment these include estimateCorrection(), segmentBins(), createBins(),
and calculateBlacklist(). binReadCounts() parallelizes by chromosome when chunkSize

is used.
However, when argument method="CGHcall" (which is the default), function callBins()

calls function CGHcall() from package CGHcall , which uses another mechanism for parallel
computation. For that, the number of processes to use should be specified with argument
ncpus, with something along the lines of:
> copyNumbers <- callBins(..., ncpus=4)

2.1 Non-parallel processing
The default is to use single-core processing via “sequential” futures. This can be set explicitly
with:
> future::plan("sequential")

2.2 Parallel processing on the current machine
To process data in parallel using multiple processes on the current machine, use the following:
> future::plan("multisession")

After that, all functions that support parallel processing will automatically use it. The future
framework attempts to play nice with the current compute environment. It will automatically
respect environment variables and R options that are used to limit the number of parallel
works. It will also respect environment variables such as number of cores assigned to job
scripts in high-performance compute (HPC) clusters. If no such restrictions are set, the
default is to use all cores available. To explicitly set, and override other settings, the number
of parallel workers, use argument workers, e.g.
> future::plan("multisession", workers=4)

For more details and alternative parallelization backends, see the future documentation.

2.3 Parallel processing on an ad-hoc cluster
To process data using multiple R sessions running on different machines, use something along
the lines of:
> cl <- future::makeClusterPSOCK(...)

> future::plan("cluster", cluster=cl)

See package future for more details.

10
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3 Sex chromosomes
By default, QDNAseq ignores sex chromosomes. In order to include them in the analysis,
function applyFilters() should be run with argument chromosomes=NA to include both X
and Y, or chromosomes="Y" to include X only.
However, this will also affect which chromosomes are used when calculating the LOESS
correction with estimateCorrection(). Unless the data set consists of only females, this
could be undesirable. The solution is to first filter out the sex chromosomes, run estimate

Correction(), and then reverse the filtering of sex chromosomes:
> readCounts <- binReadCounts(getBinAnnotations(15))

> readCounts <- applyFilters(readCounts)

> readCounts <- estimateCorrection(readCounts)

> readCounts <- applyFilters(readCounts, chromosomes=NA)

> copyNumbers <- correctBins(readCounts)

Running estimateCorrection() and correctBins() with a different set of bins can have one
side effect. This is caused by the fact that there can be bins in the sex chromosomes with a
combination of GC content and mappability that is not found anywhere else in the genome.
This will cause those bins to miss a correction estimate altogether, and these bins will be
filtered out from subsequent steps by correctBins(). If this happens, it will print out a
message specifying the number of bins affected.
Another possible approach is to allow extrapolation while calculating the LOESS correction.
But please do note that the effect of extrapolation has not been properly evaluated.
> readCounts <- estimateCorrection(readCounts,

+ control=loess.control(surface="direct"))

11
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4 Generating bin annotations
This section describes how bin annotations have been created for the hg19 build of the
human reference genome, and can be applied for other genome builds and species. The first
step is to create the bins based on chromosome sizes, and calculate their GC content and
proportion of characterized nucleotides (non-N bases in the reference sequence). For this,
the corresponding BSgenome package is needed.
> # load required packages for human reference genome build hg19

> library(QDNAseq)

> library(Biobase)

> library(BSgenome.Hsapiens.UCSC.hg19)

> # set the bin size

> binSize <- 15

> # create bins from the reference genome

> bins <- createBins(bsgenome=BSgenome.Hsapiens.UCSC.hg19, binSize=binSize)

The result is a data.frame with columns chromosome, start, end, gc, and bases. Next
step is to calculate the average mappabilities, which requires a mappability file in the big

Wig format and the bigWigAverageOverBed binary. The mappability file can be gener-
ated with GEnomic Multi-Tool (GEM) Mapper part of the GEM library from the refer-
ence genome sequence. Or it might be available directly, as was the case for hg19, and file
‘wgEncodeCrgMapabilityAlign50mer.bigWig’ downloaded from ENCODE’s download section
of the UCSC Genome Browser. The bigWigAverageOverBed binary can also be downloaded
from UCSC Genome Browser’s Other utilities section.
> # calculate mappabilites per bin from ENCODE mapability tracks

> bins$mappability <- calculateMappability(bins,

+ bigWigFile="/path/to/wgEncodeCrgMapabilityAlign50mer.bigWig",

+ bigWigAverageOverBed="/path/to/bigWigAverageOverBed")

If there are genomic regions that should excluded from analyses, such as ENCODE’s Black-
listed Regions, the percentage overlap between the generated bins and these regions can be
calculated as follows. The regions to be excluded need to be in the BED format, like files
‘wgEncodeDacMapabilityConsensusExcludable.bed’ and ‘wgEncodeDukeMapabilityRegionsExcludable.
bed’ that were downloaded from ENCODE’s download section of the UCSC Genome Browser
for hg19.
> # calculate overlap with ENCODE blacklisted regions

> bins$blacklist <- calculateBlacklist(bins,

+ bedFiles=c("/path/to/wgEncodeDacMapabilityConsensusExcludable.bed",

+ "/path/to/wgEncodeDukeMapabilityRegionsExcludable.bed"))

For any list of regions, the percentage of bin overlap can be calculated by using the following
command.
> # generic calculation of overlap with blacklisted regions

> bins$blacklist <- calculateBlacklistByRegions(bins,

+ cbind(chromosome, bpStart, bpEnd))

To calculate median residuals of the LOESS fit from a control dataset, the following command
can be used. For the pre-generated annotations, the control set used is 38 samples from the
1000 Genomes Project. See the next section on how those were downloaded.
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> # load data for the 1000 Genomes (or similar) data set, and generate residuals

> ctrl <- binReadCounts(bins, path="/path/to/control-set/bam/files")

> ctrl <- applyFilters(ctrl, residual=FALSE, blacklist=FALSE,

+ mappability=FALSE, bases=FALSE)

> bins$residual <- iterateResiduals(ctrl)

The column use specifies whether each bin should be used for subsequent analyses by default.
The command applyFilters() will change its value accordingly. By default, bins in the sex
chromosomes, or with only uncharacterized nucleotides (N’s) in their reference sequence, are
flagged for exclusion.
> # by default, use all autosomal bins that have a reference sequence

> # (i.e. not only N's)

> bins$use <- bins$chromosome %in% as.character(1:22) & bins$bases > 0

Optionally, the resulting data.frame can be converted to an AnnotateDataFrame and meta-
data added for the columns.
> # convert to AnnotatedDataFrame and add metadata

> bins <- AnnotatedDataFrame(bins,

+ varMetadata=data.frame(labelDescription=c(

+ "Chromosome name",

+ "Base pair start position",

+ "Base pair end position",

+ "Percentage of non-N nucleotides (of full bin size)",

+ "Percentage of C and G nucleotides (of non-N nucleotides)",

+ "Average mappability of 50mers with a maximum of 2 mismatches",

+ "Percent overlap with ENCODE blacklisted regions",

+ "Median loess residual from 1000 Genomes (50mers)",

+ "Whether the bin should be used in subsequent analysis steps"),

+ row.names=colnames(bins)))

For the pre-generated annotations, some additional descriptive metadata has also been added.
> attr(bins, "QDNAseq") <- list(

+ author="Ilari Scheinin",

+ date=Sys.time(),

+ organism="Hsapiens",

+ build="hg19",

+ version=packageVersion("QDNAseq"),

+ md5=digest::digest(bins@data),

+ sessionInfo=sessionInfo())

13
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5 Downloading 1000 Genomes samples
This section defines the criteria that were used to download samples from the 1000 Genomes
Project for the pre-generated bin annotations.
> # download table of samples

> urlroot <- "ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp"

> g1k <- read.table(file.path(urlroot, "sequence.index"),

+ header=TRUE, sep="\t", as.is=TRUE, fill=TRUE)

> # keep cases that are Illumina, low coverage, single-read, and not withdrawn

> g1k <- g1k[g1k$INSTRUMENT_PLATFORM == "ILLUMINA", ]

> g1k <- g1k[g1k$ANALYSIS_GROUP == "low coverage", ]

> g1k <- g1k[g1k$LIBRARY_LAYOUT == "SINGLE", ]

> g1k <- g1k[g1k$WITHDRAWN == 0, ]

> # keep cases with read lengths of at least 50 bp

> g1k <- g1k[!g1k$BASE_COUNT %in% c("not available", ""), ]

> g1k$BASE_COUNT <- as.numeric(g1k$BASE_COUNT)

> g1k$READ_COUNT <- as.integer(g1k$READ_COUNT)

> g1k$readLength <- g1k$BASE_COUNT / g1k$READ_COUNT

> g1k <- g1k[g1k$readLength > 50, ]

> # keep samples with a minimum of one million reads

> readCountPerSample <- aggregate(g1k$READ_COUNT,

+ by=list(sample=g1k$SAMPLE_NAME), FUN=sum)

> g1k <- g1k[g1k$SAMPLE_NAME %in%

+ readCountPerSample$sample[readCountPerSample$x >= 1e6], ]

> g1k$fileName <- basename(g1k$FASTQ_FILE)

> # download FASTQ files

> for (i in rownames(g1k)) {

+ sourceFile <- file.path(urlroot, g1k[i, "FASTQ_FILE"])

+ destFile <- g1k[i, "fileName"]

+ if (!file.exists(destFile))

+ download.file(sourceFile, destFile, mode="wb")

+ }

Next, reads were trimmed to 50 bp, and the multiple files for each sample (as defined
by column SAMPLE_NAME) were combined by concatenating the FASTQ files together.
Finally, they were aligned with BWA allowing two mismatches and end-trimming of bases
with qualities below 40 (options -n 2 -q 40).
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6 Session information
The version number of R and packages loaded for generating the vignette were:

• R version 4.2.0 RC (2022-04-19 r82224), x86_64-apple-darwin17.0
• Locale: C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
• Running under: macOS Mojave 10.14.6

• Random number generation:
• RNG: L'Ecuyer-CMRG
• Normal: Inversion
• Sample: Rejection
• Matrix products: default
• BLAS:

/Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib

• LAPACK:
/Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils
• Other packages: QDNAseq 1.32.0
• Loaded via a namespace (and not attached): Biobase 2.56.0, BiocGenerics 0.42.0,

BiocManager 1.30.17, BiocParallel 1.30.0, BiocStyle 2.24.0, Biostrings 2.64.0,
CGHbase 1.56.0, CGHcall 2.58.0, DNAcopy 1.70.0, GenomeInfoDb 1.32.0,
GenomeInfoDbData 1.2.8, GenomicRanges 1.48.0, IRanges 2.30.0,
R.methodsS3 1.8.1, R.oo 1.24.0, R.utils 2.11.0, RCurl 1.98-1.6, Rsamtools 2.12.0,
S4Vectors 0.34.0, XVector 0.36.0, bitops 1.0-7, cli 3.3.0, codetools 0.2-18,
compiler 4.2.0, crayon 1.5.1, digest 0.6.29, evaluate 0.15, fastmap 1.1.0,
future 1.25.0, future.apply 1.9.0, globals 0.14.0, htmltools 0.5.2, impute 1.70.0,
knitr 1.38, limma 3.52.0, listenv 0.8.0, marray 1.74.0, matrixStats 0.62.0,
parallel 4.2.0, parallelly 1.31.1, rlang 1.0.2, rmarkdown 2.14, stats4 4.2.0, tools 4.2.0,
xfun 0.30, yaml 2.3.5, zlibbioc 1.42.0
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