
How To Use GOstats
Testing Gene Lists for GO Term Association

S. Falcon and R. Gentleman

April 26, 2022

1 Introduction

TheGOstats package has extensive facilities for testing the association of Gene Ontology (GO) The
Gene Ontology Consortium (2000) terms to genes in a gene list. You can test for both over and under
representation of GO terms using either the standard Hypergeometric test or a conditional Hypergeo-
metric test that uses the relationships among the GO terms for conditioning (similar to that presented
in Alexa et al. (2006)).

In this vignette we describe the preprocessing required to construct inputs for the main testing
function, hyperGTest, the algorithms used, and the structure of the return value. We use a microarray
data set (Chiaretti et al., 2004) from a clinical trial in acute lymphoblastic leukemia (ALL) to work an
example analysis. In the ALL data, we focus on the patients with B-cell derived ALL, and in particular
on comparing the group with ALL1/AF4 to those with no observed cytogenetic abnormalities.

To get started, load the packages needed for this analysis:

> library("ALL")
> library("hgu95av2.db")
> library("GO.db")
> library("annotate")
> library("genefilter")
> library("GOstats")
> library("RColorBrewer")
> library("xtable")
> library("Rgraphviz")

2 Preprocessing and Inputs

To perform an analysis using the Hypergeometric-based tests, one needs to define a gene universe
(usually conceptualized as the number of balls in an urn) and a list of selected genes from the universe.
While it is clear that the selected gene list determines to a large degree the results of the analysis, the
fact that the universe has a large effect on the conclusions is, perhaps, less obvious.

For microarray data, one can use the unique gene identifiers assayed in the experiment as the gene
universe. However, the presence of a gene on the array does not necessarily mean much. Some arrays,
such as those from Affymetrix, attempt to include probes for as much of the genome as possible.

1



Since not all genes will be expressed under all conditions (a widely held belief is that about 40% of the
genome is expressed in any tissue), it may be sensible to reduce the universe to those that are expressed.

To identify the set of expressed genes from a microarray experiment, we propose that a non-specific
filter be applied and that the genes that pass the filter be used to form the universe for any subsequent
functional analyses. Below, we outline the non-specific filtering procedure used for the example anal-
ysis.

Once a gene universe has been established, one can apply any number of methods to select genes.
For the example analysis we use a simple t-test to identify differentially expressed genes among the
two subgroups in the sample population.

It is worth noting that the effect of increasing the universe size with genes that are irrelevant to the
questions at hand, in general, has the effect of making the resultant p-values look more significant. For
example, in a universe of 1000 genes where 400 have been selected, suppose that a GO term has 40
gene annotations from the universe of 1000. If 10 of the genes in the selected gene list are among the
40 genes annotated at this category, then the Hypergeometric p-value is 0.99. However, if the gene
universe contained 5000 genes, the p-value would drop to 0.001.

2.1 Non-specific filtering

First we load the ALL data object and extract the subset of the data we wish to analyze: subjects with
either no cytogenetic abnormality (“NEG”) or those with ”ALL1/AF4”.

> data(ALL, package="ALL")
> ## For this data we can have ALL1/AF4 or BCR/ABL
> subsetType <- "ALL1/AF4"
> ## Subset of interest: 37BRC/ABL + 42NEG = 79 samples
> Bcell <- grep("^B", as.character(ALL$BT))
> bcrAblOrNegIdx <- which(as.character(ALL$mol) %in% c("NEG", subsetType))
> bcrAblOrNeg <- ALL[, intersect(Bcell, bcrAblOrNegIdx)]
> bcrAblOrNeg$mol.biol = factor(bcrAblOrNeg$mol.biol)

We begin our non-specific filtering by removing probe sets that have no Entrez Gene identifier in
our annotation data.

> ## Remove genes that have no entrezGene id
> entrezIds <- mget(featureNames(bcrAblOrNeg), envir=hgu95av2ENTREZID)
> haveEntrezId <- names(entrezIds)[sapply(entrezIds, function(x) !is.na(x))]
> numNoEntrezId <- length(featureNames(bcrAblOrNeg)) - length(haveEntrezId)
> bcrAblOrNeg <- bcrAblOrNeg[haveEntrezId, ]

Similarly, we remove probe sets for which we have no GO annotation.

> ## Remove genes with no GO mapping
> haveGo <- sapply(mget(featureNames(bcrAblOrNeg), hgu95av2GO),
+ function(x) {
+ if (length(x) == 1 && is.na(x))
+ FALSE

2



+ else TRUE
+ })
> numNoGO <- sum(!haveGo)
> bcrAblOrNeg <- bcrAblOrNeg[haveGo, ]

Now use the IQR of each probe set across samples to remove those probe sets that have little
variation across samples. Also, since there is an imbalance of men and women by group, we remove
probe sets that measure genes on the Y chromosome.

> ## Non-specific filtering based on IQR
> iqrCutoff <- 0.5
> bcrAblOrNegIqr <- apply(exprs(bcrAblOrNeg), 1, IQR)
> selected <- bcrAblOrNegIqr > iqrCutoff
> ## Drop those that are on the Y chromosome
> ## because there is an imbalance of men and women by group
> chrN <- mget(featureNames(bcrAblOrNeg), envir=hgu95av2CHR)
> onY <- sapply(chrN, function(x) any(x=="Y"))
> onY[is.na(onY)] <- FALSE
> selected <- selected & !onY
> nsFiltered <- bcrAblOrNeg[selected, ]

Here we ensure that each probe set maps to exactly one Entrez Gene ID. If multiple probes are
found to map to the same Entrez Gene ID, we select the probe with largest IQR (from the computation
above).

> numNsWithDups <- length(featureNames(nsFiltered))
> nsFilteredIqr <- bcrAblOrNegIqr[selected]
> uniqGenes <- findLargest(featureNames(nsFiltered), nsFilteredIqr,
+ "hgu95av2")
> nsFiltered <- nsFiltered[uniqGenes, ]
> numSelected <- length(featureNames(nsFiltered))
> ##set up some colors
> BCRcols = ifelse(nsFiltered$mol == subsetType, "goldenrod", "skyblue")
> cols = brewer.pal(10, "RdBu")

Finally, we can define the gene universe we will use for the Hypergeometric tests.

> ## Define gene universe based on results of non-specific filtering
> affyUniverse <- featureNames(nsFiltered)
> entrezUniverse <- unlist(mget(affyUniverse, hgu95av2ENTREZID))
> if (any(duplicated(entrezUniverse)))
+ stop("error in gene universe: can't have duplicate Entrez Gene Ids")
> ## Also define an alternate universe based on the entire chip
> chipAffyUniverse <- featureNames(bcrAblOrNeg)
> chipEntrezUniverse <- mget(chipAffyUniverse, hgu95av2ENTREZID)
> chipEntrezUniverse <- unique(unlist(chipEntrezUniverse))

3



Summary of non-specific filtering: Our non-specific filtering procedure removed probes missing
either Entrez Gene identifies or mappings to GO terms. Because of an imbalance of men and women
by group, probes measuring genes on the Y chromosome were dropped. The inter-quartile range was
used with a cutoff of 0.5 to select probes with sufficient variability across samples to be informative;
probes with little variability across all samples are inherently uninteresting. Finally, the set of remaining
probes was refined by ensuring that each probe maps to exactly one Entrez Gene identifier. For those
probes mapping to the same Entrez Gene ID, the probe with largest IQR was selected.

Producing a set of Entrez Gene identifiers that map to a unique set of probes at the non-specific
filtering stage is important because genes are mapped to GO categories using Entrez Gene IDs and we
want to avoid double counting any GO categories. In all, the filtering left 3399 genes.

2.2 Gene selection via t-test

We apply a standard t-test to identify a set of genes with differential expression between the ALL1/AF4
and NEG groups.

> ttestCutoff <- 0.05
> ttests = rowttests(nsFiltered, "mol.biol")
> smPV = ttests$p.value < ttestCutoff
> pvalFiltered <- nsFiltered[smPV, ]
> selectedEntrezIds <- unlist(mget(featureNames(pvalFiltered),
+ hgu95av2ENTREZID))

There are 667 genes with p-values less than 0.05. We do not make use of any p-value correction
methods since we are interested in a relatively long gene list.

A detail often omitted from GO association analyses is the fact that the t-test, and most similar
statistics, are directional. For a given gene, average expression might be higher in the ALL1/AF4
group than in the NEG group, whereas for a different gene it might be the NEG group that shows the
increased expression. By only looking at the p-values for the test statistics, the directionality is lost. The
danger is that an association with a GO category may be found where the genes are not differentially
expressed in the same direction. One way to tackle this problem is by separating the selected gene list
into two lists according to direction and running two analyses. A more elegant approach is the subject
of further research.

2.3 Inputs

Often one wishes to perform many similar analyses using slightly different sets of parameters and to
facilitate this pattern of usage the main interface to the Hypergeometric tests, hyperGTest, takes
a single parameter object as its argument. This argument is an instance of class GOHyperGParams.
There are also parameter classes KEGGHyperGParams and PFAMHyperGParams defined in the Cat-
egory package that allow for testing for association with KEGG pathways and PFAM protein domains,
respectively.

Using a parameter class instead of individual arguments makes it easier to organize and execute
a series of related analyses. For example, one can create a list of GOHyperGParams instances and
perform the Hypergeometric test on each using R’s lapply function:

4



resultList <- lapply(lisOfParamObjs, hyperGTest)

In the absence of a parameter class, this could be achieved using mapply, but the result would be
less readable. Because parameter objects can be copied and modified, they tend to reduce duplication
of code. We’ll demonstrate this in the following example.

Below, we create a parameter instance by specifying the gene list, the universe, the name of the
annotation data package, and the GO ontology we wish to interrogate. For the example analysis, we
have stored the vector of Entrez Gene identifiers making up the gene universe in entrezUniverse.
The selected genes are stored in selectedEntrezIds. If you are following along with your own
data and have an ExpressionSet instance resulting from a non-specific filtering procedure, you can
create the entrezUniverse and selectedEntrezIds vectors using code similar to that shown
here:

> entrezUniverse <- unlist(mget(featureNames(yourData),
+ hgu95av2ENTREZID))
> if (any(duplicated(entrezUniverse)))
+ stop("error in gene universe: can't have duplicate Entrez Gene Ids")
> pvalFiltered <- yourData[hasSmallPvalue, ]
> selectedEntrezIds <- unlist(mget(featureNames(pvalFiltered),
+ hgu95av2ENTREZID))

Here is a description of all the arguments needed to construct a GOHyperGParams instance.

geneIds A vector of gene identifiers that defines the selected list of genes. This is often the output
of a test for differential expression among two sample groups. For experiments using Affymetrix
expression arrays, this should be a vector of Entrez Gene IDs. If you are using the YEAST
annotation package, the vector will consist of yeast systematic names.

universeGeneIds A vector of gene identifiers that defines the universe of possible genes. We
recommend using the set of gene IDs that result from non-specific filtering. The identifiers
should be of the same type as the geneIds; for Affymetrix arrays, these will be Entrez Gene
IDs.

annotation A string giving the name of the annotation data package that corresponds to the chip
used in the experiment.

ontology A two-letter string specifying one of the three GO ontologies: BP, CC, or MF. The
hyperGTest function only tests a single GO ontology at one time.

pvalueCutoff A numeric values between zero and one used as a p-value cutoff for p-values gener-
ated by the Hypergeometric test. When the test being performed is non-conditional, this is only
used as a default value for printing and summarizing the results. For a conditional analysis, the
cutoff is used during the computation to determine perform the conditioning: child terms with a
p-value less than pvalueCutoff are conditioned out of the test for their parent term.

conditional A logical value. If TRUE, the test performed uses the conditional algorithm. Other-
wise, a standard Hypergeometric test is performed. When ’conditional(p) == TRUE’, the ’hy-
perGTest’ function uses the structure of the GO graph to estimate for each term whether or not

5



there is evidence beyond that which is provided by the term’s children to call the term in question
statistically overrepresented. The algorithm conditions on all child terms that are themselves sig-
nificant at the specified p-value cutoff. Given a subgraph of one of the three GO ontologies, the
terms with no child categories are tested first. Next the nodes whose children have already been
tested are tested. If any of a given node’s children tested significant, the appropriate conditioning
is performed.

testDirection A string which can be either “over” or “under”. This determines whether the test
performed detects over or under represented GO terms.

> hgCutoff <- 0.001
> params <- new("GOHyperGParams",
+ geneIds=selectedEntrezIds,
+ universeGeneIds=entrezUniverse,
+ annotation="hgu95av2.db",
+ ontology="BP",
+ pvalueCutoff=hgCutoff,
+ conditional=FALSE,
+ testDirection="over")
>

We would also like to perform a conditional test. Instead of having to define a new GOHyperG-
Params instance by hand, we can create a copy and update just the parameter of interest.

> paramsCond <- params
> conditional(paramsCond) <- TRUE

A similar approach would work to create a parameter object for testing a different GO ontology or
to create an object for testing under representation.

3 Outputs and Result Summarization

The hyperGTest function returns an instance of class GOHyperGResult. When the input parameter
object is a KEGGHyperGParams or PFAMHyperGParams instance, the result will instead be a Hyper-
GResult object. Most of the reporting and summarization methods demonstrated here will work the
same, except for those that deal specifically with GO or the GO graph.

As shown below, printing the result at the R prompt provides a brief summary of the test performed
and the number of significant terms found. Depending on how you pre-processed your gene list and
gene universe, The hyperGTest function may have to do even more filtering on both of these for you.
Genes that are not marked with a GO term from the ontology that you specified will have to be dis-
carded, and so you might notice that your gene list and gene universe had shrank somewhat when you
print the results.

> hgOver <- hyperGTest(params)
> hgCondOver <- hyperGTest(paramsCond)
>

6



> hgOver

Gene to GO BP test for over-representation
6888 GO BP ids tested (138 have p < 0.001)
Selected gene set size: 654

Gene universe size: 3312
Annotation package: hgu95av2

> hgCondOver

Gene to GO BP Conditional test for over-representation
6888 GO BP ids tested (68 have p < 0.001)
Selected gene set size: 654

Gene universe size: 3312
Annotation package: hgu95av2

The summary function returns a data.frame summarizing the result. By default, only the results
for terms with a p-value less than the cutoff specified in the parameter instance will be shown. However,
you can set a new cutoff using the pvalue argument. You can also set a minimum number of genes for
each term using the categorySize argument. For GOHyperGResult objects, the summary method
also has a htmlLinks argument. When TRUE, the GO term names are printed as HTML links to the
GO website.

> df <- summary(hgOver)
> names(df) # the columns

[1] "GOBPID" "Pvalue" "OddsRatio" "ExpCount" "Count" "Size"
[7] "Term"

> dim(summary(hgOver, pvalue=0.1))

[1] 1111 7

> dim(summary(hgOver, categorySize=10))

[1] 133 7

Now we demonstrate some of the accessor functions that can be used to extract detail from a result
object. These functions are all detailed in their respective manual pages.

> pvalues(hgOver)[1:3]

GO:0098609 GO:0007154 GO:0007155
4.092451e-11 9.238407e-09 1.088702e-08

> oddsRatios(hgOver)[1:3]

GO:0098609 GO:0007154 GO:0007155
2.610130 1.646070 2.040687

7



> expectedCounts(hgOver)[1:3]

GO:0098609 GO:0007154 GO:0007155
48.57609 265.78623 73.06159

> geneCounts(hgOver)[1:3]

GO:0098609 GO:0007154 GO:0007155
91 330 116

> universeCounts(hgOver)[1:3]

GO:0098609 GO:0007154 GO:0007155
246 1346 370

> length(geneIds(hgOver))

[1] 654

> length(geneIdUniverse(hgOver)[[3]])

[1] 370

> ## GOHyperGResult _only_
> ## (NB: edges go from parent to child)
> goDag(hgOver)

A graphNEL graph with directed edges
Number of Nodes = 6888
Number of Edges = 15455

> geneMappedCount(hgOver)

[1] 654

> universeMappedCount(hgOver)

[1] 3312

> conditional(hgOver)

[1] FALSE

> testDirection(hgOver)

[1] "over"

> testName(hgOver)

[1] "GO" "BP"

>

To make it easy for non-technical users to review the results, the htmlReport function generates
an HTML file that can be viewed in any web browser. The output generated by htmlReport as called
below is output to your current working directory.

> htmlReport(hgCondOver, file="ALL_hgco.html")

8



4 GOstats Capabilities

In the Hypergeometric model, each term is treated as an independent classification. Each gene is
cross-classified according to whether or not it has been selected and whether or not it is annotated, not
necessarily specifically annotated, at a particular term. A Hypergeometric probability is computed to
assess whether the number of selected genes associated with the term is larger than expected.

The hyperGTest function provides an implementation of the commonly applied Hypergeometric
calculation for over or under-representation of GO terms in a specified gene list. This computation
ignores the structure of the GO terms, treating each term as independent from all other terms.

Often an analysis for GO term associations results in the identification of directly related GO terms
with considerable overlap of genes. This is because each GO term inherits all annotations from its more
specific descendants. To alleviate this problem, we have implemented a method which conditions on
all child terms that are themselves significant at a specified p-value cutoff. Given a subgraph of one of
the three GO ontologies, we test the leaves of the graph, that is, those terms with no child terms. Before
testing the terms whose children have already been tested, we remove all genes annotated at significant
children from the parent’s gene list. This continues until all terms have been tested.

> toLatex(sessionInfo())

• R version 4.2.0 RC (2022-04-19 r82224), x86_64-apple-darwin17.0

• Locale: C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

• Running under: macOS Mojave 10.14.6

• Matrix products: default

• BLAS:
/Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib

• LAPACK:
/Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

• Base packages: base, datasets, grDevices, graphics, grid, methods, stats, stats4, utils

• Other packages: ALL 1.37.0, AnnotationDbi 1.58.0, AnnotationForge 1.38.0, Biobase 2.56.0,
BiocGenerics 0.42.0, Category 2.62.0, GO.db 3.15.0, GOstats 2.62.0, GSEABase 1.58.0,
IRanges 2.30.0, Matrix 1.4-1, RColorBrewer 1.1-3, Rgraphviz 2.40.0, S4Vectors 0.34.0,
XML 3.99-0.9, annotate 1.74.0, genefilter 1.78.0, graph 1.74.0, hgu95av2.db 3.13.0,
org.Hs.eg.db 3.15.0, xtable 1.8-4

• Loaded via a namespace (and not attached): Biostrings 2.64.0, DBI 1.1.2,
GenomeInfoDb 1.32.0, GenomeInfoDbData 1.2.8, KEGGREST 1.36.0, R6 2.5.1, RBGL 1.72.0,
RCurl 1.98-1.6, RSQLite 2.2.12, Rcpp 1.0.8.3, XVector 0.36.0, bit 4.0.4, bit64 4.0.5,
bitops 1.0-7, blob 1.2.3, cachem 1.0.6, cli 3.3.0, compiler 4.2.0, crayon 1.5.1, curl 4.3.2,
fastmap 1.1.0, httr 1.4.2, lattice 0.20-45, memoise 2.0.1, pkgconfig 2.0.3, png 0.1-7, rlang 1.0.2,
splines 4.2.0, survival 3.3-1, tools 4.2.0, vctrs 0.4.1, zlibbioc 1.42.0

9



References

Adrian Alexa, Jorg Rahnenfuhrer, and Thomas Lengauer. Improved scoring of functional groups from
gene expression data by decorrelating GO graph structure. Bioinformatics, 22(13):1600–7, 2006.

S. Chiaretti, X Li, R Gentleman, A Vitale, M. Vignetti, F. Mandelli, J. Ritz, , and R. Foa. Gene
expression profile of adult t-cell acute lymphocytic leukemia identifies distinct subsets of patients
with different response to therapy and survival. Blood, 103:2771–2778, 2004.

The Gene Ontology Consortium. Gene Ontology: tool for the unification of biology. Nature Genetics,
25:25–29, 2000.

10


	Introduction
	Preprocessing and Inputs
	Non-specific filtering
	Gene selection via t-test
	Inputs

	Outputs and Result Summarization
	GOstats Capabilities

