
Using profileScoreDist

| Pål O. Westermark | Carité University Medicine Berlin

26 October 2021

Introduction
Position count matrices describe empirical frequencies encountered in short sequence motifs
in biological sequences, usually DNA sequences. They are often used to describe transcription
factor binding sites, and can be employed to predict binding sites in collections of sequences
of interest. For this, typically log-odds scores for matches to a count matrix are computed for
each possible location on the sequences of interest. This can be done with the matchPWM from
the Biostrings package, for example. How to decide whether a score is large? Often, cutoffs
such as 80% of the maximal value are employed. However, it may be desirable with more
precise cutoffs. For example, a cutoff corresponding to a 1% probability for one or more false
hits for a given sequence (false discovery rate). Or a cutoff corresponding to a 90% probability
of discovering a sequence generated by the probabilities inherent in the count matrix, present
in a sequence. Rahmann, Müller, and Vingron (2003) addressed this problem. This package
bring this methodology to R/Bioconductor.
This vignette describes the capabilities of the profileScoreDist package. The package deals
with 3 main tasks, each described in the article by Rahmann et al.

1. The function regularizeMatrix() adds pseudocounts to a position count matrix. It
does so using a particularly careful method. Pseudocounts are drawn to match the
overall nucleotide distribution of the count matrix, but are weighted for each position.
The weights are smaller the more the count distribution for a given position deviates
from the overall nucleotide distribution. In this way, fewer pseudocounts are added for
positions with distinct signals. See the article by Rahmann et al. for more information.

2. The function computeScoreDist() computes probability distributions for the standard
log-odds matrix scores, given nucleotide sequences assumed either to be

• generated by a background distribution operating with a given GC probability
independently for each position. From this, false discovery rates (FDRs) can be
estimated (see task 3).

• generated by the probabilities defined each position in the count matrix. From
this distribution, False negative rates (FNRs) can be estimated (see task 3). The
function also returns the scores associated with the distributions.

3. The function scoreDistCutoffs() estimates score cutoffs for specified FDRs, FNRs,
or a tradeoff between these two, from the distributions and scores calculated in step
2. The tradeoff is specified as the point where c×FDR = FNR, the user specifies the
parameter c.

Step 2 is the computational bottleneck, due to the discrete convolution algorithm involved.
The algorithm was therefore implemented in C++, and should be relatively optimized: the
performance penalty imposed by R will be insignificant.
The user is assumed to have read the article by Rahmann, Müller, and Vingron (2003), in
order to use the package and interpret the results properly.

Using profileScoreDist

A typical workflow would be to first regularize a position count matrix with regularizeMa

trix(). Then, the distributions for the regularized matrix for an ensemble of GC percentages
would be computed with computeScoreDist(). Finally, Score cutoffs for a given FDR (or
FNR, or a tradeoff between the two) would be calculated with scoreDistCutoffs().

Example
The following example code applies these 3 steps to reproduce the results reported by Rahmann
et al. for the INR (or cap) count matrix.
We load the package
library(profileScoreDist)

The cap signal (or INR element) was analyzed by Rahmann et al. For convenience, this public
domain count matrix is included in the package.
data(INR)

INR

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

A 49 0 288 26 77 67 45 50

C 48 303 0 81 95 118 85 96

G 69 0 0 116 0 46 73 56

T 137 0 15 80 131 72 100 101

This matrix is regularized:
inr.reg <- regularizeMatrix(INR)

inr.reg

[,1] [,2] [,3] [,4] [,5] [,6]

A 49.60074 0.02837893 288.03350163 26.45590 77.16267735 89.37062

C 48.82428 303.03893853 0.04596735 81.62553 95.22320845 148.69457

G 69.35925 0.01697079 0.02003420 116.27263 0.09728214 59.37778

T 137.63467 0.02998173 15.03539375 80.48164 131.17186511 95.63407

[,7] [,8]

A 46.55883 53.27450

C 87.13886 100.49292

G 73.93219 57.95817

T 101.64687 104.45944

The weak C signal at position 6 gets more pseudocounts than the strong signal at position 2,
as expected.
Probability distributions will be computed for discrete values of the possible log-odds scores.
The granularity (intervals between discrete scores for which probabilities are computed) must
be specified. Further, probability distributions should in practice be computed for different
GC contents corresponding to the different sequences of interest. Here, we will compute
distributions for 1%, 2%, up to 99% GC content.
granularity <- 0.05

gcgran <- 0.01

gcmin <- 0.01

gcmax <- 0.99

2

Using profileScoreDist

gc fractions to consider

gcs <- seq(gcgran*round(gcmin/gcgran), gcgran*round(gcmax/gcgran), gcgran)

The distributions are then computed for each GC content:
compute probability distributions

distlist <- lapply(gcs, function(x) computeScoreDist(inr.reg, x, granularity))

The profile score distribution is returned as a profileScore object. This object contains the
signal and background distributions, as well as the scores. These are accessible with the
signalDist, backgroundDist, and score methods, respectively.
A plot of the results for GC content 50% neatly reproduces Figure 1 in the article by Rahmann
et al.

distlist[[50]]

##

Profile score distribution

##

Maximum score: 5.25

Minimum score: -26.2

Number of discrete probabilities: 630

plotDist(distlist[[50]])

−25 −20 −15 −10 −5 0 5

0.
00

0
0.

01
5

Score

P
ro

ba
bi

lit
y Background

Signal

Figure 1: Reproduction of Figure 1 in the article by Rahmann et al

With the distributions for the possible scores, we may compute score cutoffs resulting in 5%
FDR, or a 5% FNR. We also get the point where FDR=FNR (c=1):

ab5 <- scoreDistCutoffs(distlist[[50]], 500, 1, c=1, 0.05)

5% FDR

ab5$cutoffa

[1] 4.95

5% FNR

ab5$cutoffb

[1] 1.25

FDR = FNR

ab5$cutoffopt

3

Using profileScoreDist

[1] 4

These cutoffs may then be employed in downstream analysis.

References
Rahmann, Sven, Tobias Müller, and Martin Vingron. 2003. “On the Power of Profiles
for Transcription Factor Binding Site Detection.” Statistical Applications in Genetics and
Molecular Biology 2: Article7. https://doi.org/10.2202/1544-6115.1032.

4

https://doi.org/10.2202/1544-6115.1032

	Introduction
	Example
	References

