
An Introduction to OTUbase

Modified: 8 September 2010. Compiled: October 26, 2021

> library("OTUbase")

The OTUbase package provides an organized structure for OTU (Opera-
tional Taxonomic Unit) data analysis. In addition, it provides a similar struc-
ture for general read-taxonomy classification type data. OTUbase provides some
basic functions to analyze the data as well.

1 A simple workflow

This section walks through a simple workflow using a small example dataset. It
demonstrates the main features of OTUbase. The data used for this example
comes from a dataset described in ”Microbial diversity in the deep sea and the
underexplored ’rare biosphere’” by Sogin et al. (PNAS 2006). The complete
dataset is available through PNAS. A random set of 1000 sequences was taken
from this dataset.

1.1 Sample meta data

Sample metadata is collected along with the sample. This data may include
any number of different pieces of information about the sample. In the example
dataset, the meta data is provided in Table 1 of Sogin et al. This file is named
’sample metadata.txt’. To be easily read by OTUbase, this file is in the form of
an AnnotatedDataFrame.

1.2 Sequence preprocessing

This section describes the preprocessing steps necessary to generate the files
used by OTUbase.

1.2.1 Sequence trimming and filtering

Many OTU data projects will begin with raw sequence reads from a next gen-
eration pyrosequencer. These reads may include primers, barcodes, and/or
adapters that are not part of the actual read. The first step in the analysis
pipeline is to trim the primers and barcodes from the read. A number of tools

1



are able to do this. Commands in Mothur are ’trim.seqs()’ and ’filter.seqs()’.
For this workflow we are assuming that these steps have already been done.
When the barcodes are trimmed off the reads, a separate file is generally cre-
ated that links the read with a sample identification. Mothur creates this file
automatically and gives it a ’.groups’ extension. Each line of this file contains
a read ID and the ID of the sample the read belongs to, separated by a tab.
OTUbase requires this groups file.

1.3 Taxonomic classification and OTU generation

There are two main approaches used to analyse amplicon data. An OTU ap-
proach involves first clustering the sequences together by similarity into OTUs
or Operational Taxonomic Units. These OTUs can then be used in richness
calculations and in comparing two samples. An alternate approach attempts
to classify each sequence into an existing taxonomy. The RDP classifier, for
example, uses a Markov model to sort sequences into genus level classifications.

The data produced by these two approaches is slightly different. The OTU
approach results in a list of sequences belonging to each OTU. The classification
approach results in each sequence having a classification. OTUbase is able to
use either of these types of data.

The data processing involved in OTU generation is described by Pat Schloss
on the Mothur web site. Those interested can find the OTU generation steps
for Sogin’s data at .

The data processing involved in the RDP taxonomic classification is some-
what simpler and less computationally demanding. Details can be found on the
RDP website .

1.3.1 Reducing the dataset to unique sequences

To decrease the computation time involved in both techniques, duplicate se-
quences in the dataset are removed first. These sequences can the be added
back in after the processing is complete. Mothur removes the duplicate se-
quences with the command ’unique.seqs()’ which also automatically generates
a file that keeps track of which sequences have duplicates (called a name file).

In this workflow the duplicate sequences have been removed using Mothur.
The name file is called ’sogin.names’

1.4 Importing files into an OTUbase object

OTUbase is able to automatically import a number of files generated during the
data processing. These files include the sample file (the group file produced by
Mothur), the OTU file (the list file produced by Mothur), and the meta data (in
AnnotatedDataFrame format). In addition OTUbase inherits ShortRead which
allows the user to include a fasta file and a quality file. OTUbase also recognizes
the RDP taxonomic classification files that are in the ’fixed’ format.

> dirPath <- system.file("extdata/Sogin_2006", package="OTUbase")

2

http://www.mothur.org/wiki/Sogin_data_analysis
http://rdp.cme.msu.edu/classifier/classifier.jsp


Usually dirPath will be the directory path containing the files that will be read
by OTUbase.

Because there are two main approaches to data analysis (OTU and Taxo-
nomic classification) we will look at both in parallel. To read in OTU related
data the function readOTUset() is used. Likewise, to read in classification data
the function readTAXset() is used.

> soginOTU <- readOTUset(dirPath=dirPath, level="0.03", samplefile="sogin.groups", fastafile="sogin.fasta", otufile="sogin.unique.filter.fn.list", sampleADF="sample_metadata.txt")

> soginOTU

Class: OTUsetF

Number of Sequences: 1000 reads

Sequence Width: 56..100 cycles

Number of OTUs: 399

Number of Samples: 8

sampleData: T ncol: 6

assignmentData: F

The level is the OTU classification level desired (many clustering levels may
be present in one otufile). The default is ’0.03’. The samplefile connects the
read ID to the sample it belongs to. The fastafile and the associated quality
file are optional. Their inclusion may make the reading of the data significantly
slower. The otufile must be in Mothur format. The sampleADF is the sample
meta data file.

> soginTAX <- readTAXset(dirPath=dirPath, fastafile='sogin.fasta', sampleADF='sample_metadata.txt', taxfile='sogin.unique.fix.tax', namefile='sogin.names', samplefile='sogin.groups')

> soginTAX

Class: TAXsetF

Number of Sequences: 1000 reads

Sequence Width: 56..100 cycles

Number of Samples: 8

sampleData: T ncol: 6

assignmentData: F

The readTAXset function only differs from the readOTUset function slightly.
Notably different is the absence of an otufile and the presence of a taxfile (in
this case the RDP fixed output). Also included in the readTAXset function is
the namefile. This file is the Mothur names file and should be included when
the dataset has been reduced to unique sequences.

1.5 Accessing data in OTUbase objects

OTUbase provides a number of accessor functions that allow the user to easily
access the data contained in the OTUbase object. sread, quality, and id are
inherited from the ShortRead package and allow access to the sequence, the
quality, and the sequence id. In addition, sampleID, sData, and aData provide
access to the sample ID, the sample meta data, and the assignment meta data
respectively (when available).

3



> head(id(soginOTU))

BStringSet object of length 6:

width seq

[1] 14 D4WT9DQ06DVGFR

[2] 14 D4WT9DQ05C6YNI

[3] 14 D4WT9DQ12HNQY2

[4] 14 D4WT9DQ01AP0UQ

[5] 14 D4WT9DQ09FLPTJ

[6] 14 D27LU0R02A82DK

> head(sread(soginOTU))

DNAStringSet object of length 6:

width seq

[1] 60 TGCCTTTGACATCCTCGGAACGGT...GGTGCCTTCGGGAACCGAGAGAC

[2] 71 TGGACTTGACATGTTAGTGTAAAC...AGCTTGCTCAAAGACACTATCAC

[3] 58 CGGGCTTGAAGTGCAAGCGACAAC...GATTTCCGCAAGGACGCTTGTAG

[4] 64 TGGTCTTGACATCCCGGGAATCTC...CCTCATTAGAGGAGCCTGGTGAC

[5] 60 AGGACTTGACATCCAGAGAACTCG...GGTGCCTTCGGGAACTCTGTGAC

[6] 59 ATCCCTTGACATCCTGCGAACTTT...TGGTGCCTTCGGAACGCAGTGAC

> head(sampleID(soginOTU))

[1] "53R" "53R" "115R" "FS312" "112R" "FS312"

> head(sData(soginOTU))

Site Lat_N Long_W Depth Temperature

53R Labrador seawater 58.3 -29.133 1,400 3.5

55R Oxygen minimum 58.3 -29.133 500 7.1

112R Lower deep water 50.4 -25.000 4,121 2.3

115R Oxygen minimum 50.4 -25.000 550 7.0

137 Labrador seawater 60.9 -38.516 1,710 3.0

138 Labrador seawater 60.9 -38.516 710 3.5

Cells

53R 6.4 Ö 104

55R 1.8 Ö 105

112R 3.9 Ö 104

115R 1.5 Ö 105

137 3.3 Ö 104

138 5.2 Ö 104

There are a couple accessors specific to OTUset or TAXset. To access the
OTU IDs stored in OTUset objects, otuID is used. Likewise, to access the
taxonomic classifications stored in TAXset objects, tax is used.

> head(otuID(soginOTU))

4



[1] "otu221" "otu250" "otu116" "otu385" "otu59" "otu95"

> head(tax(soginTAX))

root root_score domain domain_score phylum

1 Root 1.0 Bacteria 0.91 Proteobacteria

2 Root 1.0 Bacteria 0.91 Actinobacteria

3 Root 1.0 Bacteria 0.96 Actinobacteria

4 Root 1.0 Bacteria 1.00 Proteobacteria

5 Root 1.0 Bacteria 1.00 Proteobacteria

6 Root 1.0 Bacteria 1.00 Proteobacteria

phylum_score class class_score

1 0.62 Gammaproteobacteria 0.46

2 0.10 Actinobacteria 0.10

3 0.16 Actinobacteria 0.16

4 1.00 Deltaproteobacteria 1.00

5 0.98 Gammaproteobacteria 0.97

6 1.00 Gammaproteobacteria 1.00

order order_score family

1 Oceanospirillales 0.07 Halomonadaceae

2 Bifidobacteriales 0.04 Bifidobacteriaceae

3 Bifidobacteriales 0.06 Bifidobacteriaceae

4 Desulfobacterales 1.00 Desulfobulbaceae

5 Oceanospirillales 0.54 Oceanospirillaceae

6 Thiotrichales 1.00 Francisellaceae

family_score genus genus_score

1 0.06 Modicisalibacter 0.03

2 0.04 Metascardovia 0.04

3 0.06 Parascardovia 0.02

4 1.00 Desulfocapsa 1.00

5 0.51 Oceanospirillum 0.44

6 0.63 Francisella 0.63

1.6 First data analysis steps

Now that the data is in the OTUbase object, we can now generate tables and
figures that help analyze it. One of the first steps in many analyses is the
generation of an abundance table. There is an OTUbase method that does this.

> abundOTU <- abundance(soginOTU, weighted=F, collab='Site')

> head(abundOTU)

s

o Lower deep water Oxygen minimum Labrador seawater

otu1 0 0 2

otu10 2 0 0

otu100 1 0 0

5



otu101 0 0 0

otu102 0 0 0

otu103 0 0 0

s

o Labrador seawater Labrador seawater Oxygen minimum

otu1 1 1 0

otu10 0 0 0

otu100 0 0 0

otu101 0 0 0

otu102 1 0 0

otu103 0 0 0

s

o Bag City Marker 52

otu1 0 0

otu10 0 0

otu100 1 0

otu101 2 0

otu102 0 0

otu103 1 2

> abundTAX <- abundance(soginTAX, weighted=F, taxCol='genus', collab='Site')

> head(abundTAX)

s

o Lower deep water Oxygen minimum

Abiotrophia 0 0

Acetivibrio 0 0

Acinetobacter 0 0

Actibacter 0 0

Aestuariicola 0 0

Agromonas 0 0

s

o Labrador seawater Labrador seawater

Abiotrophia 0 1

Acetivibrio 0 0

Acinetobacter 0 1

Actibacter 0 0

Aestuariicola 0 0

Agromonas 0 0

s

o Labrador seawater Oxygen minimum Bag City

Abiotrophia 0 0 0

Acetivibrio 0 0 1

Acinetobacter 0 0 0

Actibacter 0 0 1

Aestuariicola 0 0 1

6



Agromonas 1 0 0

s

o Marker 52

Abiotrophia 0

Acetivibrio 0

Acinetobacter 0

Actibacter 3

Aestuariicola 0

Agromonas 4

It should be noted that the abundance method for TAXset objects requires
one extra piece of information, the column of the classification desired. The
abundance can be generated from any of them (genus, family, etc). Other op-
tions are also available in the abundance methods. For example, the abundance
can be generated based on any column in the assignment data. For more on the
abundance method please see the help documentation.

One of the strengths of OTUbase is that by being in the R environment it
can take advantage of a number of available data analysis packages. One of these
packages is vegan. vegan is an R package that provides many tools to analyze
ecological type data. It includes diversity estimation and cluster analysis.

Using the functions provided by vegan and the abundance table previously
generated:

> estrichOTU <- apply(abundOTU, 2, estimateR)

> estrichOTU

s

Lower deep water Oxygen minimum

S.obs 57.000000 44.000000

S.chao1 192.125000 176.000000

se.chao1 60.975679 74.630319

S.ACE 283.067602 154.791782

se.ACE 7.841178 8.026768

s

Labrador seawater Labrador seawater

S.obs 49.000000 48.00000

S.chao1 254.000000 159.42857

se.chao1 110.794024 53.88188

S.ACE 230.006548 320.32000

se.ACE 5.532269 11.21429

s

Labrador seawater Oxygen minimum Bag City

S.obs 37.000000 29.000000 110.00000

S.chao1 145.750000 191.500000 384.61538

se.chao1 62.860021 104.644533 96.01630

S.ACE 147.625000 182.685606 579.22305

se.ACE 3.619804 2.553564 16.82521

7



s

Marker 52

S.obs 130.00000

S.chao1 308.00000

se.chao1 54.70480

S.ACE 392.65701

se.ACE 12.75554

> estrichTAX <- apply(abundTAX, 2, estimateR)

> estrichTAX

s

Lower deep water Oxygen minimum

S.obs 48.00000 34.000000

S.chao1 118.00000 64.000000

se.chao1 33.36542 17.882622

S.ACE 202.70270 77.238156

se.ACE 10.26136 5.658764

s

Labrador seawater Labrador seawater

S.obs 41.00000 35.000000

S.chao1 173.00000 122.750000

se.chao1 74.62941 52.070518

S.ACE 167.54231 132.763430

se.ACE 4.56640 5.203785

s

Labrador seawater Oxygen minimum Bag City

S.obs 29.000000 22.000000 91.000000

S.chao1 67.000000 107.500000 253.750000

se.chao1 23.913688 59.310721 62.402381

S.ACE 98.141354 194.379259 290.053022

se.ACE 7.521336 9.549327 9.670711

s

Marker 52

S.obs 88.000000

S.chao1 157.789474

se.chao1 26.353821

S.ACE 190.277732

se.ACE 8.276204

The vegan function vegedist and hclust have been combined into one OTUbase
wrapper for convenience. This allows the user to quickly cluster the samples.
This clustering can be done using a number of different distance and clustering
methods.

> clusterSamples(soginOTU, distmethod='jaccard', clustermethod='complete', collab='Site')

8



Call:

hclust(d = d, method = clustermethod)

Cluster method : complete

Distance : jaccard

Number of objects: 8

> clusterSamples(soginTAX, taxCol='genus', distmethod='jaccard', clustermethod='complete', collab='Site')

Call:

hclust(d = d, method = clustermethod)

Cluster method : complete

Distance : jaccard

Number of objects: 8

The user is encouraged to explore many functions available through vegan
and other R packages. Commonly useful ones can then be brought into OTUbase
to make their use more efficient.

2 Advanced features

A number of other functions are available. While the implementation is incom-
plete, subOTUset() is a function that allows the user to extract any OTUs or
samples from the dataset to be analyzed separately. This makes it possible to
remove one or more OTUs or samples from the analysis. Eventually this will be
implemented using the more traditional ’[’ notation.

> soginReduced <- subOTUset(soginOTU, samples=c("137", "138", "53R", "55R"))

> soginReduced

Class: OTUsetF

Number of Sequences: 222 reads

Sequence Width: 56..100 cycles

Number of OTUs: 127

Number of Samples: 4

sampleData: T ncol: 6

assignmentData: F

3 The structure of an OTUbase object

OTUbase objects include a number of possible slots. Inherited from ShortRead
are sread, id, and quality. These slots, along with otuID, tax, and sampleID
are all of identical length and order. For example, the first row in the id slot is
connected to the first rows in the sread, quality, otuID, and sampleID slots. In
other words, the first id represents the first sequence that has a quality described

9



by the first row of the quality slot; it is a member of the otu listed in the otuID
slot and a member of the sample listed in the first row of the sample slot.

In addition there are two AnnotatedDataFrames. The sampleData data
frame is linked to the sampleID slot through the sample IDs. The assignment-
Data data frame is linked to the otuID slot through the OTU IDs.

There are slight differences in the OTUset objects and the TAXset objects.
In the TAXset objects, the assignmentData data frame is not explicitly linked
to the tax slot.

4 Conclusions and directions for development

OTUbase provides an organization and structure for OTU data and taxonomic
classification data produced during the analysis of amplicon sequences. This
allows the user to quickly and easily analyze amplicon data.

While the structure and a few basic functions are available withing OTUbase,
there are a large number of possible improvements and extensions that have yet
to be developed. OTUbase provides a structure for the data but functions for
downstream analysis are not yet included. Future development will include a
better integration of OTUbase with other available R packages such as vegan
and the inclusion of a wider variety of functions for data analysis.

5 References

Sogin, M., H. Morrison, J. Huber, D. Welch, S. Huse, P. Neal, J. Arrieta, and
G. Herndl. 2006. Microbial diversity in the deep sea and the underexplored
”rare biosphere.” Proc. Natl. Acad. Sci. U. S. A. 103:12115-12120

Schloss PD, et al. (2009) Introducing mothur: Open-source, platform-
independent, community-supported software for describing and comparing mi-
crobial communities. Appl Environ Microbiol 75:7537-7541

Wang, Q, G. M. Garrity, J. M. Tiedje, and J. R. Cole. 2007. Näıve Bayesian
Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial
Taxonomy. Appl Environ Microbiol. 73(16):5261-7

10



> toLatex(sessionInfo())

� R version 4.1.1 (2021-08-10), x86_64-pc-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Running under: Ubuntu 20.04.3 LTS

� Matrix products: default

� BLAS: /home/biocbuild/bbs-3.14-bioc/R/lib/libRblas.so

� LAPACK: /home/biocbuild/bbs-3.14-bioc/R/lib/libRlapack.so

� Base packages: base, datasets, grDevices, graphics, methods, stats,
stats4, utils

� Other packages: Biobase 2.54.0, BiocGenerics 0.40.0, BiocParallel 1.28.0,
Biostrings 2.62.0, GenomeInfoDb 1.30.0, GenomicAlignments 1.30.0,
GenomicRanges 1.46.0, IRanges 2.28.0, MatrixGenerics 1.6.0,
OTUbase 1.44.0, Rsamtools 2.10.0, S4Vectors 0.32.0, ShortRead 1.52.0,
SummarizedExperiment 1.24.0, XVector 0.34.0, lattice 0.20-45,
matrixStats 0.61.0, permute 0.9-5, vegan 2.5-7

� Loaded via a namespace (and not attached): DelayedArray 0.20.0,
GenomeInfoDbData 1.2.7, MASS 7.3-54, Matrix 1.3-4,
RColorBrewer 1.1-2, RCurl 1.98-1.5, bitops 1.0-7, cluster 2.1.2,
compiler 4.1.1, crayon 1.4.1, grid 4.1.1, hwriter 1.3.2, jpeg 0.1-9,
latticeExtra 0.6-29, mgcv 1.8-38, nlme 3.1-153, parallel 4.1.1, png 0.1-7,
rstudioapi 0.13, splines 4.1.1, tools 4.1.1, zlibbioc 1.40.0

Table 1: The output of sessionInfo on the build system after running this
vignette.

11


	A simple workflow
	Sample meta data
	Sequence preprocessing
	Sequence trimming and filtering

	Taxonomic classification and OTU generation
	Reducing the dataset to unique sequences

	Importing files into an OTUbase object
	Accessing data in OTUbase objects
	First data analysis steps

	Advanced features
	The structure of an OTUbase object
	Conclusions and directions for development
	References

