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1 Introduction

Figure 1: The art of multiple se-
quence alignment.

This document is intended to illustrate the art of multiple sequence
alignment in R using DECIPHER. Even though its beauty is often con-
cealed, multiple sequence alignment is a form of art in more ways than
one. Take a look at Figure 1 for an illustration of what is happening
behind the scenes during multiple sequence alignment. The practice of
sequence alignment is one that requires a degree of skill, and it is that
art which this vignette intends to convey. It is simply not enough to
“plug” sequences into a multiple sequence aligner and blindly trust the
result. An appreciation for the art as well a careful consideration of the
results are required.

What really is multiple sequence alignment, and is there a single cor-
rect alignment? Generally speaking, alignment seeks to perform the act
of taking multiple divergent biological sequences of the same “type” and
fitting them to a form that reflects some shared quality. That quality
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may be how they look structurally, how they evolved from a common ancestor, or optimization of a math-
ematical construct. As with most multiple sequence aligners, DECIPHER is “trained” to maximize scoring
metrics in order to accomplish a combination of both structural alignment and evolutionary alignment. The
idea is to give the alignment a biological basis even though the molecules that the sequences represent will
never meet each other and align under any natural circumstance.

The workhorse for sequence alignment in DECIPHER is AlignProfiles, which takes in two aligned sets
of DNA, RNA, or amino acid (AA) sequences and returns a merged alignment. For more than two sequences,
the function AlignSeqs can be used to perform multiple sequence alignment in a progressive/iterative manner
on sequences of the same kind. In this case, multiple alignment works by aligning two sequences, merging
with another sequence, merging with another set of sequences, and so-forth until all the sequences are
aligned. This process is iterated to further refine the alignment. There are other functions that extend use
of AlignSeqs for different purposes:

1. The first is AlignTranslation, which will align DNA/RNA sequences based on their amino acid
translation and then reverse translate them back to DNA/RNA. Aligning protein sequences is more
accurate since amino acids are more conserved than their corresponding coding sequence.

2. The second function, AlignDB, enables generating alignments from many more sequences than are
possible to fit in memory. Its main purpose is to merge sub-alignments where each alignment alone is
composed of many thousands of sequences. This is accomplished by storing all of the aligned sequences
in a database and only working with “profiles” representing the alignment.

3. The function AdjustAlignment takes in an existing alignment and shifts groups of gaps right and left
to achieve a better alignment. Its purpose is to eliminate artifacts that accumulate during progressive
alignment, and to replace the tedious & subjective process of manually correcting an alignment.

4. Finally, StaggerAlignment will create a“staggered”alignment by separating potentially non-homologous
positions into separate columns. This function will help minimize false homologies when building a
phylogenetic tree, although the resulting alignment is not as aesthetically pleasing.

5. The functions FindSynteny and AlignSynteny can be used in combination to perform pairwise align-
ment of homologous regions from multiple genomes or non-collinear sequences. These functions interact
with a sequence database containing the genomes, which can each be comprised of multiple sequences
(i.e., scaffolds, contigs, or chromosomes).

2 Alignment Speed

Figure 2: The possible alignment
space.

The dynamic programming method used by DECIPHER for aligning two
profiles requires order N*M time and memory space where N and M are
the width of the pattern and subject. Since multiple sequence alignment
is an inherently challenging problem for long sequences, heuristics are
employed to maximize speed while maintaining reasonable accuracy. In
this regard, the two control parameters available to the user are restrict
and anchor . The objective of the restrict parameter is to convert the
problem from one taking quadratic time to linear time. The goal of the
anchor parameter is do the equivalent for memory space so that very
long sequences can be efficiently aligned.

The orange diagonal line in Figure 2 shows the optimal path for
aligning two sequence profiles. The blue segments to the left and right of
the optimal path give the constraint boundaries, which the user controls
with the restrict parameter. Areas above and below the upper and lower
(respectively) constraint boundaries are neglected from further consider-
ation. A higher (less negative) value of restrict[1] will further constrain
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the possible “alignment space,” which represents all possible alignments between two sequences. Since the
optimal path is not known till completion of the matrix, it is risky to overly constrain the matrix. This
is particularly true in situations where the sequences are not mostly overlapping because the optimal path
will likely not be diagonal, causing the path to cross a constraint boundary. In the non-overlapping case
restrict[1] could be set below the default to ensure that the entire “alignment space” is available.

Neglecting the “corners” of the alignment space effectively converts a quadratic time problem into a
near-linear time problem. We can see this by comparing AlignProfiles with and without restricting the
matrix at different sequence lengths. To extend our comparison we can include the Biostrings function
pairwiseAlignment. In this simulation, two sequences with 90% identity are aligned and the elapsed
time is recorded for a variety of sequence lengths. As can be seen in Figure 3 below, without restriction
AlignProfiles takes quadratic time in the same manner as pairwiseAlignment. However, with restriction
AlignProfiles takes linear time, requiring far less than a microsecond per nucleotide.
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Figure 3: Global Pairwise Sequence Alignment Timings.

The parameter anchor controls the fraction of sequences that must share a common region to anchor the
alignment space (Fig. 2). AlignProfiles will search for shared anchor points between the two sequence
sets being aligned, and if the fraction shared is above anchor (70% by default) then that position is fixed in
the “alignment space.” Anchors are 15-mer (for DNA/RNA) or 7-mer (for AA) exact matches between two
sequences that must occur in the same order in both sequence profiles. Anchoring generally does not affect
accuracy, but can greatly diminish the amount of memory required for alignment. In Fig. 2, the largest
white box represents the maximal memory space required with anchoring, while the entire alignment space
(grey plus white areas) would be required without anchoring. The longest pair of sequence profiles that can
be aligned without anchoring is about 46 thousand nucleotides, as shown by the end of the red dotted line
in Figure 3. If regularly spaced anchor points are available then the maximum sequence length is greatly
extended. In the vast majority of cases anchoring gives the same result as without anchoring, but with less
time and memory space required.
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3 Alignment Accuracy

Figure 4 compares the performance of DECIPHER to other sequence alignment software on structural amino
acid benchmarks [2]. All benchmarks have flaws, some of which can easily be found by eye in highly similar
sequence sets, and therefore benchmark results should treated with care [4]. As can be seen in the figure, the
performance of DECIPHER is similar to that of other popular alignment software such as MAFFT [5] and
MUSCLE [3] for smaller benchmarks. However, DECIPHER outperforms other programs on large sequence
sets (Fig. 5), and its relative advantage continues increase as more sequences are aligned [13]. Importantly,
this is because DECIPHER exhibits far less fall-off in accuracy as additional sequences are added.

The accuracy of protein alignment begins to drop-off when sequences in the reference alignment have less
than 40% average pairwise identity (Fig. 4). A similar decline in performance is observed with DNA/RNA
sequences, but the drop-off occurs much earlier at around 60% sequence identity. Therefore, it is gener-
ally preferable to align coding sequences by their translation using AlignTranslation. This function first
translates the input DNA/RNA sequences, then aligns the translation, and finally (conceptually) reverse
translates the amino acid sequences to obtain aligned DNA/RNA sequences. Nevertheless, even protein
alignment cannot be considered reliable when the sequences being aligned differ by more than 70%.
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v2.5
Changes:

a) switched to PFASUM50 matrix and re-optimized parameters
b) exaggerated stop penalties

c) made the traceback jump gaps in a single step
d) record the last gap in pattern and subject and allow restarting from it

e) reoptimized structure matrix and gapPower:  went from -1 to -0.5
f) switched from recursion to iteration (with stack) in AlignSeqs and IdClusters

g) changed default in AlignSeqs to iterations=2

What does this do (matches letters above)?:
a) slightly better performance overall on AA alignment (bali=0.5%?; hm=0.3%)

b) stops (*) align better at the end
c) makes traceback negligibly more efficient, but enables (d)

d) slight improvement in score by excluding accessing more tracebacks; very slightly slower
e) very small improvement in score, lowers the chance of super-long gaps

f) keeps deep guideTrees from running into the stack limit
g) slightly improves performance
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Figure 4: Performance comparison between different programs for multiple alignment [3,5,10,13] using amino
acid structural benchmarks. The x-axis shows percent identity between sequences in each reference alignment.
The y-axis gives the percentage of correctly aligned residues in the estimated alignment according to the
reference alignment (i.e., the Q-score). The upper-left plot is for the PREFAB (version 4) benchmark [3].
The upper-right plot shows the results of the BALIBASE (version 3) benchmark [11]. The lower-left plot is
for SABMARK (version 1.65) [12]. The lower-right plot gives the results on the OXBENCH alignments [8].
A comparison of these benchmarks can be found in reference [2].
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Figure 5: DECIPHER offers improved accuracy over other alignment programs ( [3,5–7,9,13]) on large sets of
input sequences. Average accuracy on the Homstrad-mod benchmark [13] is shown for an increasing number
of input sequences, ranging from 2 to 4,000. All programs display a peak in accuracy at fewer than 500
sequences, but DECIPHER exhibits the least drop-off in accuracy as additional input sequences are added.
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Figure 6: Flow-chart depicting how to choose the best combination of alignment functions and parameters
for the most common multiple sequence alignment problems.

4 Recommendations for optimal performance

DECIPHER has a number of alignment functions and associated parameters. The flow-chart in Figure 6 is
intended to simplify this process for the most frequently encountered multiple sequence alignment tasks. For
more information on any of these suggestions, refer to the examples in the following sections of this vignette.
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5 Single Gene Alignment

5.1 Example: Protein coding sequences

For this example we are going to align the rplB coding sequence from many different Bacteria. The rplB
gene encodes one of the primary ribosomal RNA binding proteins: the 50S ribosomal protein L2. We begin
by loading the library and importing the sequences from a FASTA file. Be sure to change the path names
to those on your system by replacing all of the text inside quotes labeled “<<path to ...>>” with the actual
path on your system.

> library(DECIPHER)

> # specify the path to your sequence file:

> fas <- "<<path to FASTA file>>"

> # OR find the example sequence file used in this tutorial:

> fas <- system.file("extdata", "50S_ribosomal_protein_L2.fas", package="DECIPHER")

> dna <- readDNAStringSet(fas)

> dna # the unaligned sequences

DNAStringSet object of length 317:

width seq names

[1] 819 ATGGCTTTAAAAAATTTTAATC...ATTTATTGTAAAAAAAAGAAAA Rickettsia prowaz...

[2] 822 ATGGGAATACGTAAACTCAAGC...CATCATTGAGAGAAGGAAAAAG Porphyromonas gin...

[3] 822 ATGGGAATACGTAAACTCAAGC...CATCATTGAGAGAAGGAAAAAG Porphyromonas gin...

[4] 822 ATGGGAATACGTAAACTCAAGC...CATCATTGAGAGAAGGAAAAAG Porphyromonas gin...

[5] 819 ATGGCTATCGTTAAATGTAAGC...CATCGTACGTCGTCGTGGTAAA Pasteurella multo...

... ... ...

[313] 819 ATGGCAATTGTTAAATGTAAAC...TATCGTACGTCGCCGTACTAAA Pectobacterium at...

[314] 822 ATGCCTATTCAAAAATGCAAAC...TATTCGCGATCGTCGCGTCAAG Acinetobacter sp....

[315] 864 ATGGGCATTCGCGTTTACCGAC...GGGTCGCGGTGGTCGTCAGTCT Thermosynechococc...

[316] 831 ATGGCACTGAAGACATTCAATC...AAGCCGCCACAAGCGGAAGAAG Bradyrhizobium ja...

[317] 840 ATGGGCATTCGCAAATATCGAC...CAAGACGGCTTCCGGGCGAGGT Gloeobacter viola...

We can align the DNA by either aligning the coding sequences directly, or their translations (amino
acid sequences). Both methods result in an aligned set of DNA sequences, unless the argument type is
"AAStringSet" in AlignTranslation. A quick inspection reveals that the method of translating before
alignment yields a more appealing result. In particular, the reading frame is maintained when aligning the
translations. However, if the dna did not code for a protein then the only option would be to use AlignSeqs

because the translation would be meaningless.

> AA <- AlignTranslation(dna, type="AAStringSet") # align the translation

> BrowseSeqs(AA, highlight=1) # view the alignment

> DNA <- AlignSeqs(dna) # align the sequences directly without translation

> DNA <- AlignTranslation(dna) # align the translation then reverse translate

> # write the aligned sequences to a FASTA file

> writeXStringSet(DNA, file="<<path to output file>>")

Note that frameshift errors can greatly disrupt the alignment of protein coding sequences. Frameshifts can
be corrected by first using CorrectFrameshifts on the nucleotide sequences, and then using the corrected
sequences as input to AlignTranslation with the argument readingFrame equal to 1.

If the input sequences include exact replicates, then alignment can be accelerated by de-replicating the
sequences before alignment. The sequences can then be re-replicated after alignment to create a larger
alignment of all the original sequences. AlignSeqs does not automatically handle redundancy in the input
sequences, but doing so is fairly straightforward. In this case there aren’t any exact duplicates in the example
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dna sequences. Nonetheless, the process to de-replicate before alignment and re-replicate after alignment
would look like:

> u_dna <- unique(dna) # the unique input sequences

> index <- match(dna, u_dna) # de-replication index

> U_DNA <- AlignSeqs(u_dna) # align the sequences directly without translation

> DNA <- U_DNA[index]

> names(DNA) <- names(dna) # the re-replicated alignment

Also, when aligning nucleotide sequences (or their translations), it may be the case that the sequences are
in different orientations. If so, consider reorienting the sequences so that they all have the same directionality
and complementarity by using OrientNucleotides prior to alignment.

5.2 Example: Non-coding RNA sequences

Much like proteins, non-coding RNAs often have a conserved secondary structure that can be used to
improve their alignment. The PredictDBN function will predict base pairings from a sequence alignment
by calculating the mutual information between pairs of positions. If RNA sequences are given as input,
AlignSeqs will automatically use the output of PredictDBN to iteratively improve the alignment. Providing
an RNAStringSet also causes single-base and double-base substitution matrices to be used, and is preferable
to providing a DNAStringSet when the sequences are non-coding RNA. The type of the input sequences can
easily be converted to RNA, as shown below.

> # database containing 16S ribosomal RNA sequences

> db <- system.file("extdata", "Bacteria_175seqs.sqlite", package="DECIPHER")

> rna <- SearchDB(db, remove="all", type="RNAStringSet")

> # or if starting with DNA sequences, convert to RNA with:

> # rna <- RNAStringSet(dna)

> # or import RNA sequences directly using:

> # rna <- readRNAStringSet("<<path to FASTA file>>")

>

> alignedRNA <- AlignSeqs(rna) # align with RNA secondary structure

5.3 Example: Aligning two aligned sequence sets

It is sometimes useful to align two or more previously-aligned sets of sequences. Here we can use the function
AlignProfiles to directly align profiles of the two sequence sets:

> half <- floor(length(dna)/2)

> dna1 <- dna[1:half] # first half

> dna2 <- dna[(half + 1):length(dna)] # second half

> AA1 <- AlignTranslation(dna1, type="AAStringSet")

> AA2 <- AlignTranslation(dna2, type="AAStringSet")

> AA <- AlignProfiles(AA1, AA2) # align two alignments

When the two sequence sets are very large it may be impossible to fit both sets of input sequences and
the output alignment into memory at once. The function AlignDB can align the sequences in two database
tables, or two sets of sequences corresponding to separate identifiers in the same table. AlignDB takes as
input two tblNames and/or identifiers, and iteratively builds a profile for each of those respective sequence
alignments in the database. These profiles are aligned, and the insertions are iteratively applied to each of
the input sequences until the completed alignment has been stored in add2tbl .
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> # Align DNA sequences stored in separate tables:

> dbConn <- dbConnect(SQLite(), ":memory:")

> Seqs2DB(AA1, "DNAStringSet", dbConn, "AA1", tblName="AA1")

> Seqs2DB(AA2, "DNAStringSet", dbConn, "AA2", tblName="AA2")

> AlignDB(dbConn, tblName=c("AA1", "AA2"), add2tbl="AA",

type="AAStringSet")

> AA <- SearchDB(dbConn, tblName="AA", type="AAStringSet")

> BrowseDB(dbConn, tblName="AA")

> dbDisconnect(dbConn)

The number of sequences required to fit into memory when aligning two sequence sets with AlignDB is
controlled by the batchSize parameter. In this way AlignDB can be used to align large sequence alignments
with only minimal memory required.

6 Advanced Options & Features

6.1 Example: Building a Guide Tree

The AlignSeqs function uses a guide tree to decide the order in which to align pairs of sequence profiles.
The guideTree input is a dendrogram (tree) object with one leaf per input sequence. By default this guide
tree is generated directly from the input sequences using the order of shared k-mers (i.e., when the argument
guideTree is NULL). This default guide tree performs very well but requires O(n2) time and memory space to
construct. Therefore, it may be useful to rely on a chained guide tree when aligning hundreds of thousands
of unique sequences.

It has been shown that reasonably accurate alignments of tens of thousands of sequences can be obtained
by using a chain guide tree [1]. With a chained guide tree, sequences are added one-by-one to a growing
profile representing all of the aligned sequences. Figure 7 shows the result of using DECIPHER to align
increasing numbers of Cytochrome P450 sequences (in accordance with the method in reference [1]), using
either a chained guide tree or the default guide tree. A chained guide tree can be easily generated, as shown
below.

> # form a chained guide tree

> gT <- lapply(order(width(dna), decreasing=TRUE),

function(x) {

attr(x, "height") <- 0

attr(x, "label") <- names(dna)[x]

attr(x, "members") <- 1L

attr(x, "leaf") <- TRUE

x

})

> attr(gT, "height") <- 0.5

> attr(gT, "members") <- length(dna)

> class(gT) <- "dendrogram"

> # use the guide tree as input for alignment

> DNA <- AlignTranslation(dna,

guideTree=gT,

iterations=0,

refinements=0)

It is also possible to read a Newick formatted tree into R using the function ReadDendrogram, and specify
this object as the input guideTree.

10



0.
0

0.
4

0.
8

Shared Homology with Reference Alignment

Number of Sequences

Q
-S
co
re

0.
0

0.
4

0.
8

0.
0

0.
4

0.
8

16 32 64 128 256 512 1024 2048 4096 8192

Default Guide Tree Chained Guide Tree

0.
0

0.
4

0.
8

Total Reference Columns Preserved

Number of Sequences

TC
-S
co
re

0.
0

0.
4

0.
8

0.
0

0.
4

0.
8

16 32 64 128 256 512 1024 2048 4096 8192

Default Guide Tree Chained Guide Tree
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Cytochrome P450 sequence sets. The top panel shows average pairwise homology shared with the reference
alignment (Q-score) and the bottom panel shows the average fraction of alignment columns that are exactly
shared with the reference alignment (TC-score).
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6.2 Example: Post-processing an existing multiple alignment

There are several steps that can be taken after alignment to verify or improve the alignment. The most
important step is to look at the result to ensure that it meets expectations. Spurious (unalignable) sequences
can then be removed and the alignment process repeated as desired. The simplest way to view sequences
with DECIPHER is by using the function BrowseSeqs. The highlight parameter controls which sequence, if
any, is in focus (highlighted). A value of zero highlights the consensus sequence as shown below.

> BrowseSeqs(DNA, highlight=0)

All DECIPHER multiple sequence alignments are optimized using AdjustAlignment (unless the input
argument FUN is changed), with the goal of removing artifacts of the progressive alignment process. This
function will efficiently correct most obvious inaccuracies that could be found by-eye. Therefore, making
manual corrections is not recommended unless additional expert knowledge of the sequences is available.
The advantage of using AdjustAlignment is that it is a repeatable process that is not subjective, unlike
most manual adjustments. In order to further refine an existing alignment, AdjustAlignment can be called
directly.

> DNA_adjusted <- AdjustAlignment(DNA)

It is common to use alignment as a preliminary step before the creation of a phylogenetic tree. DECIPHER,
like the majority of alignment programs, attempts to maximize homologous positions between the sequences
being aligned. Such an alignment is particularly useful when investigating which residues are in the same
structural position of a protein. However, disparate sequence regions tend to be concentrated into the same
“gappy” areas of the alignment. When viewed from a phylogenetic perspective these homologies have highly
implausible insertion/deletion scenarios.

To mitigate the problem of false homologies, StaggerAlignment will automatically generate a staggered
version of an existing alignment. Staggered alignments separate potentially non-homologous regions into
separate columns of the alignment. The result is an alignment that is less visually appealing, but likely more
accurate from a phylogenetic perspective. As such, this is an important post-processing step whenever the
alignment will be used to construct a phylogenetic tree (e.g., with DistanceMatrix and IdClusters).

> DNA_staggered <- StaggerAlignment(DNA)

7 Aligning Homologous Regions of Multiple Genomes

The functions described so far have all required collinear sequences as input. This requirement is frequently
broken by genomes, which may include many sequence rearrangements such as inversion, duplication, and
reordering. FindSynteny will find homologous regions between pairs of genomes, which can then be aligned
using AlignSynteny. A database of sequences identified by their genome name is used as input to both
functions. This enables the alignment of genomes that are composed of many contigs, so long as they all
share the same identifier in the database. The example below uses a database containing five Influenza
virus A genomes, which are each composed of eight separate segments.

> db <- system.file("extdata", "Influenza.sqlite", package="DECIPHER")

> synteny <- FindSynteny(db, verbose=FALSE)

> synteny # an object of class `Synteny`

H9N2 H5N1 H2N2 H7N9 H1N1

H9N2 8 seqs 74% hits 78% hits 76% hits 73% hits

H5N1 8 blocks 8 seqs 70% hits 74% hits 84% hits

H2N2 8 blocks 8 blocks 8 seqs 73% hits 71% hits

H7N9 8 blocks 8 blocks 8 blocks 8 seqs 74% hits

H1N1 8 blocks 8 blocks 8 blocks 8 blocks 8 seqs
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> InfluenzaA <- AlignSynteny(synteny, db, verbose=FALSE)

> unlist(InfluenzaA[[1]])

DNAStringSet object of length 16:

width seq names

[1] 2328 GCAAAAGCAGGCAAACCATTTGA...CTTGTCCTTCATGAAAAAATGC 1.H9N2

[2] 2328 GCAAAAGCAGGCAAACCATTTGA...CTTGTCCTTCATGAAAAAATGC 1.H5N1

[3] 2339 CAAAAGCAGGTCAATTATATTCA...TAAAAACGACCTTGTTTCTACT 2.H9N2

[4] 2339 CAAAAGCAGGTCAATTATATTCA...TAAAAACGACCTTGTTTCTACT 2.H5N1

[5] 2225 AAAGCAGGTACTGATCCAAAATG...GTCCAAAAAAGTACCTTGTTTC 3.H9N2

... ... ...

[12] 865 GTGACAAAGACATAATGGATTCC...CTTATTTAATACTAAAAAACAC 6.H5N1

[13] 1455 GAATGGTCCTACATCGTCGAAAG...TCTGGGCCATGTCCAATGGATC 7.H9N2

[14] 1455 GAATGGTCTTACATAGTGGAGAA...TATGGATGTGCTCCAATGGATC 7.H5N1

[15] 1317 ATGAATCCAAATCAAAAGATAAT...GGAGTTGATAAGAGGGAGACCA 8.H9N2

[16] 1317 ATGAATCCAAATCAGAAGATAAT...TGAGCTAATCAGAGGGCGGCCC 8.H5N1

The output is a list, with each list component containing a DNAStringSetList of pairwise alignments
between two genomes. Names of the output correspond to their sequence’s identifier in the database, and
the index of the syntenic block.
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It is also possible to display the blocks of synteny between all pairs of genomes. Figure 8 shows the
different genome segments (i.e., sequences) separated by thin horizontal and vertical lines. The syntenic
blocks are diagonal lines that are composed of many homologous “hits” between the genomes.

> pairs(synteny, boxBlocks=TRUE) # scatterplot matrix
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Figure 8: Dot plots showing the homologous regions among five Influenza virus A genomes.
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8 Session Information

All of the output in this vignette was produced under the following conditions:

� R version 4.1.1 (2021-08-10), x86_64-pc-linux-gnu

� Running under: Ubuntu 20.04.3 LTS

� Matrix products: default

� BLAS: /home/biocbuild/bbs-3.14-bioc/R/lib/libRblas.so

� LAPACK: /home/biocbuild/bbs-3.14-bioc/R/lib/libRlapack.so

� Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils

� Other packages: BiocGenerics 0.40.0, Biostrings 2.62.0, DECIPHER 2.22.0, GenomeInfoDb 1.30.0,
IRanges 2.28.0, RSQLite 2.2.8, S4Vectors 0.32.0, XVector 0.34.0

� Loaded via a namespace (and not attached): DBI 1.1.1, GenomeInfoDbData 1.2.7, RCurl 1.98-1.5,
Rcpp 1.0.7, bit 4.0.4, bit64 4.0.5, bitops 1.0-7, blob 1.2.2, cachem 1.0.6, compiler 4.1.1, crayon 1.4.1,
fastmap 1.1.0, memoise 2.0.0, pkgconfig 2.0.3, rlang 0.4.12, rstudioapi 0.13, tools 4.1.1, vctrs 0.3.8,
zlibbioc 1.40.0
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