
Package ‘beachmat’
March 29, 2021

Version 2.6.4

Date 2020-12-19

Title Compiling Bioconductor to Handle Each Matrix Type

Encoding UTF-8

Imports methods, DelayedArray (>= 0.15.14), BiocGenerics, Matrix

Suggests testthat, BiocStyle, knitr, rmarkdown, rcmdcheck,
BiocParallel

biocViews DataRepresentation, DataImport, Infrastructure

Description Provides a consistent C++ class interface for reading from and
writing data to a variety of commonly used matrix types. Ordinary
matrices and several sparse/dense Matrix classes are directly supported,
third-party S4 classes may be supported by external linkage, while all
other matrices are handled by DelayedArray block processing.

License GPL-3

NeedsCompilation yes

VignetteBuilder knitr

SystemRequirements C++11

RoxygenNote 7.1.1

git_url https://git.bioconductor.org/packages/beachmat

git_branch RELEASE_3_12

git_last_commit 7d9dc63

git_last_commit_date 2020-12-19

Date/Publication 2021-03-29

Author Aaron Lun [aut, cre],
Hervé Pagès [aut],
Mike Smith [aut]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

R topics documented:
colBlockApply . 2

Index 4

1

2 colBlockApply

colBlockApply Apply over blocks of columns or rows

Description

Apply a function over blocks of columns or rows using DelayedArray’s block processing mecha-
nism.

Usage

colBlockApply(x, FUN, ..., grid = NULL, BPPARAM = getAutoBPPARAM())

rowBlockApply(x, FUN, ..., grid = NULL, BPPARAM = getAutoBPPARAM())

Arguments

x A matrix-like object to be split into blocks and looped over. This can be of any
class that respects the matrix contract.

FUN A function that operates on columns or rows in x, for colBlockApply and
rowBlockApply respectively. Ordinary matrices, *gCMatrix or SparseArray-
Seed objects may be passed as the first argument.

... Further arguments to pass to FUN.

grid An ArrayGrid object specifying how x should be split into blocks. For colBlockApply
and rowBlockApply, blocks should consist of consecutive columns and rows,
respectively. Alternatively, this can be set to TRUE or FALSE, see Details.

BPPARAM A BiocParallelParam object from the BiocParallel package, specifying how par-
allelization should be performed across blocks.

Details

This is a wrapper around blockApply that is dedicated to looping across rows or columns of x. The
aim is to provide a simpler interface for the common task of applying across a matrix, along with
a few modifications to improve efficiency for parallel processing and for natively supported x.

Note that the fragmentation of x into blocks is not easily predictable, meaning that FUN should be
capable of operating on each row/column independently. Users can retrieve the current location of
each block within x with currentViewport inside FUN.

If grid is not explicitly set to an ArrayGrid object, it can take several values:

• If TRUE, the function will choose a grid that (i) respects the memory limits in getAutoBlockSize
and (ii) fragments x into sufficiently fine chunks that every worker in BPPARAM gets to do some-
thing. If FUN might make large allocations, this mode should be used to constrain memory
usage.

• The default grid=NULL is very similar to TRUE except that that memory limits are ignored
when x is of any type that can be passed directly to FUN. This avoids unnecessary copies of x
and is best used when FUN itself does not make large allocations.

• If FALSE, the function will choose a grid that covers the entire x. This is provided for com-
pleteness and is only really useful for debugging.

colBlockApply 3

Value

A list of length equal to the number of blocks, where each entry is the output of FUN for the results
of processing each the rows/columns in the corresponding block.

See Also

blockApply, for the original DelayedArray implementation.

Examples

x <- matrix(runif(10000), ncol=10)
str(colBlockApply(x, colSums))
str(rowBlockApply(x, rowSums))

library(Matrix)
y <- rsparsematrix(10000, 10000, density=0.01)
str(colBlockApply(y, colSums))
str(rowBlockApply(y, rowSums))

library(DelayedArray)
z <- DelayedArray(y) + 1
str(colBlockApply(z, colSums))
str(rowBlockApply(z, rowSums))

We can also force multiple blocks:
library(BiocParallel)
BPPARAM <- SnowParam(2)
str(colBlockApply(x, colSums, BPPARAM=BPPARAM))
str(rowBlockApply(x, rowSums, BPPARAM=BPPARAM))

Index

apply, 2
ArrayGrid, 2

blockApply, 2, 3

colBlockApply, 2
currentViewport, 2

getAutoBlockSize, 2

rowBlockApply (colBlockApply), 2

SparseArraySeed, 2

4

	colBlockApply
	Index

