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Introduction

ppiStats is a package that provides tools for the description and analysis of protein interac-
tion data represented in node-and-edge graph form. The package is specifically designed to
address data generated by bait-prey technologies (e.g. yeast-two-hybrid (Y2H) and affinity
purification-mass spectrometry (AP-MS)) in which directed edges extend from bait proteins
toward detected prey proteins, with the nature of the detected interaction depending on the
technology.

This vignette demonstrates the main functionality of the ppiStats package including: 1)
summarizing observed data, 2) identifying systematically biased proteins in a data set, and 3)
estimating stochastic error probabilities. In order to demonstrate ppiStats, we will make use
of the protein interaction data sets available in ppiData.

> library("ppiStats")

> library("ppiData")

In this vignette, we will use to AP-MS data sets reported by Gavin et al. (2002) (Gavin02)
and Gavin et al. (2006) (Gavin06) for Saccharomyces cerevisiae. AP-MS technology is a bait-
prey system designed to detect complex co-membership on behalf of proteins.

Most of the functions available in ppiStats require objects that extend the class graph,
defined in the graph package. For example, Gavin2002BPGraph and Gavin2006BPGraph are
graphNEL objects available in ppiData. For assistance in converting raw data files into the
appropriate object instance, see the help pages for the functions bpMatrix and genBPGraph in
the ppiStats package. The graph and RpsiXML packages also contain helpful functionality.

> data(Gavin2002BPGraph)

> data(Gavin2006BPGraph)

> GavinGraphs = list(Gavin02=Gavin2002BPGraph,Gavin06=Gavin2006BPGraph)

> GavinGraphs

$Gavin02

A graphNEL graph with directed edges

Number of Nodes = 1362

Number of Edges = 3418

$Gavin06

A graphNEL graph with directed edges

Number of Nodes = 2551

Number of Edges = 19105
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Summarizing observed data

While AP-MS data can in concept assay all possible complex co-membership interactions in
a cell, in fact only a certain portion of those interactions are assayed in an experiment. The
sampled portion of the ‘interactome’ depends on which proteins are selected as baits, the subset
of those baits that are amenable to the technology, and the set of proteins in the cell that are
available for detection as prey under the conditions of the experiment. Chiang et al. (2007)
present the notion of ‘viability’ to summarize these ideas, defining ‘viable baits’ (VBs) as baits
that detect at least one prey and ‘viable prey’ (VP) as proteins that are detected by at least
one bait. It is possible for a protein to be both a viable bait and a viable prey (VBP). These
definitions are important since only the edges that extend from VB nodes to VP nodes are
deemed ‘tested’ in the analyses presented here. All other potential interactions (e.g. an edge
between two nodes that are VP but not VBP) are treated as untested.

The function createSummaryTables lists several summary statistics about the viable pro-
tein population in an experiment. In addition to describing the viable protein population, the
total number of directed interactions (TI) is reported.

> summaryTables = createSummaryTables(GavinGraphs)

> summaryTables

VB VP VBP VBP/VB VP/VB TI TI/VB

Gavin02 455 1178 271 0.60 2.59 3418 7.51

Gavin06 1752 1790 991 0.57 1.02 19105 10.90

When examining the VB and VP populations, it can be helpful to compare the number of
represented proteins to the total population in the cell, especially if the experiment is intended
to be genome-wide. Figure 1 demonstrates VB and VP coverage for the Gavin02 and Gavin06
experiments, relative to the entire 6000+ genes in yeast.

> viabilityCharts(GavinGraphs)

Rather than simply enumerating the viable protein population, the function idViablePro-

teins identifies the specific VB, VP, and VBP proteins represented in a data set.

> GavinViableProteins = lapply(GavinGraphs,FUN=idViableProteins)

> sapply(GavinViableProteins,FUN=function(x) lapply(x,FUN=length))

Gavin02 Gavin06

VB 455 1752

VP 1178 1790

VBP 271 991

> Gavin06VBPproteins = GavinViableProteins[["Gavin06"]]$VBP

> Gavin06VBPproteins[1:4]

[1] "YLR274W" "YDR460W" "YGL240W" "YPR189W"
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Figure 1: Enumerations of the VB, VP, and VBP populations for the Gavin02 and Gavin06
datasets in comparison with the entire set of 6000+ genes in yeast.
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Identifying systematically biased proteins

In some bait-prey experiments, certain proteins are prone to systematic bias. Specifically, in
the VBP population, some proteins have a high imblance between in- and out-degree. In-
degree in the VBP population represents the number of times a VBP node is detected as
prey by another VBP protein. Out-degree represents the number of times that VBP node
detects other prey. When in-degree is much higher than out-degree, or vice versa, it may be
an indication that the node is subject to more than simply stochastic measurement error in
line with the sensitivity and specificity of the technology. The inOutScatterCharts function
compares in- and out-degree for the VBP nodes and provides boundaries for determining which
nodes may be particularly prone to systematic error according to the Binomial model of Chiang
et al. (2007).

> inOutScatterCharts(GavinGraphs)

It appears that the Gavin06 dataset contains more proteins that are subject to systematic
error than the Gavin02 dataset. We can identify these proteints using the function idSys-

tematic, remove them from the graph, and then proceed with estimation of stochastic error
probabilities using the remaining VBP nodes.

> systematicVBPsGavin06 = idSystematic(Gavin2006BPGraph,Gavin06VBPproteins,bpGraph=TRUE)

> unbiasedGavin06VBPs = setdiff(Gavin06VBPproteins,systematicVBPsGavin06)

> Gavin06VBPsubgraph = subGraph(unbiasedGavin06VBPs,Gavin2006BPGraph)

> Gavin06VBPsubgraph

A graphNEL graph with directed edges

Number of Nodes = 678

Number of Edges = 1622

Estimating stochastic error probabilities

Each edge between the subgraph induced by the VBP nodes is tested twice, once in each
direction. With perfectly sensitive and specific technology, each edge would either be observed
twice or not observed twice. The presence of unreciprocated edges indicates the presence of
measurement error - either a false positive (FP) or a false negative (FN) observation.

The function estimateCCMErrorRates estimates stochastic error probabilities, specifically
the false positive (pFP ) and false negative (pFN ) probabilities, using the method of moments
approach described by Chiang et al. (2007). estimateCCMErrorRates calls estErrProb-

MethodOfMoments to compute a solution manifold and then selects a single pair of estimates
for pFP and pFN using a gold standard approach as described in Scholtens et al. (2008). In
the example below, we use the ScISIC dataset from the package ScISI as the gold standard.
This is a set of manurally curated complexes culled from GO and MIPS and serves to define a
set of edges that should be detected by AP-MS technology.

> data(ScISIC)

> Gavin06m = as(Gavin06VBPsubgraph,"matrix")
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Figure 2: Scatter plots corresponding to the in- and out-degree (and the square root of each)
for the VBP nodes in Gavin02. The points within the diagonal bands represent those proteins
for which there is not enough evidence to reject the null hypothesis that the protein might
be affected by some systematic bias while the points outside the bands are rejected at the
0.01 p-value. The bottom plot describes the distribution of the p-values for each data point.
While the majority of proteins are not rejected, we can see that a substantial number proteins
are. Those proteins which are rejected should not be analyzed using the standard statistical
methods to model stochastic variability nor should they be used to estimate the underlying
features within the data.
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Figure 3: The same plots as described in Figure 2 presented here for the Gavin06 data.
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Figure 4: A plot of the solution manifold for estimates of pFP and pFN with the star denoting
the gold standard point estimate.

> errorProbabilities = estimateCCMErrorRates(Gavin06m,ScISIC)

> pTPestimate = errorProbabilities$globalpTP

> pFPestimate =errorProbabilities$globalpFP

> solutionManifold = errorProbabilities$probPairs

> pTPestimate

[1] 0.7857143

> pFPestimate

[1] 0.0008106258

Figure 4 plots the calculated solution manifold and highlights the gold standard estimates.

> plot(solutionManifold[,"pFPs"],solutionManifold[,"pFNs"],type="l",col="violet",xlab="pFP",ylab="1-pTP")

> points(pFPestimate,1-pTPestimate,cex=3,pch=8,col="turquoise")

Estimates of pFP and pFN are helpful in using statistical models to estimate features and
parameters for that dataset. One popular statististic is node degree, def. the number of
interacting partners for a protein. Nodes in an experimental AP-MS graph have an unknown
true degree. An AP-MS experiment yields an observed number of reciprocated edges, as well
as unreciprocated in- and out-edges. A few examples are listed below.
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> Gavin06VBPobserved = calcInOutDegStats(Gavin06VBPsubgraph)

> Gavin06VBPobserved$unrecipInDegree[5:10]

YJR041C YLR357W YGL128C YER022W YDR167W YMR089C

0 4 0 2 1 0

> Gavin06VBPobserved$unrecipOutDegree[5:10]

YJR041C YLR357W YGL128C YER022W YDR167W YMR089C

0 1 1 0 5 1

> Gavin06VBPobserved$recipIn[5:10]

YJR041C YLR357W YGL128C YER022W YDR167W YMR089C

1 6 4 2 1 1

The function degreeEstimates estimates degree for VBP nodes according to the paramet-
ric model described by Scholtens et al. (2008) using the observed data and the stochastic
error probability estimates.

> Gavin06VBPdegree = degreeEstimates(Gavin06m,pTPestimate,pFPestimate)

> Gavin06VBPdegree[5:10]

YJR041C YLR357W YGL128C YER022W YDR167W YMR089C

1 10 5 3 5 1

>

Conclusion

The ppiStats package is useful for describing data in graphs and is aimed at bait-prey systems.
It is useful for summarizing graph data, identifying systematically biased baits and estimating
stochastic error probabilities in preparation for estimation of relevant graph features.

> sessionInfo()

R version 4.0.3 (2020-10-10)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows Server 2012 R2 x64 (build 9600)

Matrix products: default

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C
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[5] LC_TIME=English_United States.1252

attached base packages:

[1] parallel stats4 stats graphics grDevices utils datasets

[8] methods base

other attached packages:

[1] ppiStats_1.56.0 ppiData_0.27.0 lattice_0.20-41

[4] ScISI_1.62.0 apComplex_2.56.0 RpsiXML_2.32.0

[7] hypergraph_1.62.0 RBGL_1.66.0 graph_1.68.0

[10] annotate_1.68.0 XML_3.99-0.5 GO.db_3.12.0

[13] AnnotationDbi_1.52.0 IRanges_2.24.0 S4Vectors_0.28.0

[16] Biobase_2.50.0 BiocGenerics_0.36.0

loaded via a namespace (and not attached):

[1] Rcpp_1.0.5 compiler_4.0.3 org.Sc.sgd.db_3.12.0

[4] RColorBrewer_1.1-2 tools_4.0.3 digest_0.6.27

[7] bit_4.0.4 RSQLite_2.2.1 memoise_1.1.0

[10] pkgconfig_2.0.3 rlang_0.4.8 Matrix_1.2-18

[13] DBI_1.1.0 Category_2.56.0 Rgraphviz_2.34.0

[16] genefilter_1.72.0 httr_1.4.2 vctrs_0.3.4

[19] bit64_4.0.5 grid_4.0.3 GSEABase_1.52.0

[22] R6_2.4.1 survival_3.2-7 blob_1.2.1

[25] splines_4.0.3 xtable_1.8-4
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