Comprehensive and Interactive Analysis of Single Cell RNA-Seq Data


[Up] [Top]

Documentation for package ‘singleCellTK’ version 2.0.0

Help Pages

C D E F G I M P Q R S T V misc

-- C --

calcEffectSizes Finds the effect sizes for all genes in the original dataset, regardless of significance.
combineSCE Combine a list of SingleCellExperiment objects as one SingleCellExperiment object
computeZScore Compute Z-Score
constructSCE Create SingleCellExperiment object from csv or txt input
convertGeneIDs Convert Gene IDs
convertSCEToSeurat convertSCEToSeurat Converts sce object to seurat while retaining all assays and metadata
convertSeuratToSCE convertSeuratToSCE Converts the input seurat object to a sce object

-- D --

dataAnnotationColor Generate distinct colors for all categorical col/rowData entries. Character columns will be considered as well as all-integer columns. Any column with all-distinct values will be excluded.
discreteColorPalette Generate given number of color codes
distinctColors Generate a distinct palette for coloring different clusters
downSampleCells Estimate numbers of detected genes, significantly differentially expressed genes, and median significant effect size
downSampleDepth Estimate numbers of detected genes, significantly differentially expressed genes, and median significant effect size

-- E --

enrichRSCE enrichR Given a list of genes this function runs the enrichR() to perform Gene enrichment
exportSCE Export data in SingleCellExperiment object
exportSCEtoAnnData Export a SingleCellExperiment R object as Python annData object
exportSCEtoFlatFile Export a SingleCellExperiment object to flat text files

-- F --

featureIndex Retrieve row index for a set of features
findMarkerDiffExp Find the marker gene set for each cluster With an input SingleCellExperiment object and specifying the clustering labels, this function iteratively call the differential expression analysis on each cluster against all the others.

-- G --

generateMeta Generate manifest file for droplet and cell count data
generateSimulatedData Generates a single simulated dataset, bootstrapping from the input counts matrix.
getBiomarker Given a list of genes and a SingleCellExperiment object, return the binary or continuous expression of the genes.
getMSigDBTable Shows MSigDB categories
getPCA Perform PCA on a SingleCellExperiment Object A wrapper to runPCA function to compute principal component analysis (PCA) from a given SingleCellExperiment object.
getSceParams Extract QC parameters from the SingleCellExperiment object
getTopHVG getTopHVG Extracts the top variable genes from an input singleCellExperiment object
getTSNE Run t-SNE dimensionality reduction method on a SingleCellExperiment Object
getUMAP Uniform Manifold Approximation and Projection(UMAP) algorithm for dimension reduction.
gsvaPlot Run GSVA analysis on a SingleCellExperiment object
gsvaSCE Run GSVA analysis on a SingleCellExperiment object

-- I --

importAnnData Create a SingleCellExperiment Object from Python AnnData .h5ad files
importBUStools Construct SCE object from BUStools output
importCellRanger Construct SCE object from Cell Ranger output
importCellRangerV2 Construct SCE object from Cell Ranger output
importCellRangerV2Sample Construct SCE object from Cell Ranger V2 output for a single sample
importCellRangerV3 Construct SCE object from Cell Ranger output
importCellRangerV3Sample Construct SCE object from Cell Ranger V3 output for a single sample
importDropEst Create a SingleCellExperiment Object from DropEst output
importExampleData Retrieve example datasets
importFromFiles Create a SingleCellExperiment object from files
importGeneSetsFromCollection Imports gene sets from a GeneSetCollection object
importGeneSetsFromGMT Imports gene sets from a GMT file
importGeneSetsFromList Imports gene sets from a list
importGeneSetsFromMSigDB Imports gene sets from MSigDB
importMultipleSources Imports samples from different sources and compiles them into a list of SCE objects
importOptimus Construct SCE object from Optimus output
importSEQC Construct SCE object from seqc output
importSTARsolo Construct SCE object from STARsolo outputs
iterateSimulations Returns significance data from a snapshot.

-- M --

mergeSCEColData Merging colData from two singleCellExperiment objects
mouseBrainSubsetSCE Example Single Cell RNA-Seq data in SingleCellExperiment Object, GSE60361 subset
msigdb_table MSigDB gene get Cctegory table

-- P --

plotBarcodeRankDropsResults Plots for runEmptyDrops outputs.
plotBarcodeRankScatter Plots for runBarcodeRankDrops outputs.
plotBatchVariance Plot the percent of the variation that is explained by batch and condition in the data
plotBcdsResults Plots for runBcds outputs.
plotBiomarker Given a set of genes, return a ggplot of expression values.
plotCxdsResults Plots for runCxds outputs.
plotDecontXResults Plots for runDecontX outputs.
plotDEGHeatmap Heatmap visualization of DEG result
plotDEGRegression plot the linear regression to show visualize the expression the of DEGs identified by differential expression analysis
plotDEGViolin plot the violin plot to show visualize the expression distribution of DEGs identified by differential expression analysis
plotDoubletCellsResults Plots for runDoubletCells outputs.
plotDoubletFinderResults Plots for runDoubletFinder outputs.
plotEmptyDropsResults Plots for runEmptyDrops outputs.
plotEmptyDropsScatter Plots for runEmptyDrops outputs.
plotMarkerDiffExp Plot a heatmap to visualize the result of 'findMarkerDiffExp'
plotMASTThresholdGenes MAST Identify adaptive thresholds
plotPCA Plot PCA run data from its components.
plotRunPerCellQCResults Plots for runPerCellQC outputs.
plotScdsHybridResults Plots for runCxdsBcdsHybrid outputs.
plotSCEBarAssayData Bar plot of assay data.
plotSCEBarColData Bar plot of colData.
plotSCEBatchFeatureMean Plot mean feature value in each batch of a SingleCellExperiment object
plotSCEDensity Density plot of any data stored in the SingleCellExperiment object.
plotSCEDensityAssayData Density plot of assay data.
plotSCEDensityColData Density plot of colData.
plotSCEDimReduceColData Dimension reduction plot tool for colData
plotSCEDimReduceFeatures Dimension reduction plot tool for assay data
plotSCEHeatmap Plot heatmap of using data stored in SingleCellExperiment Object
plotSCEScatter Dimension reduction plot tool for all types of data
plotSCEViolin Violin plot of any data stored in the SingleCellExperiment object.
plotSCEViolinAssayData Violin plot of assay data.
plotSCEViolinColData Violin plot of colData.
plotScrubletResults Plots for runScrublet outputs.
plotTSNE Plot t-SNE plot on dimensionality reduction data run from t-SNE method.
plotUMAP Plot UMAP results either on already run results or run first and then plot.

-- Q --

qcInputProcess Create SingleCellExperiment object from command line input arguments

-- R --

readSingleCellMatrix Read single cell expression matrix
reportCellQC Get runCellQC .html report
reportDiffExp Get runDEAnalysis .html report
reportDropletQC Get runDropletQC .html report
reportQCTool Get .html report of the output of the selected QC algorithm
retrieveSCEIndex Retrieve cell/feature index by giving identifiers saved in col/rowData
runANOVA Perform differential expression analysis on SCE with ANOVA
runBarcodeRankDrops Identify empty droplets using barcodeRanks.
runBBKNN Apply BBKNN batch effect correction method to SingleCellExperiment object
runBcds Find doublets/multiplets using bcds.
runCellQC Perform comprehensive single cell QC
runComBat Apply ComBat batch effect correction method to SingleCellExperiment object
runCxds Find doublets/multiplets using cxds.
runCxdsBcdsHybrid Find doublets/multiplets using cxds_bcds_hybrid.
runDEAnalysis Perform differential expression analysis on SCE with specified method Method supported: 'MAST', 'DESeq2', 'Limma', 'ANOVA'
runDecontX Detecting contamination with DecontX.
runDESeq2 Perform differential expression analysis on SCE with DESeq2.
runDoubletCells Detect doublet cells using scDblFinder.
runDoubletFinder Generates a doublet score for each cell via doubletFinder
runDropletQC Perform comprehensive droplet QC
runEmptyDrops Identify empty droplets using emptyDrops.
runFastMNN Apply a fast version of the mutual nearest neighbors (MNN) batch effect correction method to SingleCellExperiment object
runKMeans Get clustering with KMeans
runLimmaBC Apply Limma's batch effect correction method to SingleCellExperiment object
runLimmaDE Perform differential expression analysis on SCE with Limma.
runMAST Perform differential expression analysis on SCE with MAST
runMNNCorrect Apply the mutual nearest neighbors (MNN) batch effect correction method to SingleCellExperiment object
runPerCellQC Wrapper for calculating QC metrics with scater.
runSCANORAMA Apply the mutual nearest neighbors (MNN) batch effect correction method to SingleCellExperiment object
runSCMerge Apply scMerge batch effect correction method to SingleCellExperiment object
runScranSNN Get clustering with SNN graph
runScrublet Find doublets using 'scrublet'.
runZINBWaVE Apply ZINBWaVE Batch effect correction method to SingleCellExperiment object

-- S --

sampleSummaryStats Generate table of SCTK QC outputs.
scater_logNormCounts scater_logNormCounts Uses logNormCounts to log normalize input data
sce Example Single Cell RNA-Seq data in SingleCellExperiment Object, subset of 10x public dataset https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc4k A subset of 390 barcodes and top 200 genes were included in this example. Within 390 barcodes, 195 barcodes are empty droplet, 150 barcodes are cell barcode and 45 barcodes are doublets predicted by scrublet and doubletFinder package. This example only serves as a proof of concept and a tutoriol on how to run the functions in this package. The results should not be used for drawing scientific conclusions.
sceBatches Example Single Cell RNA-Seq data in SingleCellExperiment object, with different batches annotated
scran_modelGeneVar scran_modelGeneVar Generates and stores variability data from scran::modelGeneVar in the input singleCellExperiment object
sctkListGeneSetCollections Lists imported GeneSetCollections
sctkPythonInstallConda Installs Python packages into a Conda environment
sctkPythonInstallVirtualEnv Installs Python packages into a virtual environment
SEG Stably Expressed Gene (SEG) list obect, with SEG sets for human and mouse.
selectSCTKConda Selects a Conda environment
selectSCTKVirtualEnvironment Selects a virtual environment
seuratComputeHeatmap seuratComputeHeatmap Computes the heatmap plot object from the pca slot in the input sce object
seuratComputeJackStraw seuratComputeJackStraw Compute jackstraw plot and store the computations in the input sce object
seuratElbowPlot seuratElbowPlot Computes the plot object for elbow plot from the pca slot in the input sce object
seuratFindClusters seuratFindClusters Computes the clusters from the input sce object and stores them back in sce object
seuratFindHVG seuratFindHVG Find highly variable genes and store in the input sce object
seuratHeatmapPlot seuratHeatmapPlot Modifies the heatmap plot object so it contains specified number of heatmaps in a single plot
seuratICA seuratICA Computes ICA on the input sce object and stores the calculated independent components within the sce object
seuratIntegration seuratIntegration A wrapper function to Seurat Batch-Correction/Integration workflow.
seuratJackStrawPlot seuratJackStrawPlot Computes the plot object for jackstraw plot from the pca slot in the input sce object
seuratNormalizeData seuratNormalizeData Wrapper for NormalizeData() function from seurat library Normalizes the sce object according to the input parameters
seuratPCA seuratPCA Computes PCA on the input sce object and stores the calculated principal components within the sce object
seuratPlotHVG seuratPlotHVG Plot highly variable genes from input sce object (must have highly variable genes computations stored)
seuratReductionPlot seuratReductionPlot Plots the selected dimensionality reduction method
seuratRunTSNE seuratRunTSNE Computes tSNE from the given sce object and stores the tSNE computations back into the sce object
seuratRunUMAP seuratRunUMAP Computes UMAP from the given sce object and stores the UMAP computations back into the sce object
seuratScaleData seuratScaleData Scales the input sce object according to the input parameters
seuratSCTransform seuratSCTransform Runs the SCTransform function to transform/normalize the input data
simpleLog A decorator that prints the arguments to the decorated function
singleCellTK Run the single cell analysis app
subDiffEx Passes the output of generateSimulatedData() to differential expression tests, picking either t-tests or ANOVA for data with only two conditions or multiple conditions, respectively.
subDiffExANOVA Passes the output of generateSimulatedData() to differential expression tests, picking either t-tests or ANOVA for data with only two conditions or multiple conditions, respectively.
subDiffExttest Passes the output of generateSimulatedData() to differential expression tests, picking either t-tests or ANOVA for data with only two conditions or multiple conditions, respectively.
subsetSCECols Subset a SingleCellExperiment object by columns
subsetSCERows Subset a SingleCellExperiment object by rows
summarizeSCE Summarize an assay in a SingleCellExperiment

-- T --

trimCounts Trim Counts

-- V --

visPlot visPlot

-- misc --

.addSeuratToMetaDataSCE .addSeuratToMetaDataSCE Adds the input seurat object to the metadata slot of the input sce object (after removing the data matrices)
.checkDiffExpResultExists Check if the specified MAST result in SingleCellExperiment object is complete. But does not garantee the biological correctness.
.computeSignificantPC .computeSignificantPC Computes the significant principal components from an input sce object (must contain pca slot) using stdev
.extractSCEAnnotation Extract columns from row/colData and transfer to factors
.formatDEAList Helper function for differential expression analysis methods that accepts multiple ways of conditional subsetting and returns stable index format. Meanwhile it does all the input checkings.
.getComponentNames .getComponentNames Creates a list of PC/IC components to populate the picker for PC/IC heatmap generation
.ggBar Bar plot plotting tool.
.ggDensity Density plot plotting tool.
.ggScatter Plot results of reduced dimensions data.
.ggViolin Violin plot plotting tool.
.sce2adata Coverts SingleCellExperiment object from R to anndata.AnnData object in Python
.seuratGetVariableFeatures .seuratGetVariableFeatures Retrieves the requested number of variable feature names
.seuratInvalidate .seuratInvalidate Removes seurat data from the input SingleCellExperiment object specified by the task in the Seurat workflow.
.updateAssaySCE .updateAssaySCE Update/Modify/Add an assay in the provided SingleCellExperiment object from a Seurat object