Contents

1 Introduction

Here, we explain the way to generate CCI simulation data. scTensor has a function cellCellSimulate to generate the simulation data.

The simplest way to generate such data is cellCellSimulate with default parameters.

suppressPackageStartupMessages(library("scTensor"))
sim <- cellCellSimulate()
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!

This function internally generate the parameter sets by newCCSParams, and the values of the parameter can be changed, and specified as the input of cellCellSimulate by users as follows.

# Default parameters
params <- newCCSParams()
str(params)
## Formal class 'CCSParams' [package "scTensor"] with 5 slots
##   ..@ nGene  : num 1000
##   ..@ nCell  : num [1:3] 50 50 50
##   ..@ cciInfo:List of 4
##   .. ..$ nPair: num 500
##   .. ..$ CCI1 :List of 4
##   .. .. ..$ LPattern: num [1:3] 1 0 0
##   .. .. ..$ RPattern: num [1:3] 0 1 0
##   .. .. ..$ nGene   : num 50
##   .. .. ..$ fc      : chr "E10"
##   .. ..$ CCI2 :List of 4
##   .. .. ..$ LPattern: num [1:3] 0 1 0
##   .. .. ..$ RPattern: num [1:3] 0 0 1
##   .. .. ..$ nGene   : num 50
##   .. .. ..$ fc      : chr "E10"
##   .. ..$ CCI3 :List of 4
##   .. .. ..$ LPattern: num [1:3] 0 0 1
##   .. .. ..$ RPattern: num [1:3] 1 0 0
##   .. .. ..$ nGene   : num 50
##   .. .. ..$ fc      : chr "E10"
##   ..@ lambda : num 1
##   ..@ seed   : num 1234
# Setting different parameters
# No. of genes : 1000
setParam(params, "nGene") <- 1000
# 3 cell types, 20 cells in each cell type
setParam(params, "nCell") <- c(20, 20, 20)
# Setting for Ligand-Receptor pair list
setParam(params, "cciInfo") <- list(
    nPair=500, # Total number of L-R pairs
    # 1st CCI
    CCI1=list(
        LPattern=c(1,0,0), # Only 1st cell type has this pattern
        RPattern=c(0,1,0), # Only 2nd cell type has this pattern
        nGene=50, # 50 pairs are generated as CCI1
        fc="E10"), # Degree of differential expression (Fold Change)
    # 2nd CCI
    CCI2=list(
        LPattern=c(0,1,0),
        RPattern=c(0,0,1),
        nGene=30,
        fc="E100")
    )
# Degree of Dropout
setParam(params, "lambda") <- 10
# Random number seed
setParam(params, "seed") <- 123

# Simulation data
sim <- cellCellSimulate(params)
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!

The output object sim has some attributes as follows.

Firstly, sim$input contains a synthetic gene expression matrix. The size can be changed by nGene and nCell parameters described above.

dim(sim$input)
## [1] 1000   60
sim$input[1:2,1:3]
##       Cell1 Cell2 Cell3
## Gene1  9105     2     0
## Gene2     4    37   850

Next, sim$LR contains a ligand-receptor (L-R) pair list. The size can be changed by nPair parameter of cciInfo, and the differentially expressed (DE) L-R pairs are saved in the upper side of this matrix. Here, two DE L-R patterns are specified as cciInfo, and each number of pairs is 50 and 30, respectively.

dim(sim$LR)
## [1] 500   2
sim$LR[1:10,]
##    GENEID_L GENEID_R
## 1     Gene1   Gene81
## 2     Gene2   Gene82
## 3     Gene3   Gene83
## 4     Gene4   Gene84
## 5     Gene5   Gene85
## 6     Gene6   Gene86
## 7     Gene7   Gene87
## 8     Gene8   Gene88
## 9     Gene9   Gene89
## 10   Gene10   Gene90
sim$LR[46:55,]
##    GENEID_L GENEID_R
## 46   Gene46  Gene126
## 47   Gene47  Gene127
## 48   Gene48  Gene128
## 49   Gene49  Gene129
## 50   Gene50  Gene130
## 51   Gene51  Gene131
## 52   Gene52  Gene132
## 53   Gene53  Gene133
## 54   Gene54  Gene134
## 55   Gene55  Gene135
sim$LR[491:500,]
##     GENEID_L GENEID_R
## 491  Gene571  Gene991
## 492  Gene572  Gene992
## 493  Gene573  Gene993
## 494  Gene574  Gene994
## 495  Gene575  Gene995
## 496  Gene576  Gene996
## 497  Gene577  Gene997
## 498  Gene578  Gene998
## 499  Gene579  Gene999
## 500  Gene580 Gene1000

Finally, sim$celltypes contains a cell type vector. Since nCell is specified as “c(20, 20, 20)” described above, three cell types are generated.

length(sim$celltypes)
## [1] 60
head(sim$celltypes)
## Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 
##   "Cell1"   "Cell2"   "Cell3"   "Cell4"   "Cell5"   "Cell6"
table(names(sim$celltypes))
## 
## Celltype1 Celltype2 Celltype3 
##        20        20        20

Session information

## R version 4.0.0 RC (2020-04-19 r78255)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.4 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.11-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.11-bioc/R/lib/libRlapack.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] parallel  stats4    stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] AnnotationHub_2.19.12                  
##  [2] BiocFileCache_1.11.6                   
##  [3] dbplyr_1.4.3                           
##  [4] Homo.sapiens_1.3.1                     
##  [5] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
##  [6] org.Hs.eg.db_3.10.0                    
##  [7] GO.db_3.10.0                           
##  [8] OrganismDbi_1.29.1                     
##  [9] GenomicFeatures_1.39.7                 
## [10] AnnotationDbi_1.49.1                   
## [11] MeSH.Mmu.eg.db_1.13.0                  
## [12] LRBase.Mmu.eg.db_1.2.0                 
## [13] MeSH.Hsa.eg.db_1.13.0                  
## [14] MeSHDbi_1.23.0                         
## [15] SingleCellExperiment_1.9.3             
## [16] SummarizedExperiment_1.17.5            
## [17] DelayedArray_0.13.12                   
## [18] matrixStats_0.56.0                     
## [19] Biobase_2.47.3                         
## [20] GenomicRanges_1.39.3                   
## [21] GenomeInfoDb_1.23.17                   
## [22] IRanges_2.21.8                         
## [23] S4Vectors_0.25.15                      
## [24] BiocGenerics_0.33.3                    
## [25] scTensor_1.3.3                         
## [26] RSQLite_2.2.0                          
## [27] LRBase.Hsa.eg.db_1.2.0                 
## [28] LRBaseDbi_1.5.0                        
## [29] BiocStyle_2.15.8                       
## 
## loaded via a namespace (and not attached):
##   [1] rsvd_1.0.3                    Hmisc_4.4-0                  
##   [3] ica_1.0-2                     Rsamtools_2.3.7              
##   [5] foreach_1.5.0                 lmtest_0.9-37                
##   [7] crayon_1.3.4                  MASS_7.3-51.5                
##   [9] nlme_3.1-147                  backports_1.1.6              
##  [11] GOSemSim_2.13.1               rlang_0.4.5                  
##  [13] XVector_0.27.2                ROCR_1.0-7                   
##  [15] irlba_2.3.3                   nnTensor_1.0.4               
##  [17] GOstats_2.53.0                BiocParallel_1.21.3          
##  [19] tagcloud_0.6                  bit64_0.9-7                  
##  [21] glue_1.4.0                    sctransform_0.2.1            
##  [23] dotCall64_1.0-0               DOSE_3.13.2                  
##  [25] tidyselect_1.0.0              fitdistrplus_1.0-14          
##  [27] XML_3.99-0.3                  tidyr_1.0.2                  
##  [29] zoo_1.8-7                     GenomicAlignments_1.23.2     
##  [31] xtable_1.8-4                  magrittr_1.5                 
##  [33] evaluate_0.14                 ggplot2_3.3.0                
##  [35] zlibbioc_1.33.1               rstudioapi_0.11              
##  [37] rpart_4.1-15                  fastmatch_1.1-0              
##  [39] ensembldb_2.11.4              maps_3.3.0                   
##  [41] fields_10.3                   shiny_1.4.0.2                
##  [43] xfun_0.13                     askpass_1.1                  
##  [45] cluster_2.1.0                 caTools_1.18.0               
##  [47] tidygraph_1.1.2               TSP_1.1-10                   
##  [49] tibble_3.0.1                  interactiveDisplayBase_1.25.0
##  [51] ggrepel_0.8.2                 biovizBase_1.35.1            
##  [53] ape_5.3                       listenv_0.8.0                
##  [55] dendextend_1.13.4             Biostrings_2.55.7            
##  [57] png_0.1-7                     future_1.17.0                
##  [59] bitops_1.0-6                  ggforce_0.3.1                
##  [61] RBGL_1.63.1                   plyr_1.8.6                   
##  [63] GSEABase_1.49.1               AnnotationFilter_1.11.0      
##  [65] pillar_1.4.3                  gplots_3.0.3                 
##  [67] graphite_1.33.0               europepmc_0.3                
##  [69] vctrs_0.2.4                   ellipsis_0.3.0               
##  [71] plot3D_1.3                    urltools_1.7.3               
##  [73] MeSH.Aca.eg.db_1.13.0         outliers_0.14                
##  [75] tools_4.0.0                   foreign_0.8-78               
##  [77] entropy_1.2.1                 munsell_0.5.0                
##  [79] tweenr_1.0.1                  fgsea_1.13.5                 
##  [81] fastmap_1.0.1                 compiler_4.0.0               
##  [83] abind_1.4-5                   httpuv_1.5.2                 
##  [85] rtracklayer_1.47.0            Gviz_1.31.13                 
##  [87] plotly_4.9.2.1                GenomeInfoDbData_1.2.3       
##  [89] gridExtra_2.3                 lattice_0.20-41              
##  [91] visNetwork_2.0.9              AnnotationForge_1.29.3       
##  [93] later_1.0.0                   dplyr_0.8.5                  
##  [95] jsonlite_1.6.1                concaveman_1.0.0             
##  [97] scales_1.1.0                  graph_1.65.3                 
##  [99] pbapply_1.4-2                 genefilter_1.69.0            
## [101] lazyeval_0.2.2                promises_1.1.0               
## [103] MeSH.db_1.13.0                latticeExtra_0.6-29          
## [105] reticulate_1.15               checkmate_2.0.0              
## [107] rmarkdown_2.1                 cowplot_1.0.0                
## [109] schex_1.1.5                   MeSH.Syn.eg.db_1.13.0        
## [111] webshot_0.5.2                 Rtsne_0.15                   
## [113] dichromat_2.0-0               BSgenome_1.55.4              
## [115] uwot_0.1.8                    igraph_1.2.5                 
## [117] gclus_1.3.2                   survival_3.1-12              
## [119] yaml_2.2.1                    plotrix_3.7-8                
## [121] htmltools_0.4.0               memoise_1.1.0                
## [123] VariantAnnotation_1.33.5      rTensor_1.4.1                
## [125] Seurat_3.1.5                  seriation_1.2-8              
## [127] graphlayouts_0.6.0            viridisLite_0.3.0            
## [129] digest_0.6.25                 assertthat_0.2.1             
## [131] ReactomePA_1.31.0             mime_0.9                     
## [133] rappdirs_0.3.1                registry_0.5-1               
## [135] npsurv_0.4-0                  spam_2.5-1                   
## [137] future.apply_1.5.0            lsei_1.2-0                   
## [139] misc3d_0.8-4                  data.table_1.12.8            
## [141] blob_1.2.1                    cummeRbund_2.29.0            
## [143] splines_4.0.0                 Formula_1.2-3                
## [145] ProtGenerics_1.19.3           RCurl_1.98-1.2               
## [147] hms_0.5.3                     colorspace_1.4-1             
## [149] base64enc_0.1-3               BiocManager_1.30.10          
## [151] nnet_7.3-13                   Rcpp_1.0.4.6                 
## [153] bookdown_0.18                 RANN_2.6.1                   
## [155] MeSH.PCR.db_1.13.0            enrichplot_1.7.4             
## [157] R6_2.4.1                      grid_4.0.0                   
## [159] ggridges_0.5.2                lifecycle_0.2.0              
## [161] acepack_1.4.1                 curl_4.3                     
## [163] MeSH.Bsu.168.eg.db_1.13.0     gdata_2.18.0                 
## [165] leiden_0.3.3                  MeSH.AOR.db_1.13.0           
## [167] meshr_1.23.0                  DO.db_2.9                    
## [169] Matrix_1.2-18                 qvalue_2.19.0                
## [171] RcppAnnoy_0.0.16              RColorBrewer_1.1-2           
## [173] iterators_1.0.12              stringr_1.4.0                
## [175] htmlwidgets_1.5.1             polyclip_1.10-0              
## [177] triebeard_0.3.0               biomaRt_2.43.6               
## [179] purrr_0.3.4                   gridGraphics_0.5-0           
## [181] reactome.db_1.70.0            globals_0.12.5               
## [183] openssl_1.4.1                 htmlTable_1.13.3             
## [185] patchwork_1.0.0               codetools_0.2-16             
## [187] gtools_3.8.2                  prettyunits_1.1.1            
## [189] gtable_0.3.0                  tsne_0.1-3                   
## [191] DBI_1.1.0                     highr_0.8                    
## [193] httr_1.4.1                    KernSmooth_2.23-16           
## [195] stringi_1.4.6                 progress_1.2.2               
## [197] reshape2_1.4.4                farver_2.0.3                 
## [199] heatmaply_1.1.0               annotate_1.65.1              
## [201] viridis_0.5.1                 hexbin_1.28.1                
## [203] fdrtool_1.2.15                Rgraphviz_2.31.0             
## [205] magick_2.3                    xml2_1.3.2                   
## [207] rvcheck_0.1.8                 ggplotify_0.0.5              
## [209] Category_2.53.1               BiocVersion_3.11.1           
## [211] bit_1.1-15.2                  scatterpie_0.1.4             
## [213] jpeg_0.1-8.1                  ggraph_2.0.2                 
## [215] pkgconfig_2.0.3               knitr_1.28