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This vignette introduces the R package globalSeq. The function omnibus tests
for association between an overdispersed count variable and a high-dimensional
covariate set. The function proprius decomposes the test statistic to show the
contributions of individual samples or covariates. And the function cursus per-
forms genome-wide analyses.

1 Initialisation

Start with installing the R package globalSeq from Bioconductor:

if (!requireNamespace("BiocManager", quietly=TRUE))

install.packages("BiocManager")

BiocManager::install("globalSeq")

Please type the following command to load and attach the package:

library(globalSeq)

If you want to reproduce the examples, you should attach the toy database:

attach(toydata)

The following commands access the R documentation:

utils::help(globalSeq)

utils::vignette("globalSeq")
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2 Test of association

2.1 Data

Data is available for 10 individuals and 16 variables.

cbind(y,X)

## y X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15

## ind1 7 0 1 0 0 0 0 1 1 1 0 1 0 0 1 0

## ind2 1 1 1 0 17 15 16 13 10 20 0 1 0 1 1 0

## ind3 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1

## ind4 15 17 18 16 12 15 20 14 17 18 17 15 0 1 0 13

## ind5 6 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1

## ind6 16 12 14 13 12 10 15 18 17 12 15 12 0 0 0 15

## ind7 5 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1

## ind8 2 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1

## ind9 2 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1

## ind10 5 1 0 1 0 1 0 0 1 1 1 0 0 0 0 0

2.2 Minimal example

We are interested whether the response variable y is associated with the covari-
ate matrix X. Looking at the data might already lead to an answer.1

Because the number of covariates exceeds the sample size, classical tests cannot
test their joint significance. But the function omnibus also works in high-
dimensional settings:

set.seed(1)

omnibus(y,X)

## pvalue teststat covs

## 1 0.025 651.6189 15

1Note that the response variable takes higher values for individuals 4 and 6 than for the
other individuals. Looking at the covariate matrix, we observe that individuals 2, 4 and 6 are
peculiar. We conclude: The data on individuals 4 and 6 speak for an association, but the data
on individual 2 speaks against an association. Covariates 12, 13 and 14 are uninformative,
and the role of other covariates is less clear.
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2.3 Offset

Suppose that an offset is available. Relative to the offset, the response y is more
or less constant across samples:

rbind(y,offset)

## ind1 ind2 ind3 ind4 ind5 ind6 ind7 ind8 ind9 ind10

## y 7 1 1 15 6 16 5 2 2 5

## offset 15 1 2 28 10 28 9 2 5 7

If we account for this offset, there is no evidence for an association between the
response y and the covariate matrix X:

set.seed(1)

omnibus(y,X,offset=offset)

## pvalue teststat covs

## 1 0.977 -2881.224 15

2.4 Confounding variable

Suppose that each sample belongs either to group 1 or to group 2. We can
observe that y tends to take small values in one group, and large values in the
other:

rbind(y,group)

## ind1 ind2 ind3 ind4 ind5 ind6 ind7 ind8 ind9 ind10

## y 7 1 1 15 6 16 5 2 2 5

## group 1 1 1 2 1 2 1 1 1 1

We suspect that the group membership explains some variation of the response y
or the covariate matrix X. Therefore we account for this confounding variable
by using stratified permutations:

set.seed(1)

omnibus(y,X,group=group)

## pvalue teststat covs

## 1 0.908999 651.6189 15
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2.5 Overdisperion

Setting the dispersion parameter of the negative binomial distribution equal to
zero is equivalent to using the Poisson distribution:

set.seed(1)

omnibus(y,X,phi=0)

## pvalue teststat covs

## 1 0.025 21877.03 15

2.6 Multiple covariate sets

Suppose that two covariate sets are available:

X1 <- X[,c(1:11,15)]

X2 <- X[,12:14]

We are interested in testing for associations between y on one hand, and X1
or X2 on the other:

set.seed(1)

omnibus(y,list(X1,X2))

## joint teststat single.1 single.2 covs.1 covs.2

## 1 0.038 3.184572 0.025 0.289 12 3

The output includes the p-value and the test statistic for the joint test, the
p-values for the individual tests, and the numbers of tested covariates.

2.7 P-values

When testing single covariate sets, the user can choose between three different
types of p-values. By default p-values are calculated by permutation without
repetitions (kind = 1). Alternatively, permutation can be interrupted when it
becomes impossible to reach a predefined significance level (0 < kind < 1), or
the method of control variables can be used (kind = 0).

omnibus(y,X,kind=1) # crude permutation test

omnibus(y,X,kind=0.05) # interrupting permutation

omnibus(y,X,kind=0) # method of control variables
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3 Decomposition

3.1 Minimal example

Even though a single hypothesis is tested on the covariate set, the function
proprius can obtain the contributions of individual covariates or samples to
the test statistic.

proprius(y,X,type="samples")

proprius(y,X,type="covariates")
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We observe that individual 2 contributes negatively to the test statistic, whereas
the contributions of individuals 4 and 6 are positive. We also observe that sev-
eral covariates have large positive contributions. Summing over the individual
contributions gives back the test statistic.
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3.2 Null distribution

If a significance level α is specified, then the 1 − α lower quantile under the null
hypothesis is plotted:

proprius(y,X,type="covariates",alpha=0.05)
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3.3 Further arguments

Offsets are included as in section 2.3, confounding variables are taken into ac-
count as in section 2.4, and overdispersion is treated as in section 2.5. The
decompositions have not been implemented for multiple covariate sets.
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4 Genome-wide analysis

4.1 Data

Suppose the matrix Y contains expression levels of 7 genes and 5 individuals,
and the matrices V and W represent two different molecular profiles. Suppose
that we furthermore know the locations of the genes (Y loc), the locations of
the genetic or epigenetic alterations (V loc and Wloc), and the chromosome
indicators Y chr, V chr and Wchr.

cbind(Yloc,Ychr,Y)

## Yloc Ychr ind1 ind2 ind3 ind4 ind5

## gene1 13 1 9 55 7 32 25

## gene2 29 1 10 6 13 11 13

## gene3 57 1 5 15 30 29 44

## gene4 61 1 11 51 4 9 40

## gene5 62 1 18 20 50 20 5

## gene6 63 1 16 1 4 37 33

## gene7 81 1 1 30 25 6 2

cbind(Vloc,Vchr,V)

## Vloc Vchr ind1 ind2 ind3 ind4 ind5

## V1 10 1 -0.2 1.6 1.8 -0.1 -0.9

## V2 15 1 -1.3 -1.5 1.5 1.0 0.4

## V3 17 1 -0.7 -1.2 0.4 0.6 -0.3

## V4 20 1 -1.3 -0.4 0.2 -1.2 -0.3

## V5 21 1 0.3 -0.9 1.7 -0.3 1.3

## V6 27 1 1.1 0.8 -1.0 0.4 0.3

## V7 41 1 -1.6 -0.5 0.7 -1.7 1.3

## V8 64 1 -0.5 0.7 -0.6 -0.7 1.0

## V9 91 1 1.5 -0.6 2.4 -0.3 0.7

## V10 98 1 -1.7 0.3 -0.3 -1.0 -0.3

cbind(Wloc,Wchr,W)

## Wloc Wchr ind1 ind2 ind3 ind4 ind5

## W1 18 1 1 0 2 1 1

## W2 28 1 1 1 1 0 0

## W3 30 1 0 1 2 0 2

## W4 50 1 0 2 1 1 2

## W5 54 1 2 1 1 1 1

## W6 64 1 2 1 0 2 0

## W7 70 1 1 0 1 1 1

## W8 85 1 0 1 1 1 2

7



4.2 Minimal example

We are interested in testing the expression of each gene for associations with
local genetic or epigenetic alterations.
Setting the argument window to 5 entails that each gene is tested for association
with all covariates that are located no further than 5 units from the gene. In
this example the covariates of interest are:

## gene1: V1 V2 V3

## gene2: V6

## gene3:

## gene4: V8

## gene5: V8

## gene6: V8

## gene7:

The chromosome-wide analysis will not return any p-value for genes 1 and 2,
because no covariates are in their vicinity.

set.seed(1)

cursus(Y,Yloc,V,Vloc,window=5)

4.3 Multiple chromosomes

If multiple chromosomes are analysed, it is important to include the chromosome
indicators. They make sure that genes are mapped to covariates on the same
chromosome:

set.seed(1)

cursus(Y,Yloc,V,Vloc,window=5,Ychr,Vchr)

4.4 Different library sizes

To account for different sequencing depths, an offset can be included:

offset <- colSums(Y) # library sizes

set.seed(1)

cursus(Y,Yloc,V,Vloc,window=5,offset=offset)

Otherwise the offset is calculated based on Y .
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4.5 Multiple molecular profiles

For the simultaneous analysis of multiple molecular profiles, the function cursus
expects one covariate matrix, one location vector and one window size for each
profile.

set.seed(1)

cursus(Y,Yloc,list(V,W),list(Vloc,Wloc),list(5,50))

## joint teststat single.1 single.2 covs.1 covs.2

## gene1 0.3583333 0.4628320 0.6583333 0.1916667 3 5

## gene2 0.5916667 -0.5976974 0.7666667 0.4000000 1 7

## gene3 NA NaN NA 0.3250000 0 8

## gene4 0.2416667 1.2678943 0.1333333 0.6333333 1 8

## gene5 0.2666667 0.9878779 0.1333333 0.5916667 1 8

## gene6 0.6916667 -1.0548603 0.7500000 0.5166667 1 8

## gene7 NA NaN NA 0.3833333 0 5

4.6 Further arguments

Confounding variables are taken into account as in section 2.4. By setting
phi=rep(0,q) where q is the number of genes, the user can restrict the nega-
tive binomial distribution to the Poisson distribution. By default, offsets and
dispersion parameters are calculated internally, but they can also be inserted.
The following example uses the R package edgeR from Bioconductor:

list <- edgeR::DGEList(Y)

list <- edgeR::calcNormFactors(list)

list <- edgeR::estimateDisp(list)

lib.size <- colSums(Y)

offset <- lib.size/exp(mean(log(lib.size)))

norm.factors <- list$samples$norm.factors

offset <- norm.factors*offset

phi <- list$tagwise.dispersion

cursus(Y,Yloc,V,Vloc,window=5,offset=offset,phi=phi)
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