We read in input.scone.csv, which is our file modified (and renamed) from the get.marker.names() function. The K-nearest neighbor generation is derived from the Fast Nearest Neighbors (FNN) R package, within our function Fnn(), which takes as input the “input markers” to be used, along with the concatenated data previously generated, and the desired k. We advise the default selection to the total number of cells in the dataset divided by 100, as has been optimized on existing mass cytometry datasets. The output of this function is a matrix of each cell and the identity of its k-nearest neighbors, in terms of its row number in the dataset used here as input.
library(Sconify)
# Markers from the user-generated excel file
marker.file <- system.file('extdata', 'markers.csv', package = "Sconify")
markers <- ParseMarkers(marker.file)
# How to convert your excel sheet into vector of static and functional markers
markers
## $input
## [1] "CD3(Cd110)Di" "CD3(Cd111)Di"
## [3] "CD3(Cd112)Di" "CD235-61-7-15(In113)Di"
## [5] "CD3(Cd114)Di" "CD45(In115)Di"
## [7] "CD19(Nd142)Di" "CD22(Nd143)Di"
## [9] "IgD(Nd145)Di" "CD79b(Nd146)Di"
## [11] "CD20(Sm147)Di" "CD34(Nd148)Di"
## [13] "CD179a(Sm149)Di" "CD72(Eu151)Di"
## [15] "IgM(Eu153)Di" "Kappa(Sm154)Di"
## [17] "CD10(Gd156)Di" "Lambda(Gd157)Di"
## [19] "CD24(Dy161)Di" "TdT(Dy163)Di"
## [21] "Rag1(Dy164)Di" "PreBCR(Ho165)Di"
## [23] "CD43(Er167)Di" "CD38(Er168)Di"
## [25] "CD40(Er170)Di" "CD33(Yb173)Di"
## [27] "HLA-DR(Yb174)Di"
##
## $functional
## [1] "pCrkL(Lu175)Di" "pCREB(Yb176)Di" "pBTK(Yb171)Di"
## [4] "pS6(Yb172)Di" "cPARP(La139)Di" "pPLCg2(Pr141)Di"
## [7] "pSrc(Nd144)Di" "Ki67(Sm152)Di" "pErk12(Gd155)Di"
## [10] "pSTAT3(Gd158)Di" "pAKT(Tb159)Di" "pBLNK(Gd160)Di"
## [13] "pP38(Tm169)Di" "pSTAT5(Nd150)Di" "pSyk(Dy162)Di"
## [16] "tIkBa(Er166)Di"
# Get the particular markers to be used as knn and knn statistics input
input.markers <- markers[[1]]
funct.markers <- markers[[2]]
# Selection of the k. See "Finding Ideal K" vignette
k <- 30
# The built-in scone functions
wand.nn <- Fnn(cell.df = wand.combined, input.markers = input.markers, k = k)
# Cell identity is in rows, k-nearest neighbors are columns
# List of 2 includes the cell identity of each nn,
# and the euclidean distance between
# itself and the cell of interest
# Indices
str(wand.nn[[1]])
## int [1:1000, 1:30] 796 942 789 984 370 330 134 566 161 863 ...
wand.nn[[1]][1:20, 1:10]
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 796 888 533 16 855 173 607 955 616 691
## [2,] 942 659 280 489 813 356 913 722 332 222
## [3,] 789 132 76 975 949 664 825 206 675 721
## [4,] 984 30 514 205 35 406 484 746 152 888
## [5,] 370 775 328 26 946 521 64 9 905 753
## [6,] 330 988 566 827 136 403 928 57 784 608
## [7,] 134 712 646 679 680 880 672 619 772 977
## [8,] 566 366 827 140 34 989 988 814 454 698
## [9,] 161 165 843 16 312 618 26 691 731 263
## [10,] 863 772 675 101 934 679 949 603 643 882
## [11,] 506 189 109 367 881 875 317 45 78 434
## [12,] 628 147 48 41 733 474 701 741 346 130
## [13,] 739 374 725 810 405 701 638 147 360 742
## [14,] 813 913 659 392 277 505 103 691 68 753
## [15,] 353 611 658 936 919 75 632 777 91 36
## [16,] 9 731 940 83 165 575 312 379 607 491
## [17,] 136 735 698 325 222 305 429 477 448 706
## [18,] 613 185 455 555 74 461 411 816 180 79
## [19,] 577 96 137 737 874 261 872 624 78 151
## [20,] 620 274 37 198 409 609 821 447 254 383
# Distance
str(wand.nn[[2]])
## num [1:1000, 1:30] 3.25 3.95 3.32 3.18 2.29 ...
wand.nn[[2]][1:20, 1:10]
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 3.248685 3.317628 3.373888 3.413921 3.482912 3.503532 3.529605
## [2,] 3.953308 4.210395 4.274600 4.449122 4.463766 4.479801 4.523224
## [3,] 3.322252 3.427536 3.838429 3.991600 4.082627 4.195671 4.265636
## [4,] 3.181706 3.356851 3.477465 3.494441 3.549906 3.617902 3.657086
## [5,] 2.289549 2.622504 2.747565 2.752907 2.919913 2.956911 2.977494
## [6,] 3.063779 3.522686 3.525555 3.535084 3.620843 3.706292 3.745903
## [7,] 2.912934 2.964452 3.072944 3.205213 3.212433 3.272868 3.294551
## [8,] 3.631617 3.739465 3.840959 3.864758 3.875702 3.901105 3.935169
## [9,] 2.166226 2.469439 2.482662 2.545865 2.648087 2.763797 2.811036
## [10,] 2.903652 3.185238 3.392146 3.414274 3.501026 3.600127 3.619979
## [11,] 2.287895 2.697609 3.095989 3.155849 3.180094 3.315097 3.319824
## [12,] 3.654629 3.862997 3.918009 3.935926 3.973030 4.009307 4.063449
## [13,] 3.195710 4.140898 4.255452 4.282300 4.425870 4.431478 4.439363
## [14,] 2.561204 2.565487 2.886617 2.981166 3.040671 3.049882 3.061995
## [15,] 4.392323 4.487633 4.516056 4.593959 4.643178 4.658434 4.740319
## [16,] 2.545865 2.780422 2.920747 2.995162 2.995501 3.019087 3.040590
## [17,] 3.917719 4.248476 4.265772 4.368631 4.463071 4.502870 4.592141
## [18,] 2.954614 3.207663 3.315205 3.432608 3.472269 3.585439 3.597923
## [19,] 3.071717 3.756475 3.768423 3.830020 3.909412 4.239613 4.260064
## [20,] 4.022139 4.184798 4.271325 4.335344 4.378699 4.385860 4.534095
## [,8] [,9] [,10]
## [1,] 3.544249 3.547146 3.557917
## [2,] 4.559657 4.579138 4.580091
## [3,] 4.279151 4.281251 4.387463
## [4,] 3.662189 3.844428 3.876545
## [5,] 3.073188 3.090613 3.097979
## [6,] 3.810975 3.896887 3.966544
## [7,] 3.348177 3.377650 3.402435
## [8,] 3.984764 4.018140 4.056766
## [9,] 2.826947 2.845754 2.916131
## [10,] 3.640331 3.671128 3.682761
## [11,] 3.392430 3.467719 3.627843
## [12,] 4.065756 4.241986 4.392166
## [13,] 4.479635 4.480454 4.482924
## [14,] 3.093601 3.141183 3.150317
## [15,] 4.758214 4.763608 4.817173
## [16,] 3.065002 3.079463 3.125789
## [17,] 4.613031 4.650517 4.680920
## [18,] 3.602431 3.613011 3.622569
## [19,] 4.338036 4.418799 4.425750
## [20,] 4.592491 4.758725 4.760341
This function iterates through each KNN, and performs a series of calculations. The first is fold change values for each maker per KNN, where the user chooses whether this will be based on medians or means. The second is a statistical test, where the user chooses t test or Mann-Whitney U test. I prefer the latter, because it does not assume any properties of the distributions. Of note, the p values are adjusted for false discovery rate, and therefore are called q values in the output of this function. The user also inputs a threshold parameter (default 0.05), where the fold change values will only be shown if the corresponding statistical test returns a q value below said threshold. Finally, the “multiple.donor.compare” option, if set to TRUE will perform a t test based on the mean per-marker values of each donor. This is to allow the user to make comparisons across replicates or multiple donors if that is relevant to the user’s biological questions. This function returns a matrix of cells by computed values (change and statistical test results, labeled either marker.change or marker.qvalue). This matrix is intermediate, as it gets concatenated with the original input matrix in the post-processing step (see the relevant vignette). We show the code and the output below. See the post-processing vignette, where we show how this gets combined with the input data, and additional analysis is performed.
wand.scone <- SconeValues(nn.matrix = wand.nn,
cell.data = wand.combined,
scone.markers = funct.markers,
unstim = "basal")
wand.scone
## # A tibble: 1,000 x 34
## `pCrkL(Lu175)Di… `pCREB(Yb176)Di… `pBTK(Yb171)Di.… `pS6(Yb172)Di.I…
## <dbl> <dbl> <dbl> <dbl>
## 1 0.973 0.965 0.941 0.947
## 2 0.973 1 0.633 0.893
## 3 0.982 0.965 0.893 0.898
## 4 0.982 0.970 0.814 0.893
## 5 0.973 0.970 1 0.893
## 6 0.973 0.934 0.975 0.970
## 7 0.973 0.980 0.814 0.896
## 8 0.982 0.934 0.842 0.893
## 9 0.982 0.934 0.825 0.893
## 10 1 0.934 0.825 0.987
## # … with 990 more rows, and 30 more variables:
## # `cPARP(La139)Di.IL7.qvalue` <dbl>, `pPLCg2(Pr141)Di.IL7.qvalue` <dbl>,
## # `pSrc(Nd144)Di.IL7.qvalue` <dbl>, `Ki67(Sm152)Di.IL7.qvalue` <dbl>,
## # `pErk12(Gd155)Di.IL7.qvalue` <dbl>,
## # `pSTAT3(Gd158)Di.IL7.qvalue` <dbl>, `pAKT(Tb159)Di.IL7.qvalue` <dbl>,
## # `pBLNK(Gd160)Di.IL7.qvalue` <dbl>, `pP38(Tm169)Di.IL7.qvalue` <dbl>,
## # `pSTAT5(Nd150)Di.IL7.qvalue` <dbl>, `pSyk(Dy162)Di.IL7.qvalue` <dbl>,
## # `tIkBa(Er166)Di.IL7.qvalue` <dbl>, `pCrkL(Lu175)Di.IL7.change` <dbl>,
## # `pCREB(Yb176)Di.IL7.change` <dbl>, `pBTK(Yb171)Di.IL7.change` <dbl>,
## # `pS6(Yb172)Di.IL7.change` <dbl>, `cPARP(La139)Di.IL7.change` <dbl>,
## # `pPLCg2(Pr141)Di.IL7.change` <dbl>, `pSrc(Nd144)Di.IL7.change` <dbl>,
## # `Ki67(Sm152)Di.IL7.change` <dbl>, `pErk12(Gd155)Di.IL7.change` <dbl>,
## # `pSTAT3(Gd158)Di.IL7.change` <dbl>, `pAKT(Tb159)Di.IL7.change` <dbl>,
## # `pBLNK(Gd160)Di.IL7.change` <dbl>, `pP38(Tm169)Di.IL7.change` <dbl>,
## # `pSTAT5(Nd150)Di.IL7.change` <dbl>, `pSyk(Dy162)Di.IL7.change` <dbl>,
## # `tIkBa(Er166)Di.IL7.change` <dbl>, IL7.fraction.cond.2 <dbl>,
## # density <dbl>
If one wants to export KNN data to perform other statistics not available in this package, then I provide a function that produces a list of each cell identity in the original input data matrix, and a matrix of all cells x features of its KNN.
I also provide a function to find the KNN density estimation independently of the rest of the “scone.values” analysis, to save time if density is all the user wants. With this density estimation, one can perform interesting analysis, ranging from understanding phenotypic density changes along a developmental progression (see post-processing vignette for an example), to trying out density-based binning methods (eg. X-shift). Of note, this density is specifically one divided by the aveage distance to k-nearest neighbors. This specific measure is related to the Shannon Entropy estimate of that point on the manifold (https://hal.archives-ouvertes.fr/hal-01068081/document).
I use this metric to avoid the unusual properties of the volume of a sphere as it increases in dimensions (https://en.wikipedia.org/wiki/Volume_of_an_n-ball). This being said, one can modify this vector to be such a density estimation (example http://www.cs.haifa.ac.il/~rita/ml_course/lectures_old/KNN.pdf), by treating the distance to knn as the radius of a n-dimensional sphere and incoroprating said volume accordingly.
An individual with basic programming skills can iterate through these elements to perform the statistics of one’s choosing. Examples would include per-KNN regression and classification, or feature imputation. The additional functionality is shown below, with the example knn.list in the package being the first ten instances:
# Constructs KNN list, computes KNN density estimation
wand.knn.list <- MakeKnnList(cell.data = wand.combined, nn.matrix = wand.nn)
wand.knn.list[[8]]
## # A tibble: 30 x 51
## `CD3(Cd110)Di` `CD3(Cd111)Di` `CD3(Cd112)Di` `CD235-61-7-15(…
## <dbl> <dbl> <dbl> <dbl>
## 1 -0.420 -0.408 -0.514 -0.637
## 2 -0.923 -0.105 0.824 0.756
## 3 0.396 -0.107 -0.0873 -0.144
## 4 -0.730 -0.234 -0.223 0.764
## 5 -0.251 -0.109 -0.0732 -0.277
## 6 0.0680 0.521 0.261 0.316
## 7 -0.0645 -0.152 -0.178 0.173
## 8 -0.264 -0.269 -0.344 0.671
## 9 -0.306 -0.664 -0.507 -1.23
## 10 -0.0700 -0.183 -0.375 -0.716
## # … with 20 more rows, and 47 more variables: `CD3(Cd114)Di` <dbl>,
## # `CD45(In115)Di` <dbl>, `CD19(Nd142)Di` <dbl>, `CD22(Nd143)Di` <dbl>,
## # `IgD(Nd145)Di` <dbl>, `CD79b(Nd146)Di` <dbl>, `CD20(Sm147)Di` <dbl>,
## # `CD34(Nd148)Di` <dbl>, `CD179a(Sm149)Di` <dbl>, `CD72(Eu151)Di` <dbl>,
## # `IgM(Eu153)Di` <dbl>, `Kappa(Sm154)Di` <dbl>, `CD10(Gd156)Di` <dbl>,
## # `Lambda(Gd157)Di` <dbl>, `CD24(Dy161)Di` <dbl>, `TdT(Dy163)Di` <dbl>,
## # `Rag1(Dy164)Di` <dbl>, `PreBCR(Ho165)Di` <dbl>, `CD43(Er167)Di` <dbl>,
## # `CD38(Er168)Di` <dbl>, `CD40(Er170)Di` <dbl>, `CD33(Yb173)Di` <dbl>,
## # `HLA-DR(Yb174)Di` <dbl>, Time <dbl>, Cell_length <dbl>,
## # `cPARP(La139)Di` <dbl>, `pPLCg2(Pr141)Di` <dbl>,
## # `pSrc(Nd144)Di` <dbl>, `pSTAT5(Nd150)Di` <dbl>, `Ki67(Sm152)Di` <dbl>,
## # `pErk12(Gd155)Di` <dbl>, `pSTAT3(Gd158)Di` <dbl>,
## # `pAKT(Tb159)Di` <dbl>, `pBLNK(Gd160)Di` <dbl>, `pSyk(Dy162)Di` <dbl>,
## # `tIkBa(Er166)Di` <dbl>, `pP38(Tm169)Di` <dbl>, `pBTK(Yb171)Di` <dbl>,
## # `pS6(Yb172)Di` <dbl>, `pCrkL(Lu175)Di` <dbl>, `pCREB(Yb176)Di` <dbl>,
## # `DNA1(Ir191)Di` <dbl>, `DNA2(Ir193)Di` <dbl>,
## # `Viability1(Pt195)Di` <dbl>, `Viability2(Pt196)Di` <dbl>,
## # wanderlust <dbl>, condition <chr>
# Finds the KNN density estimation for each cell, ordered by column, in the
# original data matrix
wand.knn.density <- GetKnnDe(nn.matrix = wand.nn)
str(wand.knn.density)
## num [1:1000] 0.272 0.214 0.223 0.252 0.316 ...