BiocNeighbors 1.6.0
The BiocNeighbors package implements a few algorithms for exact nearest neighbor searching:
Both KMKNN and VP-trees involve a component of randomness during index construction, though the k-nearest neighbors result is fully deterministic1 Except in the presence of ties, see ?"BiocNeighbors-ties"
for details..
The most obvious application is to perform a k-nearest neighbors search. We’ll mock up an example here with a hypercube of points, for which we want to identify the 10 nearest neighbors for each point.
nobs <- 10000
ndim <- 20
data <- matrix(runif(nobs*ndim), ncol=ndim)
The findKNN()
method expects a numeric matrix as input with data points as the rows and variables/dimensions as the columns.
We indicate that we want to use the KMKNN algorithm by setting BNPARAM=KmknnParam()
(which is also the default, so this is not strictly necessary here).
We could use a VP tree instead by setting BNPARAM=VptreeParam()
.
fout <- findKNN(data, k=10, BNPARAM=KmknnParam())
head(fout$index)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 7704 3812 2732 7485 9026 7950 4844 5782 2418 4552
## [2,] 2418 9044 3101 93 5548 9062 3988 6713 3220 2496
## [3,] 7513 513 3319 9183 3835 3812 2764 8987 4980 518
## [4,] 5381 7279 5268 1546 7344 8763 7962 4115 4572 9932
## [5,] 4317 5753 2682 4857 2385 7040 3849 7183 6195 8891
## [6,] 4686 4182 1894 1731 1182 6481 8799 4026 5237 3372
head(fout$distance)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 0.9220449 0.9323551 0.9526357 0.9935758 1.0423888 1.0827256 1.0837365
## [2,] 0.9777124 0.9995806 1.0613944 1.0636746 1.0875799 1.0893438 1.1183661
## [3,] 0.8513908 0.9472697 0.9604440 0.9906484 1.0220802 1.0450553 1.0458348
## [4,] 0.9359031 1.0011259 1.0467141 1.0954113 1.1127008 1.1221098 1.1290555
## [5,] 0.9343316 1.0413058 1.0534356 1.0608078 1.0875907 1.0893875 1.0909580
## [6,] 0.8509972 0.8588191 0.8900524 0.9137953 0.9148286 0.9524322 0.9597217
## [,8] [,9] [,10]
## [1,] 1.0925151 1.1072296 1.1072813
## [2,] 1.1250463 1.1308155 1.1424698
## [3,] 1.0664560 1.0772833 1.0913108
## [4,] 1.1365076 1.1368529 1.1413779
## [5,] 1.1038071 1.1138966 1.1193266
## [6,] 0.9667839 0.9755881 0.9838134
Each row of the index
matrix corresponds to a point in data
and contains the row indices in data
that are its nearest neighbors.
For example, the 3rd point in data
has the following nearest neighbors:
fout$index[3,]
## [1] 7513 513 3319 9183 3835 3812 2764 8987 4980 518
… with the following distances to those neighbors:
fout$distance[3,]
## [1] 0.8513908 0.9472697 0.9604440 0.9906484 1.0220802 1.0450553 1.0458348
## [8] 1.0664560 1.0772833 1.0913108
Note that the reported neighbors are sorted by distance.
Another application is to identify the k-nearest neighbors in one dataset based on query points in another dataset. Again, we mock up a small data set:
nquery <- 1000
ndim <- 20
query <- matrix(runif(nquery*ndim), ncol=ndim)
We then use the queryKNN()
function to identify the 5 nearest neighbors in data
for each point in query
.
qout <- queryKNN(data, query, k=5, BNPARAM=KmknnParam())
head(qout$index)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 7898 8113 9663 8018 7594
## [2,] 6973 4519 400 2447 7474
## [3,] 520 7616 2133 2525 2753
## [4,] 5422 1834 5114 1444 8955
## [5,] 780 235 1702 7149 2736
## [6,] 6699 4654 7701 935 1394
head(qout$distance)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.7462425 0.8220431 0.8632926 0.9006545 0.9051815
## [2,] 0.8322732 0.9209732 0.9851134 1.0015805 1.0094636
## [3,] 1.0278264 1.1017083 1.1100442 1.1243124 1.1349793
## [4,] 0.8456185 0.9392159 0.9449050 0.9651462 0.9731684
## [5,] 0.9456846 0.9696223 1.0008496 1.0189542 1.0310230
## [6,] 0.7670822 0.8415293 0.9008054 0.9515454 0.9575494
Each row of the index
matrix contains the row indices in data
that are the nearest neighbors of a point in query
.
For example, the 3rd point in query
has the following nearest neighbors in data
:
qout$index[3,]
## [1] 520 7616 2133 2525 2753
… with the following distances to those neighbors:
qout$distance[3,]
## [1] 1.027826 1.101708 1.110044 1.124312 1.134979
Again, the reported neighbors are sorted by distance.
Users can perform the search for a subset of query points using the subset=
argument.
This yields the same result as but is more efficient than performing the search for all points and subsetting the output.
findKNN(data, k=5, subset=3:5)
## $index
## [,1] [,2] [,3] [,4] [,5]
## [1,] 7513 513 3319 9183 3835
## [2,] 5381 7279 5268 1546 7344
## [3,] 4317 5753 2682 4857 2385
##
## $distance
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.8513908 0.9472697 0.960444 0.9906484 1.022080
## [2,] 0.9359031 1.0011259 1.046714 1.0954113 1.112701
## [3,] 0.9343316 1.0413058 1.053436 1.0608078 1.087591
If only the indices are of interest, users can set get.distance=FALSE
to avoid returning the matrix of distances.
This will save some time and memory.
names(findKNN(data, k=2, get.distance=FALSE))
## [1] "index"
It is also simple to speed up functions by parallelizing the calculations with the BiocParallel framework.
library(BiocParallel)
out <- findKNN(data, k=10, BPPARAM=MulticoreParam(3))
For multiple queries to a constant data
, the pre-clustering can be performed in a separate step with buildIndex()
.
The result can then be passed to multiple calls, avoiding the overhead of repeated clustering2 The algorithm type is automatically determined when BNINDEX
is specified, so there is no need to also specify BNPARAM
in the later functions..
pre <- buildIndex(data, BNPARAM=KmknnParam())
out1 <- findKNN(BNINDEX=pre, k=5)
out2 <- queryKNN(BNINDEX=pre, query=query, k=2)
The default setting is to search on the Euclidean distance.
Alternatively, we can use the Manhattan distance by setting distance="Manhattan"
in the BiocNeighborParam
object.
out.m <- findKNN(data, k=5, BNPARAM=KmknnParam(distance="Manhattan"))
Advanced users may also be interested in the raw.index=
argument, which returns indices directly to the precomputed object rather than to data
.
This may be useful inside package functions where it may be more convenient to work on a common precomputed object.
sessionInfo()
## R version 4.0.0 (2020-04-24)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows Server 2012 R2 x64 (build 9600)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=C
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] BiocParallel_1.22.0 BiocNeighbors_1.6.0 knitr_1.28
## [4] BiocStyle_2.16.0
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.4.6 bookdown_0.18 lattice_0.20-41
## [4] digest_0.6.25 grid_4.0.0 stats4_4.0.0
## [7] magrittr_1.5 evaluate_0.14 rlang_0.4.5
## [10] stringi_1.4.6 S4Vectors_0.26.0 Matrix_1.2-18
## [13] rmarkdown_2.1 tools_4.0.0 stringr_1.4.0
## [16] parallel_4.0.0 xfun_0.13 yaml_2.2.1
## [19] compiler_4.0.0 BiocGenerics_0.34.0 BiocManager_1.30.10
## [22] htmltools_0.4.0
Wang, X. 2012. “A Fast Exact k-Nearest Neighbors Algorithm for High Dimensional Search Using k-Means Clustering and Triangle Inequality.” Proc Int Jt Conf Neural Netw 43 (6): 2351–8.
Yianilos, P. N. 1993. “Data Structures and Algorithms for Nearest Neighbor Search in General Metric Spaces.” In SODA, 93:311–21. 194.