proDA_package-package | proDA: Identify differentially abundant proteins in label-free mass spectrometry |
$-method | Fluent use of accessor methods |
$<--method | Fluent use of accessor methods |
.DollarNames.proDAFit | Fluent use of accessor methods |
.proDAFit | proDA Class Definition |
abundances | Get the abundance matrix |
abundances-method | Get different features and elements of the 'proDAFit' object |
accessor_methods | Get different features and elements of the 'proDAFit' object |
coefficients | Get the coefficients |
coefficients-method | Get different features and elements of the 'proDAFit' object |
coefficient_variance_matrices | Get the coefficients |
coefficient_variance_matrices-method | Get different features and elements of the 'proDAFit' object |
convergence | Get the convergence information |
convergence-method | Get different features and elements of the 'proDAFit' object |
design-method | Get different features and elements of the 'proDAFit' object |
dist_approx | Calculate an approximate distance for 'object' |
dist_approx-method | Distance method for 'proDAFit' object |
dist_approx_impl | Distance method for 'proDAFit' object |
dollar_methods | Fluent use of accessor methods |
feature_parameters | Get the feature parameters |
feature_parameters-method | Get different features and elements of the 'proDAFit' object |
generate_synthetic_data | Generate a dataset according to the probabilistic dropout model |
hyper_parameters | Get the hyper parameters |
hyper_parameters-method | Get different features and elements of the 'proDAFit' object |
invprobit | Inverse probit function |
median_normalization | Column wise median normalization of the data matrix |
pd_lm | Fit a single linear probabilistic dropout model |
pd_row_f_test | Row-wise tests of difference using the probabilistic dropout model |
pd_row_t_test | Row-wise tests of difference using the probabilistic dropout model |
predict-method | Predict the parameters or values of additional proteins |
proDA | Main function to fit the probabilistic dropout model |
proDAFit-class | proDA Class Definition |
proDA_package | proDA: Identify differentially abundant proteins in label-free mass spectrometry |
reference_level | Get the reference level |
reference_level-method | Get different features and elements of the 'proDAFit' object |
result_names | Get the result_names |
result_names-method | Identify differentially abundant proteins |
test_diff | Identify differentially abundant proteins |