
lpsymphony - Integer Linear Programming
in R

Vladislav Kim

April 27, 2020

Contents

1 Introduction . 2

2 lpsymphony: Quick Start . 2

3 Integer Linear Programming . 4

3.1 Equivalent and Dual Formulations 5

3.2 Solving the Dual Problem. 5

3.3 Methods in Integer Programming. 6

lpsymphony - Integer Linear Programming in R

1https://projects.
coin-or.org/
SYMPHONY
2http://cran.
r-project.org/
web/packages/
Rsymphony/index.
html

1 Introduction
Package lpsymphony adapts Symphony1, an open-source mixed-integer linear pro-
gramming (MILP) solver, for use in R. This package is largely based on Rsymphony
package distributed via CRAN 2. The point of divergence, however, is the inclusion of
sources for POSIX systems and DLLs for Windows, which facilitates the installation
of Symphony itself.

2 lpsymphony: Quick Start
The package exports lpsymphony_solve_LP() function, which provides a basic in-
terface between the C code of SYMPHONY and R. The user passes a vector with
objective function coefficients, a constraint matrix and a vector of applicable inequal-
ity signs (i.e. ≤, ≥, =, etc) as parameters. The function returns an optimal mixed
or pure integer solution.

A simple example of function maximization would be

max {3x1 + x2 + 3x3}

subject to

−x1 + 2x2 + x3 ≤ 4

4x2 − 3x3 ≤ 2

x1 − 3x2 + 2x3 ≤ 3

x1, x3 ∈ Z+

x2 ∈ R+

In this simple mixed-integer problem we have 2 variables that are integer-valued (x1
and x3) and a rational variable (x3). Note that in general variables xi of MILP
problem are non-negative and hence a "+" subscript on Z+ and R+.

To solve this maximization problem using lpsymphony include the package:

library("lpsymphony")

Define the vector of objective function coefficients. In this case (3, 1, 3):

obj <- c(3, 1, 3)

Define the constraint matrix (left-hand side coefficients):

mat <- matrix(c(-1, 0, 1, 2, 4, -3, 1, -3, 2), nrow = 3)

mat <- matrix(c(-1,2,1,0,4,-3,1,-3,2), nrow = 3)

2

https://projects.coin-or.org/SYMPHONY
https://projects.coin-or.org/SYMPHONY
https://projects.coin-or.org/SYMPHONY
http://cran.r-project.org/web/packages/Rsymphony/index.html
http://cran.r-project.org/web/packages/Rsymphony/index.html
http://cran.r-project.org/web/packages/Rsymphony/index.html
http://cran.r-project.org/web/packages/Rsymphony/index.html
http://cran.r-project.org/web/packages/Rsymphony/index.html

lpsymphony - Integer Linear Programming in R

Be careful not to mix up rows and columns! Here we create the matrix in the column-
major order, i.e. reading off the matrix entries column by column (so vertically, not
horizontally). Note that the matrix in the comment is not the same as the problem’s
constraint matrix. In fact it is its transpose. As explained in 3.1 this is the constraint
matrix of the dual problem.

Next indicate the inequality (or equality) signs:

dir <- c("<=", "<=", "<=")

Vector of right-hand side values:

rhs <- c(4, 2, 3)

This is a maximization problem, thus:

max <- TRUE

Important: indicate which variables are integer-valued and which are allowed to be
rational. Possible options are "I" for integer, "B" for binary, "C" for continuous
variable type.

types <- c("I", "C", "I")

To obtain the optimal solution call lpsymphony_solve_LP() function:

lpsymphony_solve_LP(obj, mat, dir, rhs, types = types, max = max)

$solution

[1] 5.00 2.75 3.00

##

$objval

[1] 26.75

##

$status

TM_OPTIMAL_SOLUTION_FOUND

0

Setting Lower and Upper Bounds
Another useful argument in lpsymphony is the bounds argument. The default lower
and upper bounds are zero and infinity, respectively.

To change the default bounds pass a list of upper-bound and lower-bound lists (ar-
gument bounds is a list of lists). For instance, if you wish that all variables in the
previous problem are continuous and between 1 and 5, you can

3

lpsymphony - Integer Linear Programming in R

bounds <- list(lower = list(ind = c(1,2,3), val = c(1,1,1)),

upper = list(ind = c(1,2,3), val = c(5,5,5)))

Now we need to change types to all continuous variables and pass bounds to lpsym

phony_solve_LP:

types <- c("C", "C", "C")

lpsymphony_solve_LP(obj, mat, dir, rhs, types = types, max = max, bounds = bounds)

$solution

[1] 5.000000 2.857143 3.285714

##

$objval

[1] 27.71429

##

$status

TM_OPTIMAL_SOLUTION_FOUND

0

It is interesting to see if there are any integer solutions in the interval [1,5] and if
they could be naively retrieved from rounding the previous solution:

types <- c("I", "I", "I")

lpsymphony_solve_LP(obj, mat, dir, rhs, types = types, max = max, bounds = bounds)

$solution

[1] 5 2 2

##

$objval

[1] 23

##

$status

TM_OPTIMAL_SOLUTION_FOUND

0

As one can see, integer solutions for x2 and x3 are not simply rounded values of
the continuous case. It is true in general that it is impossible to obtain an integer
solution by simply rounding the solution up or down.

3 Integer Linear Programming

Given an objective function z = cTx, where c is a vector of objective coefficients,
mixed-integer maximization can be formulated as

max {cTx |Ax ≤ b, x ≥ 0, xi ∈ Z}

4

lpsymphony - Integer Linear Programming in R

with the constraint matrix A and the right-hand-side vector b. Note that here xi are
all pure integers. However, in geneal some of xi can be rational numbers.

In a linear programming (LP) relaxation the integer requirement is loosened and
variables are allowed to take on continuous values to reach the first feasible solution
or to conclude that the linear system doesn’t have solutions. Solving an optimization
problem by first treating x as floating point numbers and rounding off the final
result might produce a good estimate of integer solution. However, finding an exact
solution with LP relaxation does not produce accurate results in general.

3.1 Equivalent and Dual Formulations
Some care has to be taken in order to differentiate between an equivalent and dual
formulations. An equivalent way of stating the above maximization as a minimization
problem would be to use the negative of c, vector of objective coefficients with
constraint matrix A and RHS vector b same as above:

min {−cTx |Ax ≤ b, x ≥ 0, xi ∈ Z}

Every optimization problem can be viewed from 2 perspectives. The inversion of the
objective of the problem, not simply max ←→ min exchange and sign inversion in
the objective function, leads to duality. The original problem then is called a primal
problem, while inversion of perspective gives rise to a dual problem.

A dual problem has a completely different interpretation than the primal and the
following mathematical considerations have to be made. For example, the dual of
the above maximization task would be

min {bT y |AT y ≥ c, y ≥ 0, yi ∈ Z}

Note that the dual objective function is bT y with the primal right-hand side vector b
acting as the (dual) vector of objective coefficients. The dual constraint matrix is the
transpose of the original (primal) constraint matrix A and finally the dual right-hand
side vector is the primal vector of objective coefficients c.

3.2 Solving the Dual Problem
Dual vector of objective coefficients is the primal RHS vector

obj_dual <- rhs # rhs fom the Quick Start example

The dual constraint matrix is the transpose of the primal A

mat_dual <- t(mat) # mat from the Quick Start example

Dual RHS vector is the primal objective vector

5

lpsymphony - Integer Linear Programming in R

rhs_dual <- obj

Direction of dual signs is reversed with respect to primal

dir_dual <- c(">=", ">=", ">=")

Dual of maximization is minimization:

max_dual <- FALSE

Types can be used from the above program (in this case).

To obtain the optimal solution of the dual problem (minimization):

lpsymphony_solve_LP(obj_dual, mat_dual, dir_dual, rhs_dual, types = c("I","C","I"), max = max_dual)

$solution

[1] 2 3 5

##

$objval

[1] 29

##

$status

TM_OPTIMAL_SOLUTION_FOUND

0

3.3 Methods in Integer Programming
The earliest approach to integer programming was Gomory’s method of cutting planes
developed in 1958. The basic principle is to solve the LP relaxation of the problem
at the beginning of each iteration step and check whether the solution is integer-
valued. If the found solution is integral, the optimum is found. Otherwise, continue
by generating new inequalities that usually lead to the tightening (Fig. 1) of the
relaxation and then reoptimize. The process stops when all variables in the solution
vector are integers. Fig. 1 illustrates schematically how the candidate solution space
of the LP shrinks upon addition of Gomory cuts.

Modern integer linear programming solvers, however, do not solely utilize cutting
plane algorithm to solve MILP problems. Symphony uses primarily branch and
bound and branch and cut methods.

Branch and bound is a tree search algorithm that divides the initial problem into sub-
problems (Fig. 2) and eliminates invalid solutions by local and global bound checking.
Different variants of branch and bound exist. Among implementation details are the
following aspects: choice of the next tree node to be processed, the way bounds are
calculated, the way the tree branches out, etc.

6

lpsymphony - Integer Linear Programming in R

Illustration of Gomory cutting plane method

P(A,b) = original space of candidate solutions

After Gomory cuts

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 1: Gomory cuts reduce the number of candidate solutions
P(A,b) is a polyhedron defined by the initial set of constraints Ax ≤ b. The black dots indicate integers;
dotted lines are Gomory cuts

Problem

SP1

SP11

...
...

SP12

...
...

SP2

SP21

...
...

SP22

...
...

Figure 2: A sketch of a search tree generated by branch and bound
SP stands for subproblem

Branch and cut is a modification of branch and bound, in which cutting plane method
is used to tighten LP relaxations. With branch and cut one can generate cuts at the
root of the tree (i.e. only in the beginning) or at every iteration of branch and bound.
Cut generation helps reduce the size of the tree and speeds up branch and bound.

7

	1 Introduction
	2 lpsymphony: Quick Start
	3 Integer Linear Programming
	3.1 Equivalent and Dual Formulations
	3.2 Solving the Dual Problem
	3.3 Methods in Integer Programming

