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1 Overview

The BGmix package implements the models used in Lewin et al. (2007) for finding differential ex-
pression for genes in two or more samples. When there are two samples, a 3-component mixture
is used to classify genes as over-expressed, under-expressed and non-differentially expressed, and
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gene variances are modelled exchangeably to allow for variability between genes. The model is fully
Bayesian, estimating the proportion of differentially expressed genes and the mixture parameters
simultaneously. The model can also be run with unstructured priors, for use with multi-class data.

Several different parametric models are possible. An important part of the analysis is to check if
the model is a reasonable fit to the data, and we do this via predictive checks.

The analysis is carried out using Markov Chain Monte Carlo. Convergence of the output can be
checked using the coda package available from CRAN. We also provide a function to plot the trace
of the parameters as part of the BGmix package.

Two alternatives are provided for assessing error rates. With the mixture model, an estimate of
the false discovery rate (FDR) based on posterior probabilities can be calculated. For unstructured
priors, a tail posterior probability method (Bochkina & Richardson (2007)) can be used.

The input to the model can be expression data processed by any algorithm. We provide a function
readBGX to read in the output from the package BGX, which is a fully Bayesian hierarchical model
for obtaining gene expression measures (Hein et al. (2005)).

2 Data format

Data input to BGmix consists of sample mean and sample variance for each gene, under each
experimental condition. Three R objects are required as arguments to the BGmix function:

• ybar: a matrix, whose columns correspond to experimental conditions and rows correspond
to genes. Each column contains sample means for all genes under one condition.

• ss: a matrix, whose columns correspond to experimental conditions and rows correspond to
genes. Each column contains sample variances for all genes under one condition. Sample
variances must be the unbiased estimates, i.e. divide by no. replicates - 1 (this is the default
for the standard R var function).

• nreps: a vector containing the number of replicates in each condition.

Note that for a paired design, the data is treated as having only one ‘condition’, and ybar is then
the mean difference between the two experimental conditions.

The data must be transformed so that Normal sampling errors are a reasonable assumption (eg.
with a log or shifted-log transform), and normalised if necessary.

3 Experimental design

The first level of the model can be written as a regression for each gene:

ȳg = XT .βg + εg (1)

where ȳg is the vector of sample means for different conditions and βg is a vector of effect param-
eters. Different parametrisations can be achieved using the ‘design’ matrix X. At most 1 effect
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parameter can have a mixture prior. (This will generally be the differential expression parameter.)

By default, genes have a separate variance parameter for each condition (σ2gc). However, a more
general variance structure can be used, for instance each gene can have one variance across all
conditions (σ2g).

The BGmix function takes four arguments relating to the parametrisation:

• xx: design matrix X. The dimensions of X must be no. effects x no. conditions.

• jstar: label of the effect which has the mixture prior. Labels start at 0, since this is passed
to C++. If all parameters are fixed effects, set jstar = -1.

• ntau: the number of variance parameters for each gene.

• indtau: label for each condition indicating which variance grouping that condition belongs
to. The length of indtau must be the same as the number of conditions.

The defaults for these parameters are those for the differential expression, unpaired data case (see
below).

3.1 Differential expression, unpaired data

For unpaired data βg1 is the overall mean for gene g and βg2 is the differential expression parameter.

Here X =

(
1 1

−1/2 1/2

)
, jstar = 1.

Two variance structures are commonly used: for gene variances per condition (σ2gc), use ntau = 2,
indtau = 0:1. For one variance across all conditions (σ2g), use ntau = 1, indtau = 0.

3.2 Differential expression, paired data

For paired data there is only one condition and one effect, which is the differential expression
parameter. Here X = 1, jstar = 0, ntau = 1, indtau = 0.

3.3 Multi-class data

If one fixed effect per condition is required, set X to be the identity matrix and jstar = -1. For
gene variances per condition (σ2gc), use ntau = no. conditions, indtau = 0:(nconds-1). For one
variance across all conditions (σ2g), use ntau = 1, indtau = 0.

4 Example: How to run the model

At a minimum, you must consider the data set and experimental design parameters in order to run
the model (see Sections 2 and 3).

We demonstrate BGmix on a small simulated data set. This consists of 8 replicates of 1000 genes
in 2 experimental conditions. We look for differential expression between the two conditions, with
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an unpaired design.

First read in the data:

> library(BGmix)

> data(ybar,ss)

The default experimental design parameters are those for unpaired differential expression, so these
can be left out here. The following command fits BGmix using a mixture of a point mass at zero
for the null distribution and a Gamma and a reflected Gamma for the alternatives.

> outdir <- BGmix(ybar, ss, nreps=c(8,8),niter=1000,nburn=1000)

[1] "Mixture prior on comp. 2"

[1] "delta ~ Gamma, MH"

[1] "eta (scale of Gamma) updated"

[1] "lambda (shape of Gamma) not updated"

[1] "Normal Likelihood"

[1] "tau ~ Gamma"

[1] "a (prior for tau) is updated"

[1] "trace output for parameters"

[1] "no trace for predicted data"

Burn-in:
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[1] "Output directory is ./run.1"

The function BGmix returns the output directory name. The output directory contains several types
of file:

• summary of model options (summary.txt)

• posterior means (mean*.txt)

• probability of being classified in the null component (prob-class.txt)

• trace of posterior distribution (trace*.txt)

• predictive p-values (pval*.txt)

Output data can be read into R with the functions ccSummary , ccParams (this reads in posterior
means and classification probabilities), ccTrace and ccPred.

5 Plotting the results

First read in posterior means:

> params <- ccParams(file=outdir)
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[1] "got beta"

[1] "got sig2"

[1] "got zg"

The output of ccParams is a list of vectors and matrices corresponding to the different model
parameters. These are easily plotted using standard R functions. For an unpaired differential
expression design some standard plots are included in the package. These show smoothing of
parameters and classification of genes into different mixture components:

> plotBasic(params,ybar,ss)

[1] "These plots are designed for differential expression model."
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The estimated FDR (false discovery rate) can also be plotted:

> par(mfrow=c(1,2))

> fdr <- calcFDR(params)

> plotFDR(fdr)
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[1] "No. DE genes for FDR<=5% is 148"

[1] "No. DE genes for FDR<=10% is 163"
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6 Predictive model checking

First read in the predictive p-values:

> pred <- ccPred(file=outdir)

It is a good idea to look at histograms of the predictive p-values for the gene variances:

> par(mfrow=c(1,2))

> hist(pred$pval.ss.mix[,1])

> hist(pred$pval.ss.mix[,2])
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Histogram of pred$pval.ss.mix[, 1]

pred$pval.ss.mix[, 1]
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For mixture models, there is a specific function to plot histograms of predictive p-values corre-
sponding to each of the mixture components.

> par(mfrow=c(2,3))

> plotPredChecks(pred$pval.ybar.mix2,params$pc,probz=0.8)
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7 Tail posterior probability

Tail posterior probability is used to find differentially expressed genes with unstructured prior for
the difference (fixed effects). It needs trace and parameters output from BGmix with jstar = -1

(all effects are fixed):

> nreps <- c(8,8)

> outdir2 <- BGmix(ybar, ss, nreps=nreps, jstar=-1, niter=1000,nburn=1000)

> params2 <- ccParams(outdir2)

> res2 <- ccTrace(outdir2)

and the tail posterior probability is calculated by

> tpp.res <- TailPP(res2, nreps=nreps, params2, p.cut = 0.7, plots = F)

Note that in this function the tail posterior probability is calculated only for the second contrast,
assuming that it is the difference between condition 2 and condition 1 for the default contrast
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matrix X (see Section 3.1), or for the first contrast in paired data.

The returned values are the tail posterior probabilities tpp, estimated False Discovery Rate FDR and
estimated proportion of non-differentially expressed genes pi0. FDR and pi0 can also be estimated
separately:

> FDR.res <- FDRforTailPP(tpp.res$tpp, a1 = params2$maa[1], a2

+ = params2$maa[2], n.rep1=nreps[1], n.rep2=nreps[2], p.cut = 0.8)

> pi0 <- EstimatePi0(tpp.res$tpp, tpp.res$pp0)

The histogram of the tail posterior probabilities with its density under the null (no differentially
expressed genes) and a graph of FDR can be plotted. (These plots can be done in function TailPP

by setting arguments plots = TRUE.)

> par(mfrow=c(1,2))

> histTailPP(tpp.res)

> FDRplotTailPP(tpp.res)
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8 Model options

To run the model with a flat prior on all effects (no mixture prior), set jstar = -1.
There are three main choices for the mixture prior, as presented in Lewin et al. (2007). These are
controlled by the option move.choice.bz in BGmix:

• Null point mass, alternatives Uniform (move.choice.bz = 1)

• Null point mass, alternatives Gamma (move.choice.bz = 4)

• Null small Normal, alternatives Gamma (move.choice.bz = 5)

There are two alternatives for the prior on the gene variances. These are controlled by the option
move.choice.tau in BGmix:

• Inverse Gamma (move.choice.tau = 1)

• log Normal (move.choice.tar = 2)

9 Other functions

plotTrace plots trace plots of model parameters (useful for assessing convergence of the MCMC)

plotCompare produces scatter plot of two variables using the same scale for x and y axes

plotMixDensity plots predictive density for mixture model (Note: you must save the trace of the
predicted data for this: option trace.pred=1 in BGmix and option q.trace=T in ccPred)

TailPP plots the tail posterior probability (for use with unstructured priors on the effect parameters)

readBGX reads in results from the BGX package.
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