scGPS introduction

Quan Nguyen and Michael Thompson

2019-10-29

1. Installation instruction

# To install scGPS from github (Depending on the configuration of the local
# computer or HPC, possible custom C++ compilation may be required - see
# installation trouble-shootings below)
devtools::install_github("IMB-Computational-Genomics-Lab/scGPS")

# for C++ compilation trouble-shooting, manual download and installation can be
# done from github

git clone https://github.com/IMB-Computational-Genomics-Lab/scGPS

# then check in scGPS/src if any of the precompiled (e.g.  those with *.so and
# *.o) files exist and delete them before recompiling

# then with the scGPS as the R working directory, manually install and load
# using devtools functionality
# Install the package
devtools::install()
#load the package to the workspace 
library(scGPS)

2. A simple workflow of the scGPS:

The purpose of this workflow is to solve the following task:

2.1 Create scGPS objects

2.2 Run prediction

2.3 Summarise results

3. A complete workflow of the scGPS:

The purpose of this workflow is to solve the following task:

3.1 Identify clusters in a dataset using CORE

(skip this step if clusters are known)

3.2 Identify clusters in a dataset using SCORE (Stable Clustering at Optimal REsolution)

(skip this step if clusters are known)

(SCORE aims to get stable subpopulation results by introducing bagging aggregation and bootstrapping to the CORE algorithm)

3.3 Visualise all cluster results in all iterations

3.4 Compare clustering results with other dimensional reduction methods (e.g., tSNE)

3.5 Find gene markers and annotate clusters

#load gene list (this can be any lists of user-selected genes)
genes <-training_gene_sample
genes <-genes$Merged_unique

#the gene list can also be objectively identified by differential expression
#analysis cluster information is requied for find_markers. Here, we use
#CORE results.

#colData(mixedpop2)[,1] <- unlist(SCORE_test$Cluster[SCORE_test$optimal_index])

suppressMessages(library(locfit))
suppressMessages(library(DESeq))

DEgenes <- find_markers(expression_matrix=assay(mixedpop2),
                            cluster = colData(mixedpop2)[,1],
                            selected_cluster=unique(colData(mixedpop2)[,1]))

#the output contains dataframes for each cluster.
#the data frame contains all genes, sorted by p-values
names(DEgenes)
#> [1] NA                      NA                      NA                     
#> [4] NA                      "DE_Subpop1vsRemaining" "DE_Subpop2vsRemaining"
#> [7] "DE_Subpop3vsRemaining" "DE_Subpop4vsRemaining"

#you can annotate the identified clusters
DEgeneList_1vsOthers <- DEgenes$DE_Subpop1vsRemaining$id

#users need to check the format of the gene input to make sure they are
#consistent to the gene names in the expression matrix

#the following command saves the file "PathwayEnrichment.xlsx" to the
#working dir
#use 500 top DE genes
suppressMessages(library(DOSE))
suppressMessages(library(ReactomePA))
suppressMessages(library(clusterProfiler))
genes500 <- as.factor(DEgeneList_1vsOthers[seq_len(500)])
enrichment_test <- annotate_clusters(genes, pvalueCutoff=0.05, gene_symbol=TRUE)

#the enrichment outputs can be displayed by running
clusterProfiler::dotplot(enrichment_test, showCategory=10, font.size = 6)

4. Relationship between clusters within one sample or between two samples

The purpose of this workflow is to solve the following task:

4.1 Start the scGPS prediction to find relationship between clusters

4.2 Display summary results for the prediction

#get the number of rows for the summary matrix
row_cluster <-length(unique(colData(mixedpop2)[,1]))

#summary results LDA to to show the percent of cells classified as cells
#belonging by LDA classifier
summary_prediction_lda(LSOLDA_dat=LSOLDA_dat, nPredSubpop = row_cluster )
#>                 V1               V2                                names
#> 1 30.4812834224599 77.0053475935829 LDA for subpop 1 in target mixedpop2
#> 2               75 30.7142857142857 LDA for subpop 2 in target mixedpop2
#> 3 13.5338345864662 55.6390977443609 LDA for subpop 3 in target mixedpop2
#> 4               35             52.5 LDA for subpop 4 in target mixedpop2

#summary results Lasso to show the percent of cells classified as cells
#belonging by Lasso classifier
summary_prediction_lasso(LSOLDA_dat=LSOLDA_dat, nPredSubpop = row_cluster)
#>                 V1               V2
#> 1 64.1711229946524 26.7379679144385
#> 2 75.7142857142857 98.5714285714286
#> 3  37.593984962406  75.187969924812
#> 4             52.5               85
#>                                        names
#> 1 ElasticNet for subpop1 in target mixedpop2
#> 2 ElasticNet for subpop2 in target mixedpop2
#> 3 ElasticNet for subpop3 in target mixedpop2
#> 4 ElasticNet for subpop4 in target mixedpop2

# summary maximum deviance explained by the model during the model training
summary_deviance(object = LSOLDA_dat)
#> $allDeviance
#> [1] "0.7693" "0.318" 
#> 
#> $DeviMax
#>           dat_DE$Dfd          Deviance           DEgenes
#> 1                  0            0.7693    genes_cluster1
#> 2                  1            0.7693    genes_cluster1
#> 3                  2            0.7693    genes_cluster1
#> 4                  3            0.7693    genes_cluster1
#> 5                  5            0.7693    genes_cluster1
#> 6                  6            0.7693    genes_cluster1
#> 7                  8            0.7693    genes_cluster1
#> 8                  9            0.7693    genes_cluster1
#> 9                 11            0.7693    genes_cluster1
#> 10                14            0.7693    genes_cluster1
#> 11                15            0.7693    genes_cluster1
#> 12                18            0.7693    genes_cluster1
#> 13                20            0.7693    genes_cluster1
#> 14                23            0.7693    genes_cluster1
#> 15                26            0.7693    genes_cluster1
#> 16                28            0.7693    genes_cluster1
#> 17                29            0.7693    genes_cluster1
#> 18                31            0.7693    genes_cluster1
#> 19                33            0.7693    genes_cluster1
#> 20                37            0.7693    genes_cluster1
#> 21                40            0.7693    genes_cluster1
#> 22                42            0.7693    genes_cluster1
#> 23                44            0.7693    genes_cluster1
#> 24                45            0.7693    genes_cluster1
#> 25                48            0.7693    genes_cluster1
#> 26                50            0.7693    genes_cluster1
#> 27 remaining DEgenes remaining DEgenes remaining DEgenes
#> 
#> $LassoGenesMax
#> NULL

# summary accuracy to check the model accuracy in the leave-out test set
summary_accuracy(object = LSOLDA_dat)
#> [1] 75.00000 67.41071

4.3 Plot the relationship between clusters in one sample

Here we look at one example use case to find relationship between clusters within one sample or between two sample

#run prediction for 3 clusters
cluster_mixedpop1 <- colData(mixedpop1)[,1]
cluster_mixedpop2 <- colData(mixedpop2)[,1]
#cluster_mixedpop2 <- as.numeric(as.vector(colData(mixedpop2)[,1]))

c_selectID <- 1
#top 200 gene markers distinguishing cluster 1
genes = DEgenes$DE_Subpop1vsRemaining$id[1:200]

LSOLDA_dat1 <- bootstrap_prediction(nboots = 2, mixedpop1 = mixedpop2,
                        mixedpop2 = mixedpop2, genes=genes, c_selectID, listData =list(),
                        cluster_mixedpop1 = cluster_mixedpop2,
                        cluster_mixedpop2 = cluster_mixedpop2)

c_selectID <- 2
genes = DEgenes$DE_Subpop2vsRemaining$id[1:200]

LSOLDA_dat2 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop2,
                        mixedpop2 = mixedpop2, genes=genes, c_selectID, listData =list(),
                        cluster_mixedpop1 = cluster_mixedpop2,
                        cluster_mixedpop2 = cluster_mixedpop2)

c_selectID <- 3
genes = DEgenes$DE_Subpop3vsRemaining$id[1:200]
LSOLDA_dat3 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop2,
                        mixedpop2 = mixedpop2, genes=genes, c_selectID, listData =list(),
                        cluster_mixedpop1 = cluster_mixedpop2,
                        cluster_mixedpop2 = cluster_mixedpop2)

c_selectID <- 4
genes = DEgenes$DE_Subpop4vsRemaining$id[1:200]
LSOLDA_dat4 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop2,
                        mixedpop2 = mixedpop2, genes=genes, c_selectID, listData =list(),
                        cluster_mixedpop1 = cluster_mixedpop2,
                        cluster_mixedpop2 = cluster_mixedpop2)


#prepare table input for sankey plot

LASSO_C1S2  <- reformat_LASSO(c_selectID=1, mp_selectID = 2,
                             LSOLDA_dat=LSOLDA_dat1,
                             nPredSubpop = length(unique(colData(mixedpop2)[,1])),
                             Nodes_group ="#7570b3")

LASSO_C2S2  <- reformat_LASSO(c_selectID=2, mp_selectID =2,
                             LSOLDA_dat=LSOLDA_dat2,
                             nPredSubpop = length(unique(colData(mixedpop2)[,1])),
                             Nodes_group ="#1b9e77")

LASSO_C3S2  <- reformat_LASSO(c_selectID=3, mp_selectID =2,
                             LSOLDA_dat=LSOLDA_dat3,
                             nPredSubpop = length(unique(colData(mixedpop2)[,1])),
                             Nodes_group ="#e7298a")

LASSO_C4S2  <- reformat_LASSO(c_selectID=4, mp_selectID =2,
                             LSOLDA_dat=LSOLDA_dat4,
                             nPredSubpop = length(unique(colData(mixedpop2)[,1])),
                             Nodes_group ="#00FFFF")

combined <- rbind(LASSO_C1S2,LASSO_C2S2,LASSO_C3S2, LASSO_C4S2 )
combined <- combined[is.na(combined$Value) != TRUE,]

nboots = 2
#links: source, target, value
#source: node, nodegroup
combined_D3obj <-list(Nodes=combined[,(nboots+3):(nboots+4)],
                     Links=combined[,c((nboots+2):(nboots+1),ncol(combined))])

library(networkD3)

Node_source <- as.vector(sort(unique(combined_D3obj$Links$Source)))
Node_target <- as.vector(sort(unique(combined_D3obj$Links$Target)))
Node_all <-unique(c(Node_source, Node_target))

#assign IDs for Source (start from 0)
Source <-combined_D3obj$Links$Source
Target <- combined_D3obj$Links$Target

for(i in 1:length(Node_all)){
   Source[Source==Node_all[i]] <-i-1
   Target[Target==Node_all[i]] <-i-1
}
# 
combined_D3obj$Links$Source <- as.numeric(Source)
combined_D3obj$Links$Target <- as.numeric(Target)
combined_D3obj$Links$LinkColor <- combined$NodeGroup

#prepare node info
node_df <-data.frame(Node=Node_all)
node_df$id <-as.numeric(c(0, 1:(length(Node_all)-1)))

suppressMessages(library(dplyr))
Color <- combined %>% count(Node, color=NodeGroup) %>% select(2)
node_df$color <- Color$color

suppressMessages(library(networkD3))
p1<-sankeyNetwork(Links =combined_D3obj$Links, Nodes = node_df,
                 Value = "Value", NodeGroup ="color", LinkGroup = "LinkColor", NodeID="Node",
                 Source="Source", Target="Target", fontSize = 22 )
p1

4.3 Plot the relationship between clusters in two samples

Here we look at one example use case to find relationship between clusters within one sample or between two sample

#run prediction for 3 clusters
cluster_mixedpop1 <- colData(mixedpop1)[,1]
cluster_mixedpop2 <- colData(mixedpop2)[,1]
row_cluster <-length(unique(colData(mixedpop2)[,1]))

c_selectID <- 1
#top 200 gene markers distinguishing cluster 1
genes = DEgenes$DE_Subpop1vsRemaining$id[1:200]
LSOLDA_dat1 <- bootstrap_prediction(nboots = 2, mixedpop1 = mixedpop1,
                        mixedpop2 = mixedpop2, genes=genes, c_selectID, listData =list(),
                        cluster_mixedpop1 = cluster_mixedpop1,
                        cluster_mixedpop2 = cluster_mixedpop2)


c_selectID <- 2
genes = DEgenes$DE_Subpop2vsRemaining$id[1:200]
LSOLDA_dat2 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop1,
                        mixedpop2 = mixedpop2, genes=genes, c_selectID, listData =list(),
                        cluster_mixedpop1 = cluster_mixedpop1,
                        cluster_mixedpop2 = cluster_mixedpop2)

c_selectID <- 3
genes = DEgenes$DE_Subpop3vsRemaining$id[1:200]
LSOLDA_dat3 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop1,
                        mixedpop2 = mixedpop2, genes=genes, c_selectID, listData =list(),
                        cluster_mixedpop1 = cluster_mixedpop1,
                        cluster_mixedpop2 = cluster_mixedpop2)

#prepare table input for sankey plot

LASSO_C1S1  <- reformat_LASSO(c_selectID=1, mp_selectID = 1,
                             LSOLDA_dat=LSOLDA_dat1, nPredSubpop = row_cluster, Nodes_group = "#7570b3")

LASSO_C2S1  <- reformat_LASSO(c_selectID=2, mp_selectID = 1,
                             LSOLDA_dat=LSOLDA_dat2, nPredSubpop = row_cluster, Nodes_group = "#1b9e77")

LASSO_C3S1  <- reformat_LASSO(c_selectID=3, mp_selectID = 1,
                             LSOLDA_dat=LSOLDA_dat3, nPredSubpop = row_cluster, Nodes_group = "#e7298a")


combined <- rbind(LASSO_C1S1,LASSO_C2S1,LASSO_C3S1)

nboots = 2
#links: source, target, value
#source: node, nodegroup
combined_D3obj <-list(Nodes=combined[,(nboots+3):(nboots+4)],
                     Links=combined[,c((nboots+2):(nboots+1),ncol(combined))])
combined <- combined[is.na(combined$Value) != TRUE,]


library(networkD3)

Node_source <- as.vector(sort(unique(combined_D3obj$Links$Source)))
Node_target <- as.vector(sort(unique(combined_D3obj$Links$Target)))
Node_all <-unique(c(Node_source, Node_target))

#assign IDs for Source (start from 0)
Source <-combined_D3obj$Links$Source
Target <- combined_D3obj$Links$Target

for(i in 1:length(Node_all)){
   Source[Source==Node_all[i]] <-i-1
   Target[Target==Node_all[i]] <-i-1
}

combined_D3obj$Links$Source <- as.numeric(Source)
combined_D3obj$Links$Target <- as.numeric(Target)
combined_D3obj$Links$LinkColor <- combined$NodeGroup

#prepare node info
node_df <-data.frame(Node=Node_all)
node_df$id <-as.numeric(c(0, 1:(length(Node_all)-1)))

suppressMessages(library(dplyr))
n <- length(unique(node_df$Node))
getPalette = colorRampPalette(RColorBrewer::brewer.pal(9, "Set1"))
Color = getPalette(n)
node_df$color <- Color
suppressMessages(library(networkD3))
p1<-sankeyNetwork(Links =combined_D3obj$Links, Nodes = node_df,
                 Value = "Value", NodeGroup ="color", LinkGroup = "LinkColor",
                 NodeID="Node", Source="Source", Target="Target", fontSize = 22)
p1
devtools::session_info()
#> ─ Session info ──────────────────────────────────────────────────────────
#>  setting  value                       
#>  version  R version 3.6.1 (2019-07-05)
#>  os       Ubuntu 18.04.3 LTS          
#>  system   x86_64, linux-gnu           
#>  ui       X11                         
#>  language (EN)                        
#>  collate  C                           
#>  ctype    en_US.UTF-8                 
#>  tz       America/New_York            
#>  date     2019-10-29                  
#> 
#> ─ Packages ──────────────────────────────────────────────────────────────
#>  package              * version     date       lib source        
#>  annotate               1.64.0      2019-10-29 [2] Bioconductor  
#>  AnnotationDbi        * 1.48.0      2019-10-29 [2] Bioconductor  
#>  assertthat             0.2.1       2019-03-21 [2] CRAN (R 3.6.1)
#>  backports              1.1.5       2019-10-02 [2] CRAN (R 3.6.1)
#>  Biobase              * 2.46.0      2019-10-29 [2] Bioconductor  
#>  BiocGenerics         * 0.32.0      2019-10-29 [2] Bioconductor  
#>  BiocManager            1.30.9      2019-10-23 [2] CRAN (R 3.6.1)
#>  BiocParallel         * 1.20.0      2019-10-29 [2] Bioconductor  
#>  bit                    1.1-14      2018-05-29 [2] CRAN (R 3.6.1)
#>  bit64                  0.9-7       2017-05-08 [2] CRAN (R 3.6.1)
#>  bitops                 1.0-6       2013-08-17 [2] CRAN (R 3.6.1)
#>  blob                   1.2.0       2019-07-09 [2] CRAN (R 3.6.1)
#>  callr                  3.3.2       2019-09-22 [2] CRAN (R 3.6.1)
#>  caret                * 6.0-84      2019-04-27 [2] CRAN (R 3.6.1)
#>  checkmate              1.9.4       2019-07-04 [2] CRAN (R 3.6.1)
#>  class                  7.3-15      2019-01-01 [2] CRAN (R 3.6.1)
#>  cli                    1.1.0       2019-03-19 [2] CRAN (R 3.6.1)
#>  clusterProfiler      * 3.14.0      2019-10-29 [2] Bioconductor  
#>  codetools              0.2-16      2018-12-24 [2] CRAN (R 3.6.1)
#>  colorspace             1.4-1       2019-03-18 [2] CRAN (R 3.6.1)
#>  cowplot                1.0.0       2019-07-11 [2] CRAN (R 3.6.1)
#>  crayon                 1.3.4       2017-09-16 [2] CRAN (R 3.6.1)
#>  data.table             1.12.6      2019-10-18 [2] CRAN (R 3.6.1)
#>  DBI                    1.0.0       2018-05-02 [2] CRAN (R 3.6.1)
#>  DelayedArray         * 0.12.0      2019-10-29 [2] Bioconductor  
#>  dendextend             1.12.0      2019-05-11 [2] CRAN (R 3.6.1)
#>  desc                   1.2.0       2018-05-01 [2] CRAN (R 3.6.1)
#>  DESeq                * 1.38.0      2019-10-29 [2] Bioconductor  
#>  devtools               2.2.1       2019-09-24 [2] CRAN (R 3.6.1)
#>  digest                 0.6.22      2019-10-21 [2] CRAN (R 3.6.1)
#>  DO.db                  2.9         2019-07-05 [2] Bioconductor  
#>  DOSE                 * 3.12.0      2019-10-29 [2] Bioconductor  
#>  dplyr                * 0.8.3       2019-07-04 [2] CRAN (R 3.6.1)
#>  dynamicTreeCut       * 1.63-1      2016-03-11 [2] CRAN (R 3.6.1)
#>  e1071                  1.7-2       2019-06-05 [2] CRAN (R 3.6.1)
#>  ellipsis               0.3.0       2019-09-20 [2] CRAN (R 3.6.1)
#>  enrichplot             1.6.0       2019-10-29 [2] Bioconductor  
#>  europepmc              0.3         2018-04-20 [2] CRAN (R 3.6.1)
#>  evaluate               0.14        2019-05-28 [2] CRAN (R 3.6.1)
#>  farver                 1.1.0       2018-11-20 [2] CRAN (R 3.6.1)
#>  fastcluster            1.1.25      2018-06-07 [2] CRAN (R 3.6.1)
#>  fastmatch              1.1-0       2017-01-28 [2] CRAN (R 3.6.1)
#>  fgsea                  1.12.0      2019-10-29 [2] Bioconductor  
#>  foreach                1.4.7       2019-07-27 [2] CRAN (R 3.6.1)
#>  fs                     1.3.1       2019-05-06 [2] CRAN (R 3.6.1)
#>  genefilter             1.68.0      2019-10-29 [2] Bioconductor  
#>  geneplotter            1.64.0      2019-10-29 [2] Bioconductor  
#>  generics               0.0.2       2018-11-29 [2] CRAN (R 3.6.1)
#>  GenomeInfoDb         * 1.22.0      2019-10-29 [2] Bioconductor  
#>  GenomeInfoDbData       1.2.2       2019-10-23 [2] Bioconductor  
#>  GenomicRanges        * 1.38.0      2019-10-29 [2] Bioconductor  
#>  ggforce                0.3.1       2019-08-20 [2] CRAN (R 3.6.1)
#>  ggplot2              * 3.2.1       2019-08-10 [2] CRAN (R 3.6.1)
#>  ggplotify              0.0.4       2019-08-06 [2] CRAN (R 3.6.1)
#>  ggraph                 2.0.0       2019-09-02 [2] CRAN (R 3.6.1)
#>  ggrepel                0.8.1       2019-05-07 [2] CRAN (R 3.6.1)
#>  ggridges               0.5.1       2018-09-27 [2] CRAN (R 3.6.1)
#>  glmnet                 2.0-18      2019-05-20 [2] CRAN (R 3.6.1)
#>  glue                   1.3.1       2019-03-12 [2] CRAN (R 3.6.1)
#>  GO.db                  3.10.0      2019-10-23 [2] Bioconductor  
#>  GOSemSim               2.12.0      2019-10-29 [2] Bioconductor  
#>  gower                  0.2.1       2019-05-14 [2] CRAN (R 3.6.1)
#>  graph                  1.64.0      2019-10-29 [2] Bioconductor  
#>  graphite               1.32.0      2019-10-29 [2] Bioconductor  
#>  graphlayouts           0.5.0       2019-08-20 [2] CRAN (R 3.6.1)
#>  gridExtra              2.3         2017-09-09 [2] CRAN (R 3.6.1)
#>  gridGraphics           0.4-1       2019-05-20 [2] CRAN (R 3.6.1)
#>  gtable                 0.3.0       2019-03-25 [2] CRAN (R 3.6.1)
#>  hms                    0.5.1       2019-08-23 [2] CRAN (R 3.6.1)
#>  htmltools              0.4.0       2019-10-04 [2] CRAN (R 3.6.1)
#>  htmlwidgets            1.5.1       2019-10-08 [2] CRAN (R 3.6.1)
#>  httr                   1.4.1       2019-08-05 [2] CRAN (R 3.6.1)
#>  igraph                 1.2.4.1     2019-04-22 [2] CRAN (R 3.6.1)
#>  ipred                  0.9-9       2019-04-28 [2] CRAN (R 3.6.1)
#>  IRanges              * 2.20.0      2019-10-29 [2] Bioconductor  
#>  iterators              1.0.12      2019-07-26 [2] CRAN (R 3.6.1)
#>  jsonlite               1.6         2018-12-07 [2] CRAN (R 3.6.1)
#>  knitr                  1.25        2019-09-18 [2] CRAN (R 3.6.1)
#>  labeling               0.3         2014-08-23 [2] CRAN (R 3.6.1)
#>  lattice              * 0.20-38     2018-11-04 [2] CRAN (R 3.6.1)
#>  lava                   1.6.6       2019-08-01 [2] CRAN (R 3.6.1)
#>  lazyeval               0.2.2       2019-03-15 [2] CRAN (R 3.6.1)
#>  lifecycle              0.1.0       2019-08-01 [2] CRAN (R 3.6.1)
#>  locfit               * 1.5-9.1     2013-04-20 [2] CRAN (R 3.6.1)
#>  lubridate              1.7.4       2018-04-11 [2] CRAN (R 3.6.1)
#>  magrittr               1.5         2014-11-22 [2] CRAN (R 3.6.1)
#>  MASS                   7.3-51.4    2019-03-31 [2] CRAN (R 3.6.1)
#>  Matrix                 1.2-17      2019-03-22 [2] CRAN (R 3.6.1)
#>  matrixStats          * 0.55.0      2019-09-07 [2] CRAN (R 3.6.1)
#>  memoise                1.1.0       2017-04-21 [2] CRAN (R 3.6.1)
#>  ModelMetrics           1.2.2       2018-11-03 [2] CRAN (R 3.6.1)
#>  munsell                0.5.0       2018-06-12 [2] CRAN (R 3.6.1)
#>  networkD3            * 0.4         2017-03-18 [2] CRAN (R 3.6.1)
#>  nlme                   3.1-141     2019-08-01 [2] CRAN (R 3.6.1)
#>  nnet                   7.3-12      2016-02-02 [2] CRAN (R 3.6.1)
#>  org.Hs.eg.db         * 3.10.0      2019-10-23 [2] Bioconductor  
#>  pillar                 1.4.2       2019-06-29 [2] CRAN (R 3.6.1)
#>  pkgbuild               1.0.6       2019-10-09 [2] CRAN (R 3.6.1)
#>  pkgconfig              2.0.3       2019-09-22 [2] CRAN (R 3.6.1)
#>  pkgload                1.0.2       2018-10-29 [2] CRAN (R 3.6.1)
#>  plyr                   1.8.4       2016-06-08 [2] CRAN (R 3.6.1)
#>  polyclip               1.10-0      2019-03-14 [2] CRAN (R 3.6.1)
#>  prettyunits            1.0.2       2015-07-13 [2] CRAN (R 3.6.1)
#>  processx               3.4.1       2019-07-18 [2] CRAN (R 3.6.1)
#>  prodlim                2018.04.18  2018-04-18 [2] CRAN (R 3.6.1)
#>  progress               1.2.2       2019-05-16 [2] CRAN (R 3.6.1)
#>  ps                     1.3.0       2018-12-21 [2] CRAN (R 3.6.1)
#>  purrr                  0.3.3       2019-10-18 [2] CRAN (R 3.6.1)
#>  qvalue                 2.18.0      2019-10-29 [2] Bioconductor  
#>  R6                     2.4.0       2019-02-14 [2] CRAN (R 3.6.1)
#>  rappdirs               0.3.1       2016-03-28 [2] CRAN (R 3.6.1)
#>  RColorBrewer           1.1-2       2014-12-07 [2] CRAN (R 3.6.1)
#>  Rcpp                   1.0.2       2019-07-25 [2] CRAN (R 3.6.1)
#>  RcppArmadillo          0.9.800.1.0 2019-10-09 [2] CRAN (R 3.6.1)
#>  RcppParallel           4.4.4       2019-09-27 [2] CRAN (R 3.6.1)
#>  RCurl                  1.95-4.12   2019-03-04 [2] CRAN (R 3.6.1)
#>  reactome.db            1.70.0      2019-10-28 [2] Bioconductor  
#>  ReactomePA           * 1.30.0      2019-10-29 [2] Bioconductor  
#>  recipes                0.1.7       2019-09-15 [2] CRAN (R 3.6.1)
#>  remotes                2.1.0       2019-06-24 [2] CRAN (R 3.6.1)
#>  reshape2               1.4.3       2017-12-11 [2] CRAN (R 3.6.1)
#>  rlang                  0.4.1       2019-10-24 [2] CRAN (R 3.6.1)
#>  rmarkdown              1.16        2019-10-01 [2] CRAN (R 3.6.1)
#>  rpart                  4.1-15      2019-04-12 [2] CRAN (R 3.6.1)
#>  rprojroot              1.3-2       2018-01-03 [2] CRAN (R 3.6.1)
#>  RSQLite                2.1.2       2019-07-24 [2] CRAN (R 3.6.1)
#>  Rtsne                  0.15        2018-11-10 [2] CRAN (R 3.6.1)
#>  rvcheck                0.1.5       2019-10-01 [2] CRAN (R 3.6.1)
#>  S4Vectors            * 0.24.0      2019-10-29 [2] Bioconductor  
#>  scales                 1.0.0       2018-08-09 [2] CRAN (R 3.6.1)
#>  scGPS                * 1.0.0       2019-10-29 [1] Bioconductor  
#>  sessioninfo            1.1.1       2018-11-05 [2] CRAN (R 3.6.1)
#>  SingleCellExperiment * 1.8.0       2019-10-29 [2] Bioconductor  
#>  stringi                1.4.3       2019-03-12 [2] CRAN (R 3.6.1)
#>  stringr                1.4.0       2019-02-10 [2] CRAN (R 3.6.1)
#>  SummarizedExperiment * 1.16.0      2019-10-29 [2] Bioconductor  
#>  survival               2.44-1.1    2019-04-01 [2] CRAN (R 3.6.1)
#>  testthat               2.2.1       2019-07-25 [2] CRAN (R 3.6.1)
#>  tibble                 2.1.3       2019-06-06 [2] CRAN (R 3.6.1)
#>  tidygraph              1.1.2       2019-02-18 [2] CRAN (R 3.6.1)
#>  tidyr                  1.0.0       2019-09-11 [2] CRAN (R 3.6.1)
#>  tidyselect             0.2.5       2018-10-11 [2] CRAN (R 3.6.1)
#>  timeDate               3043.102    2018-02-21 [2] CRAN (R 3.6.1)
#>  triebeard              0.3.0       2016-08-04 [2] CRAN (R 3.6.1)
#>  tweenr                 1.0.1       2018-12-14 [2] CRAN (R 3.6.1)
#>  urltools               1.7.3       2019-04-14 [2] CRAN (R 3.6.1)
#>  usethis                1.5.1       2019-07-04 [2] CRAN (R 3.6.1)
#>  vctrs                  0.2.0       2019-07-05 [2] CRAN (R 3.6.1)
#>  viridis                0.5.1       2018-03-29 [2] CRAN (R 3.6.1)
#>  viridisLite            0.3.0       2018-02-01 [2] CRAN (R 3.6.1)
#>  withr                  2.1.2       2018-03-15 [2] CRAN (R 3.6.1)
#>  xfun                   0.10        2019-10-01 [2] CRAN (R 3.6.1)
#>  XML                    3.98-1.20   2019-06-06 [2] CRAN (R 3.6.1)
#>  xml2                   1.2.2       2019-08-09 [2] CRAN (R 3.6.1)
#>  xtable                 1.8-4       2019-04-21 [2] CRAN (R 3.6.1)
#>  XVector                0.26.0      2019-10-29 [2] Bioconductor  
#>  yaml                   2.2.0       2018-07-25 [2] CRAN (R 3.6.1)
#>  zeallot                0.1.0       2018-01-28 [2] CRAN (R 3.6.1)
#>  zlibbioc               1.32.0      2019-10-29 [2] Bioconductor  
#> 
#> [1] /tmp/RtmpAdmfWj/Rinst1d6d46fbeb95
#> [2] /home/biocbuild/bbs-3.10-bioc/R/library