TCGAbiolinks retrieved molecular subtypes information from TCGA samples. The functions PanCancerAtlas_subtypes
and TCGAquery_subtype
can be used to get the information tables.
While the PanCancerAtlas_subtypes
function gives access to a curated table retrieved from synapse (probably with the most updated molecular subtypes) the TCGAquery_subtype
function has the complete table also with sample information retrieved from the TCGA marker papers.
PanCancerAtlas_subtypes
: Curated molecular subtypes.Data and description retrieved from synapse (https://www.synapse.org/#!Synapse:syn8402849)
Synapse has published a single file with all available molecular subtypes that have been described by TCGA (all tumor types and all molecular platforms), which can be accessed using the PanCancerAtlas_subtypes
function as below:
subtypes <- PanCancerAtlas_subtypes()
DT::datatable(subtypes,
filter = 'top',
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE)
The columns “Subtype_Selected” was selected as most prominent subtype classification (from the other columns)
All available molecular data based-subtype | Selected subtype | Number of samples | Link to file | Reference | link to paper | |
---|---|---|---|---|---|---|
ACC | mRNA, DNAmeth, protein, miRNA, CNA, COC, C1A.C1B | DNAmeth | 91 | Link | Cancer Cell 2016 | Link |
AML | mRNA and miRNA | mRNA | 187 | Link | NEJM 2013 | Link |
BLCA | mRNA subtypes | mRNA | 129 | Link | Nature 2014 | Link |
BRCA | PAM50 (mRNA) | PAM50 | 1218 | Link | Nature 2012 | Link |
GBM/LGG* | mRNA, DNAmeth, protein, Supervised_DNAmeth | Supervised_DNAmeth | 1122 | Link | Cell 2016 | Link |
Pan-GI (preliminary) ESCA/STAD/COAD/READ | Molecular_Subtype | Molecular_Subtype | 1011 | Link | Cancer Cell 2018 | Link |
HNSC | mRNA, DNAmeth, RPPA, miRNA, CNA, Paradigm | mRNA | 279 | Link (TabS7.2) | Nature 2015 | Link |
KICH | Eosinophilic | Eosinophilic | 66 | Link | Cancer Cell 2014 | Link |
KIRC | mRNA, miRNA | mRNA | 442 | Link | Nature 2013 | Link |
KIRP | mRNA, DNAmeth, protein, miRNA, CNA, COC | COC | 161 | Link | NEJM 2015 | Link |
LIHC (preliminary) | mRNA, DNAmeth, protein, miRNA, CNA, Paradigma, iCluster | iCluster | 196 | Link (Table S1A) | not published | |
LUAD | DNAmeth, iCluster | iCluster | 230 | Link (Table S7) | Nature 2014 | Link |
LUSC | mRNA | mRNA | 178 | Link (Data file S7.5) | Nature 2012 | Link |
OVCA | mRNA | mRNA | 489 | Link | Nature 2011 | Link |
PCPG | mRNA, DNAmeth, protein, miRNA, CNA | mRNA | 178 | tableS2 | Cancer Cell 2017 | Link |
PRAD | mRNA, DNAmeth, protein, miRNA, CNA, icluster, mutation/fusion | mutation/fusion | 333 | Link | Cell 2015 | Link |
SKCM | mRNA, DNAmeth, protein, miRNA, mutation | mutation | 331 | Link (Table S1D) | Cell 2015 | Link |
THCA | mRNA, DNAmeth, protein, miRNA, CNA, histology | mRNA | 496 | Link (Table S2 - Tab1) | Cell 2014 | Link |
UCEC | iCluster, MSI, CNA, mRNA | iCluster - updated according to Pan-Gyne/Pathways groups | 538 | Link (datafile S1.1) | Nature 2013 | Link |
Link | ||||||
UCS (preliminary) | mRNA | mRNA | 57 | Link | not published |
TCGAquery_subtype
: Working with molecular subtypes data.The Cancer Genome Atlas (TCGA) Research Network has reported integrated genome-wide studies of various diseases. We have added some of the subtypes defined by these report in our package:
TCGA dataset | Link | Paper | Journal |
---|---|---|---|
ACC | doi:10.1016/j.ccell.2016.04.002 | Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. | Cancer cell 2016 |
BRCA | https://www.cell.com/cancer-cell/fulltext/S1535-6108(18)30119-3 | A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers | Cancer cell 2018 |
BLCA | http://www.cell.com/cell/fulltext/S0092-8674(17)31056-5 | Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer Cell 2017 | |
CHOL | http://www.sciencedirect.com/science/article/pii/S2211124717302140?via%3Dihub | Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles | Cell Reports 2017 |
COAD | http://www.nature.com/nature/journal/v487/n7407/abs/nature11252.html | Comprehensive molecular characterization of human colon and rectal cancer | Nature 2012 |
ESCA | https://www.nature.com/articles/nature20805 | Integrated genomic characterization of oesophageal carcinoma | Nature 2017 |
GBM | http://dx.doi.org/10.1016/j.cell.2015.12.028 | Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma | Cell 2016 |
HNSC | http://www.nature.com/nature/journal/v517/n7536/abs/nature14129.html | Comprehensive genomic characterization of head and neck squamous cell carcinomas | Nature 2015 |
KICH | http://www.sciencedirect.com/science/article/pii/S1535610814003043 | The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma | Cancer cell 2014 |
KIRC | http://www.nature.com/nature/journal/v499/n7456/abs/nature12222.html | Comprehensive molecular characterization of clear cell renal cell carcinoma | Nature 2013 |
KIRP | http://www.nejm.org/doi/full/10.1056/NEJMoa1505917 | Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma | NEJM 2016 |
LIHC | http://linkinghub.elsevier.com/retrieve/pii/S0092-8674(17)30639-6 | Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma | Cell 2017 |
LGG | http://dx.doi.org/10.1016/j.cell.2015.12.028 | Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma | Cell 2016 |
LUAD | http://www.nature.com/nature/journal/v511/n7511/abs/nature13385.html | Comprehensive molecular profiling of lung adenocarcinoma | Nature 2014 |
LUSC | http://www.nature.com/nature/journal/v489/n7417/abs/nature11404.html | Comprehensive genomic characterization of squamous cell lung cancers | Nature 2012 |
PAAD | http://www.cell.com/cancer-cell/fulltext/S1535-6108(17)30299-4 | Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma | Cancer Cell 2017 |
PCPG | http://dx.doi.org/10.1016/j.ccell.2017.01.001 | Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma | Cancer cell 2017 |
PRAD | http://www.sciencedirect.com/science/article/pii/S0092867415013392 | The Molecular Taxonomy of Primary Prostate Cancer | Cell 2015 |
READ | http://www.nature.com/nature/journal/v487/n7407/abs/nature11252.html | Comprehensive molecular characterization of human colon and rectal cancer | Nature 2012 |
SARC | http://www.cell.com/cell/fulltext/S0092-8674(17)31203-5 | Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas | Cell 2017 |
SKCM | http://www.sciencedirect.com/science/article/pii/S0092867415006340 | Genomic Classification of Cutaneous Melanoma | Cell 2015 |
STAD | http://www.nature.com/nature/journal/v511/n7511/abs/nature13385.html | Comprehensive molecular characterization of gastric adenocarcinoma | Nature 2013 |
THCA | http://www.sciencedirect.com/science/article/pii/S0092867414012380 | Integrated Genomic Characterization of Papillary Thyroid Carcinoma | Cell 2014 |
UCEC | http://www.nature.com/nature/journal/v497/n7447/abs/nature12113.html | Integrated genomic characterization of endometrial carcinoma | Nature 2013 |
UCS | http://www.cell.com/cancer-cell/fulltext/S1535-6108(17)30053-3 | Integrated Molecular Characterization of Uterine Carcinosarcoma Cancer | Cell 2017 |
UVM | http://www.cell.com/cancer-cell/fulltext/S1535-6108(17)30295-7 | Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma | Cancer Cell 2017 |
These subtypes will be automatically added in the summarizedExperiment object through GDCprepare. But you can also use the TCGAquery_subtype
function to retrive this information.
A subset of the LGG subytpe is shown below:
## R version 3.6.1 (2019-07-05)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.10-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.10-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] grid parallel stats4 stats graphics grDevices utils
## [8] datasets methods base
##
## other attached packages:
## [1] TCGAbiolinks_2.14.0 maftools_2.2.0
## [3] jpeg_0.1-8.1 png_0.1-7
## [5] DT_0.9 dplyr_0.8.3
## [7] SummarizedExperiment_1.16.0 DelayedArray_0.12.0
## [9] BiocParallel_1.20.0 matrixStats_0.55.0
## [11] Biobase_2.46.0 GenomicRanges_1.38.0
## [13] GenomeInfoDb_1.22.0 IRanges_2.20.0
## [15] S4Vectors_0.24.0 BiocGenerics_0.32.0
## [17] testthat_2.2.1
##
## loaded via a namespace (and not attached):
## [1] R.utils_2.9.0 tidyselect_0.2.5
## [3] RSQLite_2.1.2 AnnotationDbi_1.48.0
## [5] htmlwidgets_1.5.1 devtools_2.2.1
## [7] DESeq_1.38.0 munsell_0.5.0
## [9] codetools_0.2-16 withr_2.1.2
## [11] colorspace_1.4-1 highr_0.8
## [13] knitr_1.25 rstudioapi_0.10
## [15] ggsignif_0.6.0 labeling_0.3
## [17] GenomeInfoDbData_1.2.2 hwriter_1.3.2
## [19] KMsurv_0.1-5 bit64_0.9-7
## [21] rprojroot_1.3-2 downloader_0.4
## [23] vctrs_0.2.0 generics_0.0.2
## [25] xfun_0.10 ggthemes_4.2.0
## [27] BiocFileCache_1.10.0 EDASeq_2.20.0
## [29] R6_2.4.0 doParallel_1.0.15
## [31] clue_0.3-57 locfit_1.5-9.1
## [33] bitops_1.0-6 assertthat_0.2.1
## [35] promises_1.1.0 scales_1.0.0
## [37] gtable_0.3.0 sva_3.34.0
## [39] processx_3.4.1 rlang_0.4.1
## [41] zeallot_0.1.0 genefilter_1.68.0
## [43] GlobalOptions_0.1.1 splines_3.6.1
## [45] rtracklayer_1.46.0 lazyeval_0.2.2
## [47] wordcloud_2.6 selectr_0.4-1
## [49] broom_0.5.2 reshape2_1.4.3
## [51] BiocManager_1.30.9 yaml_2.2.0
## [53] GenomicFeatures_1.38.0 crosstalk_1.0.0
## [55] backports_1.1.5 httpuv_1.5.2
## [57] tools_3.6.1 usethis_1.5.1
## [59] ggplot2_3.2.1 ellipsis_0.3.0
## [61] RColorBrewer_1.1-2 sessioninfo_1.1.1
## [63] Rcpp_1.0.2 plyr_1.8.4
## [65] progress_1.2.2 zlibbioc_1.32.0
## [67] purrr_0.3.3 RCurl_1.95-4.12
## [69] ps_1.3.0 prettyunits_1.0.2
## [71] ggpubr_0.2.3 openssl_1.4.1
## [73] GetoptLong_0.1.7 zoo_1.8-6
## [75] ggrepel_0.8.1 cluster_2.1.0
## [77] fs_1.3.1 magrittr_1.5
## [79] data.table_1.12.6 circlize_0.4.8
## [81] survminer_0.4.6 pkgload_1.0.2
## [83] aroma.light_3.16.0 mime_0.7
## [85] hms_0.5.1 evaluate_0.14
## [87] xtable_1.8-4 XML_3.98-1.20
## [89] gridExtra_2.3 shape_1.4.4
## [91] compiler_3.6.1 biomaRt_2.42.0
## [93] tibble_2.1.3 crayon_1.3.4
## [95] R.oo_1.22.0 htmltools_0.4.0
## [97] later_1.0.0 mgcv_1.8-30
## [99] tidyr_1.0.0 geneplotter_1.64.0
## [101] DBI_1.0.0 dbplyr_1.4.2
## [103] matlab_1.0.2 ComplexHeatmap_2.2.0
## [105] rappdirs_0.3.1 BiocStyle_2.14.0
## [107] ShortRead_1.44.0 Matrix_1.2-17
## [109] readr_1.3.1 cli_1.1.0
## [111] R.methodsS3_1.7.1 pkgconfig_2.0.3
## [113] km.ci_0.5-2 GenomicAlignments_1.22.0
## [115] xml2_1.2.2 foreach_1.4.7
## [117] annotate_1.64.0 XVector_0.26.0
## [119] rvest_0.3.4 stringr_1.4.0
## [121] callr_3.3.2 digest_0.6.22
## [123] ConsensusClusterPlus_1.50.0 Biostrings_2.54.0
## [125] rmarkdown_1.16 survMisc_0.5.5
## [127] edgeR_3.28.0 curl_4.2
## [129] shiny_1.4.0 Rsamtools_2.2.0
## [131] rjson_0.2.20 lifecycle_0.1.0
## [133] nlme_3.1-141 jsonlite_1.6
## [135] desc_1.2.0 askpass_1.1
## [137] limma_3.42.0 pillar_1.4.2
## [139] lattice_0.20-38 fastmap_1.0.1
## [141] httr_1.4.1 pkgbuild_1.0.6
## [143] survival_2.44-1.1 glue_1.3.1
## [145] remotes_2.1.0 iterators_1.0.12
## [147] bit_1.1-14 stringi_1.4.3
## [149] blob_1.2.0 latticeExtra_0.6-28
## [151] memoise_1.1.0