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Abstract
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Omnipath database:
http://omnipathdb.org/
In addition, it includes some utility functions to filter, analyse and visualize the data.
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1 Introduction

OmnipathR is an R package built to provide easy access to the data stored in the Omnipath
webservice [1]:
http://omnipathdb.org/
The webservice implements a very simple REST style API. This package make requests by
the HTTP protocol to retreive the data. Hence, fast Internet access is required for a proper
use of OmnipathR.

1.1 Query types

OmnipathR can retrieve five different types of data:
• Interactions: protein-protein interactions organized in different datasets:

• Omnipath: the OmniPath data as defined in the original publication [1] and
collected from different databases.

• Pathwayextra: activity flow interactions without literature reference.
• Kinaseextra: enzyme-substrate interactions without literature reference.
• Ligrecextra: ligand-receptor interactions without literature reference.
• Tfregulons: transcription factor (TF)-target interactions from DoRothEA [2, 3].
• Mirnatarget: miRNA-mRNA and TF-miRNA interactions.

• Post-translational modifications (PTMs): It provides enzyme-substrate reactions in
a very similar way to the aforementioned interactions. Some of the biological databases
related to PTMs integrated in Omnipath are Phospho.ELM [4] and PhosphoSitePlus
[5].

• Complexes: it provides access to a comprehensive database of more than 22000 protein
complexes. This data comes from different resources such as: CORUM [6] or Hu.map
[7].

• Annotations: it provides a large variety of data regarding different annotations about
proteins and complexes. These data come from dozens of databases covering different
topics such as: The Topology Data Bank of Transmembrane Proteins (TOPDB) [8]
or ExoCarta [9], a database collecting the proteins that were identified in exosomes in
multiple organisms.

• Intercell: it provides information on the roles in inter-cellular signaling. For instance.
if a protein is a ligand, a receptor, an extracellular matrix (ECM) component, etc. The
data does not come from original sources but combined from several databases by us.
The source databases, such as CellPhoneDB [10] or Receptome [11], are also referred
for each reacord.

Figure 1 shows an overview of the resources featured in OmniPath. For more detailed
information about the original data sources integrated in Omnipath, please visit: http:
//omnipathdb.org/ and http://omnipathdb.org/info.
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Figure 1: Overview of the resources featured in OmniPath
Causal resources (including activity-flow and enzyme-substrate resources) can provide direction (*) or sign
and direction (+) of interactions.

1.2 Mouse and rat

Excluding the miRNA interactions, all interactions and PTMs are available for human, mouse
and rat. The rodent data has been translated from human using the NCBI Homologene
database. Many human proteins do not have known homolog in rodents hence rodent datasets
are smaller than their human counterparts.
In case you work with mouse omics data you might do better to translate your dataset
to human (for example using the pypath.homology module, https://github.com/saezlab/
pypath/) and use human interaction data.

2 Installation of the OmnipathR package

First of all, you need a current version of R (www.r-project.org). OmnipathR is a freely
available package deposited on http://bioconductor.org/ and https://github.com/saezlab/
OmnipathR. You can install it by running the following commands on an R console:
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> if (!requireNamespace("BiocManager", quietly = TRUE))

+ install.packages("BiocManager")

> BiocManager::install("OmnipathR")

3 Usage Examples

In the following paragraphs, we provide some examples to describe how to use the OmnipathR
package to retrieve different types of information from Omnipath webserver. In addition, we
play around with the data aiming at obtaining some biological relevant information.
Noteworthy, the sections complexes, annotations and intercell are linked. We explore the
annotations and roles in inter-cellular communications of the proteins involved in a given
complex. This basic example shows the usefulness of integrating the information avaiable in
the different Omnipath resources.

3.1 Interactions

Proteins interact among them and with other biological molecules to perform cellular func-
tions. Proteins also participates in pathways, linked series of reactions occurring inter/intra
cells to transform products or to transmit signals inducing specific cellular responses. Pro-
tein interactions are therefore a very valuable source of information to understand cellular
functioning.
We are going to download the original Omnipath human interactions [1]. To do so, we
first check the different source databases and select some of them. Then, we print some
of the downloaded interactions ("+" means activation, "-" means inhibition and "?" means
undirected interactions or inconclusive data).
> library(OmnipathR)

> library(tidyr)

> library(dnet)

> library(gprofiler2)

> ## We check some of the different interaction databases

> head(get_interaction_databases(),10)

[1] "Wang" "BioGRID" "ACSN"

[4] "IntAct" "MIMP" "PhosphoELM_MIMP"

[7] "PhosphoSitePlus_MIMP" "HPRD" "InnateDB"

[10] "PhosphoPoint"

> ## The interactions are stored into a data frame.

> interactions <-

+ import_Omnipath_Interactions(filter_databases=c("SignaLink3","PhosphoSite",

+ "Signor"))

> ## We visualize the first interactions in the data frame.

> print_interactions(head(interactions))

source interaction target nsources nrefs

31 CTNND1 (O60716) ==( + )==> CDH1 (P12830) 7 27

5 EGFR (P00533) ==( + )==> CDH1 (P12830) 8 7
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24 CASP3 (P42574) ==( ? )==> CDH1 (P12830) 6 2

20 CTBP1 (Q13363) ==(+/-)==> CDH1 (P12830) 3 1

26 CDH1 (P12830) ==( + )==> LRP6 (O75581) 2 1

27 ADAM10 (O14672) ==( + )==> CDH1 (P12830) 2 1

3.1.1 Protein-protein interaction networks

Protein-protein interactions are usually converted into networks. Describing protein inter-
actions as networks not only provides a convenient format for visualization, but also allows
applying graph theory methods to mine the biological information they contain.
We convert here our set of interactions to a network/graph (igraph object). Then, we apply
two very common approaches to extract information from a biological network:

• Shortest Paths: finding a path between two nodes (proteins) going through the mini-
mum number of edges. This can be very useful to track consecutive reactions within a
given pathway. We display below the shortest path between two given proteins and all
the possible shortests paths between two other proteins. It is to note that the functions
printPath_es and printPath_vs display very similar results, but the first one takes as
an input an edge sequence and the second one a node sequence.
> ## We transform the interactions data frame into a graph

> OPI_g <- interaction_graph(interactions = interactions)

> ## Find and print shortest paths on the directed network between proteins

> ## of interest:

> printPath_es(shortest_paths(OPI_g,from = "TYRO3",to = "STAT3",

+ output = 'epath')$epath[[1]],OPI_g)

source interaction target nsources nrefs

1 TYRO3 (Q06418) ==( + )==> GRB2 (P62993) 1 1

2 GRB2 (P62993) ==( + )==> EGFR (P00533) 11 63

3 EGFR (P00533) ==( + )==> STAT3 (P40763) 10 21

> ## Find and print all shortest paths between proteins of interest:

> printPath_vs(all_shortest_paths(OPI_g,from = "DYRK2",

+ to = "MAPKAPK2")$res,OPI_g)

• Clustering: grouping nodes (proteins) in such a way that nodes belonging to the same
group (called cluster) are more connected in the network to each other than to those
in other groups (clusters). Since proteins interact to perform their functions, proteins
within the same cluster are likely to be implicated in similar biological tasks. Figure 2
shows the subgraph containing the proteins and interactions of a specifc protein. The
igraph R package contains functions to apply sevaral different cluster methods on
graphs (visit https://igraph.org/r/doc/ for detailed information.)
> ## We apply a clustering algorithm (Louvain) to group proteins in

> ## our network. We apply here Louvain which is fast but can only run

> ## on undirected graphs. Other clustering algorithms can deal with

> ## directed networks but with longer computational times,

> ## such as cluster_edge_betweenness. These cluster methods are directly

> ## available in the igraph package.

> OPI_g_undirected <- as.undirected(OPI_g, mode=c("mutual"))
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> cl_results <- cluster_louvain(OPI_g_undirected)

> ## We extract the cluster where a protein of interest is contained

> cluster_id <- cl_results$membership[which(cl_results$names == "CD22")]

> module_graph <- induced_subgraph(OPI_g_undirected,

+ V(OPI_g)$name[which(cl_results$membership == cluster_id)])

> ## We print that cluster with its interactions.

> par(mar=c(0.1,0.1,0.1,0.1))

> plot(module_graph, vertex.label.color="black",vertex.frame.color="#ffffff",

+ vertex.size= 15, edge.curved=.2,

+ vertex.color = ifelse(igraph::V(module_graph)$name == "CD22","yellow",

+ "#00CCFF"), edge.color="blue",edge.width=0.8)
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Figure 2:
Subnetwork extracted from the interactions graph representing the cluster where we can find the gene
CD22 (yellow node).

3.1.2 Other interaction datasets

We used above the interactions from the dataset described in the original Omnipath publica-
tion [1]. In this section, we provide examples on how to retry and deal with interactions from
the remaining datasets. The same functions can been applied to every interaction dataset.
In the first example, we are going to get the interactions from the pathwayextra dataset,
which contains activity flow interactions without literature reference. We are going to focus
on the mouse interactions for a given gene in this particular case.
> ## We query and store the interactions into a dataframe

> interactions <-

+ import_PathwayExtra_Interactions(filter_databases=c("BioGRID","IntAct"),

+ select_organism = 10090)

> ## We select all the interactions in which Amfr gene is involved
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> interactions_Amfr <- dplyr::filter(interactions, source_genesymbol == "Amfr" |

+ target_genesymbol == "Amfr")

> ## We print these interactions:

> print_interactions(interactions_Amfr)

source interaction target nsources

3 Gpi (P06745) ==( + )==> Amfr (Q9R049) 6

1 Amfr (Q9R049) ==( + )==> Vcp (Q01853) 5

2 Amfr (Q9R049) ==( - )==> Sod1 (P08228) 2

Next, we download the interactions from the kinaseextra dataset, which contains enzyme-
substrate interactions without literature reference. We are going to focus on rat reactions
targeting a particular gene.
> ## We query and store the interactions into a dataframe

> interactions <-

+ import_KinaseExtra_Interactions(filter_databases=c("PhosphoPoint",

+ "PhosphoSite"), select_organism = 10116)

> ## We select the interactions in which Dpysl2 gene is a target

> interactions_TargetDpysl2 <- dplyr::filter(interactions,

+ target_genesymbol == "Dpysl2")

> ## We print these interactions:

> print_interactions(interactions_TargetDpysl2)

source interaction target nsources

2 Gsk3b (P18266) ==(+/-)==> Dpysl2 (P47942) 14

3 Rock2 (Q62868) ==( + )==> Dpysl2 (P47942) 11

1 Cdk5 (Q03114) ==( + )==> Dpysl2 (P47942) 8

4 Rock1 (Q63644) ==( ? )==> Dpysl2 (P47942) 6

5 Fer (P09760) ==( ? )==> Dpysl2 (P47942) 3

In the following example we are going to work with the ligrecextra dataset, which contains
ligand-receptor interactions without literature reference. Our goal is to find the shortest
path between two proteins of our interest. For a more global overview, we induce a network
containing the genes involved in our shortest path and their first neighbors (Figure 3).
> ## We query and store the interactions into a dataframe

> interactions <- import_LigrecExtra_Interactions(filter_databases=c("HPRD",

+ "Guide2Pharma"),select_organism=9606)

> ## We transform the interactions data frame into a graph

> OPI_g <- interaction_graph(interactions = interactions)

> ## We aim at finding the shortest path between two genes of interest.

> path <- shortest_paths(OPI_g, "B2M", "TFR2")

> printPath_vs(path$vpath,OPI_g)

> ## We induce a network with the genes involved in the shortest path and their

> ## first neighbors to get a more general overview of the interactions

> Induced_Network <- dNetInduce(g=OPI_g,

+ nodes_query=as.character(path$vpath[[1]]$name), knn=1,

+ remove.loops=FALSE, largest.comp=FALSE)

>
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> ## We print the induced network

> par(mar=c(0.1,0.1,0.1,0.1))

> plot(Induced_Network, vertex.label.color="black",

+ vertex.frame.color="#ffffff",vertex.size= 20, edge.curved=.2,

+ vertex.color =

+ ifelse(igraph::V(Induced_Network)$name %in% c("B2M","TFR2"),

+ "yellow","#00CCFF"), edge.color="blue",edge.width=0.8)

B2M

CD1A

CD1B

HFE

HLA−F

LILRB1

TF
TFR2

Figure 3:
Subnetwork extracted from the kinaseextra interactions graph containing the shortest path between B2M
and TFR2 (yellow nodes). The first neighbors of the genes involved in the shortest path are also shown.

Another very interesting interaction dataset also available in Omnipath are the tfregulons
from DoRothEA [2, 3]. It contains transcription factor (TF)-target interactions with confi-
dence score, ranging from A-E, being A the most confident interactions. In the code chunk
shown below, we select and print the most confident interactions for a given TF.
> ## We query and store the interactions into a dataframe

> interactions <- import_TFregulons_Interactions(filter_databases=c("tfact",

+ "ARACNe-GTEx"),select_organism=9606)

> ## We select the most confident interactions for a given TF and we print

> ## the interactions to check the way it regulates its different targets

> interactions_A_GLI1 <- dplyr::filter(interactions, tfregulons_level=="A",

+ source_genesymbol == "GLI1")

> print_interactions(interactions_A_GLI1)

source interaction target nsources

3 GLI1 (P08151) ==( + )==> PTCH1 (Q13635) 3

1 GLI1 (P08151) ==( + )==> IGFBP6 (P24592) 2

2 GLI1 (P08151) ==( - )==> SLIT2 (O94813) 2

The last dataset describing interactions is mirnatarget. It stores miRNA-mRNA and TF-
miRNA interactions. These interactions are only available for human so far. We next select
the miRNA interacting with the TF selected in the previous code chunk, GLI1. The main
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function of miRNAs seems to be related with gene regulation. It is therefore interesting to see
how some miRNA can regulate the expression of a TF which in turn regulates the expression
of other genes. Figure 4 shows a schematic network of the miRNA targeting GLI1 and the
genes regulated by this TF.
> ## We query and store the interactions into a dataframe

> interactions <-

+ import_miRNAtarget_Interactions(filter_databases=c("miRTarBase","miRecords"))

> ## We select the interactions where a miRNA is interacting with the TF

> ## used in the previous code chunk and we print these interactions.

> interactions_miRNA_GLI1 <-

+ dplyr::filter(interactions, target_genesymbol == "GLI1")

> print_interactions(interactions_miRNA_GLI1)

source interaction target nsources nrefs

1 hsa-miR-324-5p (MIMAT0000761) ==( ? )==> GLI1 (P08151) 3 2

2 hsa-miR-326 (MIMAT0000756) ==( ? )==> GLI1 (P08151) 2 1

3 hsa-miR-125b-5p (MIMAT0000423) ==( ? )==> GLI1 (P08151) 2 1

4 hsa-miR-133b (MIMAT0000770) ==( ? )==> GLI1 (P08151) 1 1

5 hsa-miR-202 (MIMAT0002811) ==( ? )==> GLI1 (P08151) 1 1

> ## We transform the previous selections to graphs (igraph objects)

> OPI_g_1 <-interaction_graph(interactions = interactions_A_GLI1)

> OPI_g_2 <-interaction_graph(interactions = interactions_miRNA_GLI1)

> ## We print the union of both previous graphs

> par(mar=c(0.1,0.1,0.1,0.1))

> plot(OPI_g_1 %u% OPI_g_2, vertex.label.color="black",

+ vertex.frame.color="#ffffff",vertex.size= 20, edge.curved=.25,

+ vertex.color = ifelse(grepl("miR",igraph::V(OPI_g_1 %u% OPI_g_2)$name),

+ "red",ifelse(igraph::V(OPI_g_1 %u% OPI_g_2)$name == "GLI1",

+ "yellow","#00CCFF")), edge.color="blue",

+ vertex.shape = ifelse(grepl("miR",igraph::V(OPI_g_1 %u% OPI_g_2)$name),

+ "vrectangle","circle"),edge.width=0.8)

3.2 Post-translational modifications (PTMs)

Another query type available is PTMs which provides enzyme-substrate reactions in a very
similar way to the aforementioned interactions. PTMs refer generally to enzymatic modifica-
tion of proteins after their synthesis in the ribosomes. PTMs can be highly context-specific
and they play a main role in the activation/inhibition of biological pathways.
In the next code chunk, we download the PTMs for human. We first check the different
available source databases, even though we do not perform any filter. Then, we select
and print the reactions involving a specific enzyme-substrate pair. Those reactions lack
information about activation or inhibition. To obtain that information, we match the data
with Omnipath interactions. Finally, we show that it is also possible to build a graph using
this information, and to retrieve PTMs from mouse or rat.
> ## We check the different PTMs databases

> get_ptms_databases()
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GLI1

IGFBP6

PTCH1

SLIT2

hsa−miR−125b−5p

hsa−miR−133b

hsa−miR−202 hsa−miR−324−5p

hsa−miR−326

Figure 4:
Schematic network of the miRNA (red square nodes) targeting GLI1 (yellow node) and the genes regulated
by this TF (blue round nodes).

[1] "MIMP" "PhosphoSite" "Signor" "phosphoELM"

[5] "HPRD" "PhosphoNetworks" "dbPTM" "Li2012"

[9] "DEPOD"

> ## We query and store the ptms into a dataframe. No filtering by

> ## databases in this case.

> ptms <- import_Omnipath_PTMS()

> ## We can select and print the reactions between a specific kinase and

> ## a specific substrate

> print_interactions(dplyr::filter(ptms,enzyme_genesymbol=="MAP2K1",

+ substrate_genesymbol=="MAPK3"))

enzyme interaction substrate modification nsources

4 MAP2K1 (Q02750) ====> MAPK3_Y204 (P27361) phosphorylation 6

3 MAP2K1 (Q02750) ====> MAPK3_T202 (P27361) phosphorylation 6

1 MAP2K1 (Q02750) ====> MAPK3_Y210 (P27361) phosphorylation 1

2 MAP2K1 (Q02750) ====> MAPK3_T207 (P27361) phosphorylation 1

5 MAP2K1 (Q02750) ====> MAPK3_T80 (P27361) phosphorylation 1

6 MAP2K1 (Q02750) ====> MAPK3_Y222 (P27361) phosphorylation 1

> ## In the previous results, we can see that ptms does not contain sign

> ## (activation/inhibition). We can generate this information based on the

> ## protein-protein Omnipath interaction dataset.

> interactions <- import_Omnipath_Interactions()

> ptms <- get_signed_ptms(ptms,interactions)

> ## We select again the same kinase and substrate. Now we have information

> ## about inhibition or activation when we print the ptms

> print_interactions(dplyr::filter(ptms,enzyme_genesymbol=="MAP2K1",

+ substrate_genesymbol=="MAPK3"))
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enzyme interaction substrate modification nsources

5 MAP2K1 (Q02750) ==( + )==> MAPK3_Y204 (P27361) phosphorylation 6

6 MAP2K1 (Q02750) ==( + )==> MAPK3_T202 (P27361) phosphorylation 6

1 MAP2K1 (Q02750) ==( + )==> MAPK3_Y210 (P27361) phosphorylation 1

2 MAP2K1 (Q02750) ==( + )==> MAPK3_Y222 (P27361) phosphorylation 1

3 MAP2K1 (Q02750) ==( + )==> MAPK3_T207 (P27361) phosphorylation 1

4 MAP2K1 (Q02750) ==( + )==> MAPK3_T80 (P27361) phosphorylation 1

> ## We can also transform the ptms into a graph.

> ptms_g <- ptms_graph(ptms = ptms)

> ## We download PTMs for mouse

> ptms <- import_Omnipath_PTMS(filter_databases=c("PhosphoSite", "Signor"),

+ select_organism=10090)

3.3 Complexes

Some studies indicate that around 80% of the human proteins operate in complexes, and
many proteins belong to several different complexes [12]. These complexes play critical roles
in a large variety of biological processes. Some well-known examples are the proteasome and
the ribosome. Thus, the description of the full set of protein complexes functioning in cells
is essential to improve our understanding of biological processes.
The complexes query provides access to more than 20000 protein complexes. This com-
prehensive database has been created by integrating different resources. We now download
these molecular complexes filtering by some of the source databases. We check the com-
plexes where a couple of specific genes participate. First, we look for the complexes where
any of these two genes participate. We then identify the complex where these two genes
are jointly involved. Finally, we perform an enrichment analysis with the genes taking part
in that complex. You should keep an eye on this complex since it will be used again in the
forthcoming sections.
> ## We check the different complexes databases

> get_complexes_databases()

[1] "hu.MAP" "PDB" "Signor" "Compleat"

[5] "CORUM" "ComplexPortal" "CellPhoneDB" "Havugimana2012"

[9] "HPMR" "Guide2Pharma" "CFinder" "NetworkBlast"

> ## We query and store complexes from some sources into a dataframe.

> complexes <- import_Omnipath_complexes(filter_databases=c("CORUM", "hu.MAP"))

> ## We check all the molecular complexes where a set of genes participate

> query_genes <- c("LMNA","CTCF")

> ## Complexes where any of the input genes participate

> complexes_query_genes_any <- get_complex_genes(complexes,query_genes,

+ total_match=FALSE)

> ## We print the components of the different selected components

> complexes_query_genes_any$components_genesymbols

[1] "CTCF_H2AFZ_HIST2H2AA3_KPNA1_KPNA3_LMNA_NPM1_PARP1_TOP2A"

[2] "CTCF_SMAD3_SMAD4"

[3] "CTCF_SET"

[4] "CTCF_NPM1"
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[5] "ACTB_EMD_LMNA_LMNB1_NMI_SPTAN1"

[6] "BANF2_C1QBP_EMD_HIST1H1A_HIST1H3E_HNRNPU_LMNA_LMNB1_MCM2_MCM4_MCM6_NMI_RB1_RBL2_SAP130"

[7] "LMNA_NFYA"

[8] "LAMC3_LMNA"

[9] "BCAS2_CDC5L_EIF2S2_LMNA_MCM2_PDS5A_PDS5B_PLRG1_PRPF19_SAFB_SMC1A_TOP2A"

> ## Complexes where all the input genes participate jointly

> complexes_query_genes_join <- get_complex_genes(complexes,query_genes,

+ total_match=TRUE)

> ## We print the components of the different selected components

> complexes_query_genes_join$components_genesymbols

[1] "CTCF_H2AFZ_HIST2H2AA3_KPNA1_KPNA3_LMNA_NPM1_PARP1_TOP2A"

> genes_complex <-

+ unlist(strsplit(complexes_query_genes_join$components_genesymbols, "_"))

> ## We can perform an enrichment analyses with the genes in the complex

> EnrichmentResults <- gost(genes_complex, significant = TRUE,

+ user_threshold = 0.001, correction_method = c("fdr"),

+ sources=c("GO:BP","GO:CC","GO:MF"))

> ## We show the most significant results

> EnrichmentResults$result %>%

+ dplyr::select(term_id, source, term_name,p_value) %>%

+ dplyr::arrange(source, p_value)

term_id source term_name p_value

1 GO:0018995 GO:CC host cellular component 0.0001989654

2 GO:0043657 GO:CC host cell 0.0001989654

3 GO:0031981 GO:CC nuclear lumen 0.0004314515

4 GO:0005635 GO:CC nuclear envelope 0.0005881088

5 GO:0044428 GO:CC nuclear part 0.0005881088

6 GO:0005654 GO:CC nucleoplasm 0.0008604777

7 GO:0031974 GO:CC membrane-enclosed lumen 0.0008604777

8 GO:0032993 GO:CC protein-DNA complex 0.0008604777

9 GO:0043233 GO:CC organelle lumen 0.0008604777

10 GO:0070013 GO:CC intracellular organelle lumen 0.0008604777

3.4 Annotations

Biological annotations are statements, usually traceable and curated, about the different fea-
tures of a biological entity. At the genetic level, annotations describe the biological function,
the subcellular situation, the DNA location and many other related properties of a particular
gene or its gene products.
The annotations query provides a large variety of data about proteins and complexes. These
data come from dozens of databases and each kind of annotation record contains different
fields. Because of this, here we have a record_id field which is unique within the records of
each database. Each row contains one key value pair and you need to use the record_id to
connect the related key-value pairs (see examples below).
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Now, we focus in the annotations of the complex studied in the previous section. We first
inspect the different available databases in the omnipath webserver. Then, we download
the annotations for our complex itself as a biological entity. We find annotations related to
the nucleus and transcriptional control, which is in agreement with the enrichment analysis
results of its individual components.
> ## We check the different annotation databases

> get_annotation_databases()

[1] "CPAD" "CSPA" "CancerSEA"

[4] "CellPhoneDB" "Exocarta" "GO_Intercell"

[7] "Guide2Pharma" "Matrisome" "Signor"

[10] "kinase.com" "DisGeNet" "HPMR"

[13] "Kirouac2010" "HPA" "Locate"

[16] "Phosphatome" "SignaLink3" "TopDB"

[19] "Vesiclepedia" "Integrins" "MatrixDB"

[22] "NetPath" "Zhong2015" "Adhesome"

[25] "CancerGeneCensus" "HGNC" "IntOGen"

[28] "KEGG" "Membranome" "OPM"

[31] "Ramilowski2015" "Ramilowski_location" "Surfaceome"

[34] "TFcensus" "ComPPI" "CORUM_Funcat"

[37] "CORUM_GO" "CellPhoneDB_complex" "DGIdb"

[40] "HPMR_complex"

> ## We can further investigate the features of the complex selected

> ## in the previous section.

>

> ## We first get the annotations of the complex itself:

> annotations <-import_Omnipath_annotations(select_genes=paste0("COMPLEX:",

+ complexes_query_genes_join$components_genesymbols))

> dplyr::select(annotations,source,label,value)

source label value

1 Ramilowski_location location nucleus

2 ComPPI location nucleus

3 CORUM_Funcat funcat nucleus

4 CORUM_Funcat funcat transcriptional control

5 CORUM_GO go regulation of transcription, DNA-templated

6 CORUM_GO go nucleus

7 CORUM_GO go regulation of RNA biosynthetic process

Afterwards, we explore the annotations of the individual components of the complex in some
databases. We check the pathways where these proteins are involved. Once again, we also
find many nucleus related annotations when checking their cellular location.
> ## Then, we explore some annotations of its individual components

>

> ## Pathways where the proteins belong:

> annotations <- import_Omnipath_annotations(select_genes=genes_complex,

+ filter_databases=c("NetPath"))

> dplyr::select(annotations,genesymbol,value)

genesymbol value

1 PARP1 Androgen receptor (AR)
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2 PARP1 TNF-related weak inducer of apoptosis (TWEAK)

3 PARP1 Oncostatin-M (OSM)

4 PARP1 Corticotropin-releasing hormone (CRH)

5 PARP1 Tumor necrosis factor (TNF) alpha

6 KPNA1 Fibroblast growth factor-1 (FGF1)

7 CTCF Transforming growth factor beta (TGF-beta) receptor

8 KPNA3 Tumor necrosis factor (TNF) alpha

9 LMNA Thymic stromal lymphopoietin (TSLP)

> ## Cellular localization of our proteins

> annotations <-import_Omnipath_annotations(select_genes=genes_complex,

+ filter_databases=c("ComPPI"))

> ## Since we have same record_id for some results of our query, we spread

> ## these records across columns

> spread(annotations, label,value) %>%

+ dplyr::arrange(desc(score)) %>%

+ dplyr::top_n(10, score)

uniprot genesymbol entity_type source record_id location score

1 P06748 NPM1 protein ComPPI 1283 nucleus 0.99999993088

2 P09874 PARP1 protein ComPPI 11110 nucleus 0.999999887104

3 P11388 TOP2A protein ComPPI 2557 nucleus 0.999999887104

4 P49711 CTCF protein ComPPI 821 nucleus 0.999999232

5 P0C0S5 H2AFZ protein ComPPI 34549 nucleus 0.9999328

6 P02545 LMNA protein ComPPI 1328 nucleus 0.999884752

7 P52294 KPNA1 protein ComPPI 1136 cytosol 0.999496

8 O00505 KPNA3 protein ComPPI 1156 cytosol 0.99928

9 O00505 KPNA3 protein ComPPI 1154 nucleus 0.99832

10 P02545 LMNA protein ComPPI 1329 cytosol 0.99832

11 P52294 KPNA1 protein ComPPI 1133 nucleus 0.99832

3.5 Intercell

Cells perceive cues from their microenvironment and neighboring cells, and respond accord-
ingly to ensure proper activities and coordination between them. The ensemble of these
communication process is called inter-cellular signaling (intercell).
Intercell query provides information about the roles of proteins in inter-cellular signaling
(e.g. if a protein is a ligand, a receptor, an extracellular matrix (ECM) component, etc.)
This query type is very similar to annotations. However, intercell data does not come from
original sources, but combined from several databases by us into categories (we also refer to
the original sources).
We first inspect the different categories available in the Omnipath webserver. Then, we focus
again in our previously selected complex and we check its potential roles in inter-cellular
signaling. We repeat the analysis with its individual components.
> ## We check some of the different intercell categories

> head(get_intercell_categories(),10)

[1] "receptor_cellphonedb" "receptor_surfaceome"

[3] "receptor_go" "receptor_hpmr"
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[5] "receptor_ramilowski" "receptor_kirouac"

[7] "receptor_guide2pharma" "interleukin_receptors_hgnc"

[9] "receptor_hgnc" "receptor_dgidb"

> ## We import the intercell data into a dataframe

> intercell <- import_Omnipath_intercell()

> ## We check the intercell annotations for our previous complex itself

> dplyr::filter(intercell,

+ genesymbol == complexes_query_genes_join$components_genesymbols,

+ mainclass != "") %>%

+ dplyr::select(category,genesymbol, mainclass)

[1] category genesymbol mainclass

<0 rows> (or 0-length row.names)

> ## We check the intercell annotations for the individual components of

> ## our previous complex. We filter our data to print it in a good format

> dplyr::filter(intercell,genesymbol %in% genes_complex, mainclass!="") %>%

+ dplyr::distinct(genesymbol,mainclass, .keep_all = TRUE) %>%

+ dplyr::select(category, genesymbol, mainclass) %>%

+ dplyr::arrange(genesymbol)

category genesymbol mainclass

1 intracellular_locate CTCF intracellular

2 intracellular_comppi H2AFZ intracellular

3 intracellular_comppi HIST2H2AA3 intracellular

4 intracellular_locate KPNA1 intracellular

5 transporter_dgidb KPNA1 transporter

6 intracellular_locate KPNA3 intracellular

7 transmembrane_locate KPNA3 transmembrane

8 transporter_dgidb KPNA3 transporter

9 cell_surface_cspa LMNA cell_surface

10 intracellular_locate LMNA intracellular

11 extracellular_cspa LMNA extracellular

12 intracellular_locate NPM1 intracellular

13 extracellular_comppi NPM1 extracellular

14 intracellular_locate PARP1 intracellular

15 extracellular_comppi PARP1 extracellular

16 intracellular_locate TOP2A intracellular

> ## We close graphical connections

> while (!is.null(dev.list())) dev.off()

3.6 Conclusion

OmnipathR provides access to the wealth of data stored in the Omnipath webservice http:
//omnipathdb.org/ from the R enviroment. In addition, it contains some utility functions for
visualization, filtering and analysis. The main strength of OmnipathR is the straightforward
transformation of the different Omnipath data into commonly used R objects, such as
dataframes and graphs. Consequently, it allows an easy integration of the different types
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of data and a gateway to the vast number of R packages dedicated to the analysis and
representaiton of biological data. We highlighted these abilities in some of the examples
detailed in previous sections of this document.
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A Session info

• R version 3.6.1 (2019-07-05), x86_64-pc-linux-gnu
• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,

LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

• Running under: Ubuntu 18.04.3 LTS

• Matrix products: default
• BLAS: /home/biocbuild/bbs-3.10-bioc/R/lib/libRblas.so
• LAPACK: /home/biocbuild/bbs-3.10-bioc/R/lib/libRlapack.so
• Base packages: base, datasets, grDevices, graphics, methods, stats, utils
• Other packages: OmnipathR 1.0.0, dnet 1.1.5, gprofiler2 0.1.6, hexbin 1.27.3,

igraph 1.2.4.1, supraHex 1.24.0, tidyr 1.0.0
• Loaded via a namespace (and not attached): BiocGenerics 0.32.0,

BiocManager 1.30.9, BiocStyle 2.14.0, MASS 7.3-51.4, Matrix 1.2-17, R6 2.4.0,
RCurl 1.95-4.12, Rcpp 1.0.2, Rgraphviz 2.30.0, ape 5.3, assertthat 0.2.1,
backports 1.1.5, bitops 1.0-6, colorspace 1.4-1, compiler 3.6.1, crayon 1.3.4,
data.table 1.12.6, digest 0.6.22, dplyr 0.8.3, evaluate 0.14, ggplot2 3.2.1, glue 1.3.1,
graph 1.64.0, grid 3.6.1, gtable 0.3.0, htmltools 0.4.0, htmlwidgets 1.5.1, httr 1.4.1,
jsonlite 1.6, knitr 1.25, lattice 0.20-38, lazyeval 0.2.2, lifecycle 0.1.0, magrittr 1.5,
munsell 0.5.0, nlme 3.1-141, parallel 3.6.1, pillar 1.4.2, pkgconfig 2.0.3, plotly 4.9.0,
purrr 0.3.3, rlang 0.4.1, rmarkdown 1.16, scales 1.0.0, stats4 3.6.1, tibble 2.1.3,
tidyselect 0.2.5, tools 3.6.1, vctrs 0.2.0, viridisLite 0.3.0, xfun 0.10, yaml 2.2.0,
zeallot 0.1.0
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