
Package ‘batchelor’
April 15, 2020

Version 1.2.4

Date 2020-01-01

Title Single-Cell Batch Correction Methods

Depends SingleCellExperiment

Imports SummarizedExperiment, S4Vectors, BiocGenerics, Rcpp, stats,
methods, utils, BiocNeighbors, BiocSingular, Matrix,
DelayedArray, DelayedMatrixStats, scater, BiocParallel

Suggests testthat, BiocStyle, knitr, beachmat, scran, scRNAseq

biocViews Sequencing, RNASeq, Software, GeneExpression,
Transcriptomics, SingleCell, BatchEffect, Normalization

LinkingTo Rcpp, beachmat

Description
Implements a variety of methods for batch correction of single-cell (RNA sequencing) data.
This includes methods based on detecting mutually nearest neighbors,
as well as several efficient variants of linear regression of the log-expression values.
Functions are also provided to perform global rescaling to remove differences in depth be-
tween batches,
and to perform a principal components analysis that is robust to differences in the num-
bers of cells across batches.

License GPL-3

NeedsCompilation yes

VignetteBuilder knitr

SystemRequirements C++11

RoxygenNote 7.0.2

git_url https://git.bioconductor.org/packages/batchelor

git_branch RELEASE_3_10

git_last_commit 24cbcdd

git_last_commit_date 2020-01-01

Date/Publication 2020-04-14

Author Aaron Lun [aut, cre],
Laleh Haghverdi [ctb]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

1

2 batchCorrect

R topics documented:
batchCorrect . 2
batchelor-restrict . 5
BatchelorParam-class . 6
checkBatchConsistency . 7
correctExperiments . 8
cosineNorm . 10
divideIntoBatches . 12
fastMNN . 13
findMutualNN . 19
mnnCorrect . 21
multiBatchNorm . 26
multiBatchPCA . 28
noCorrect . 31
reducedMNN . 32
regressBatches . 34
rescaleBatches . 36

Index 38

batchCorrect Batch correction methods

Description

A common interface for single-cell batch correction methods.

Usage

batchCorrect(
...,
batch = NULL,
restrict = NULL,
subset.row = NULL,
correct.all = FALSE,
assay.type = NULL,
get.spikes = FALSE,
PARAM

)

S4 method for signature 'ClassicMnnParam'
batchCorrect(
...,
batch = NULL,
restrict = NULL,
subset.row = NULL,
correct.all = FALSE,
assay.type = "logcounts",
get.spikes = FALSE,
PARAM

)

batchCorrect 3

S4 method for signature 'FastMnnParam'
batchCorrect(
...,
batch = NULL,
restrict = NULL,
subset.row = NULL,
correct.all = FALSE,
assay.type = "logcounts",
get.spikes = FALSE,
PARAM

)

S4 method for signature 'RescaleParam'
batchCorrect(
...,
batch = NULL,
restrict = NULL,
subset.row = NULL,
correct.all = FALSE,
assay.type = "logcounts",
get.spikes = FALSE,
PARAM

)

S4 method for signature 'RegressParam'
batchCorrect(
...,
batch = NULL,
restrict = NULL,
subset.row = NULL,
correct.all = FALSE,
assay.type = "logcounts",
get.spikes = FALSE,
PARAM

)

S4 method for signature 'NoCorrectParam'
batchCorrect(
...,
batch = NULL,
restrict = NULL,
subset.row = NULL,
correct.all = FALSE,
assay.type = "logcounts",
get.spikes = FALSE,
PARAM

)

Arguments

... One or more matrix-like objects containing single-cell gene expression matrices.
Alternatively, one or more SingleCellExperiment objects can be supplied.

4 batchCorrect

If multiple objects are supplied, each object is assumed to contain all and only
cells from a single batch. Objects of different types can be mixed together. If a
single object is supplied, batch should also be specified.

batch A factor specifying the batch of origin for each cell if only one batch is supplied
in This will be ignored if two or more batches are supplied.

restrict A list of length equal to the number of objects in Each entry of the list
corresponds to one batch and specifies the cells to use when computing the cor-
rection.

subset.row A vector specifying the subset of genes to use for correction. Defaults to NULL,
in which case all genes are used.

correct.all A logical scalar indicating whether to return corrected expression values for all
genes, even if subset.row is set. Used to ensure that the output is of the same
dimensionality as the input.

assay.type A string or integer scalar specifying the assay to use for correction. Only used
for SingleCellExperiment inputs.

get.spikes Deprecated, a logical scalar indicating whether to retain rows corresponding to
spike-in transcripts. Only used for SingleCellExperiment inputs.

PARAM A BatchelorParam object specifying the batch correction method to dispatch to,
and the parameters with which it should be run. ClassicMnnParam will dispatch
to mnnCorrect; FastMnnParam will dispatch to fastMNN; RescaleParam will
dispatch to rescaleBatches; and RegressParam will dispatch to regressBatches.

Details

Users can pass parameters to each method directly via ... or via the constructors for PARAM. While
there is no restriction on which parameters go where, we recommend only passing data-agnostic and
method-specific parameters to PARAM. Data-dependent parameters - and indeed, the data themselves
- should be passed in via This means that different data sets can be used without modifying
PARAM, and allows users to switch to a different algorithm by only changing PARAM.

Note that get.spikes=FALSE effectively modifies subset.row to exclude spike-in transcripts when
SingleCellExperiment inputs are supplied. This means that the reported SingleCellExperiment will
not, by default, contain corrected expression values for spike-in transcripts unless get.spikes=TRUE.

Value

A SingleCellExperiment where the first assay contains corrected gene expression values for all
genes. Corrected values should be returned for all genes if subset.row=NULL or if correct.all=TRUE;
otherwise they should only be returned for the genes in the subset.

Cells should be reported in the same order that they are supplied. In cases with multiple batches,
the cell identities are simply concatenated from successive objects in their specified order, i.e., all
cells from the first object (in their provided order), then all cells from the second object, and so on.
For a single input object, cells should be reported in the same order as the input.

The colData slot should contain batch, a vector specifying the batch of origin for each cell.

Author(s)

Aaron Lun

See Also

BatchelorParam classes to determine dispatch.

batchelor-restrict 5

Examples

B1 <- matrix(rnorm(10000), ncol=50) # Batch 1
B2 <- matrix(rnorm(10000), ncol=50) # Batch 2

Switching easily between batch correction methods.
m.out <- batchCorrect(B1, B2, PARAM=ClassicMnnParam())
f.out <- batchCorrect(B1, B2, PARAM=FastMnnParam(d=20))
r.out <- batchCorrect(B1, B2, PARAM=RescaleParam(pseudo.count=0))
n.out <- batchCorrect(B1, B2, PARAM=NoCorrectParam())

batchelor-restrict Using restriction

Description

Using restriction

Motivation

It is possible to compute the correction using only a subset of cells in each batch, and then extrapo-
late that correction to all other cells. This may be desirable in experimental designs where a control
set of cells from the same source population were run on different batches. Any difference in the
controls must be artificial in origin and can be directly removed without making further biological
assumptions. Similarly, if certain cells are known to be of a batch-specific subpopulation, it may be
desirable to exclude them to ensure that they are not inadvertently used during the batch correction.

Setting the restrict argument

To perform restriction, users should set restrict to specify the subset of cells in each batch to be
used for correction. This should be set to a list of length equal to the number of objects passed to
the ... argument of the batch correction function. Each element of this list should be a subsetting
vector to be applied to the columns of the corresponding batch. A NULL element indicates that all the
cells from a batch should be used. In situations where one input object contains multiple batches,
restrict should simply a list containing a single subsetting vector for that object.

Correction functions that support restrict will only use the restricted subset of cells in each batch
to perform the correction. For example, fastMNN will only use the restricted cells to identify MNN
pairs and the center of the orthogonalization. However, it will apply the correction to all cells in each
batch - hence the extrapolation. This means that the output is always of the same dimensionality,
regardless of whether restrict is specified.

As a general rule, users can expect the corrected values in the restricted cells to be the same as if
the inputs were directly subsetted to only contain those cells (see Examples). This is appealing as
it demonstrates that correction only uses information from the restricted subset of cells. If batch
correction functions do not follow this rule, they will explicitly state so, e.g., in ?fastMNN.

Author(s)

Aaron Lun

6 BatchelorParam-class

See Also

rescaleBatches, regressBatches, fastMNN and mnnCorrect, as examples of batch correction
methods that support restriction.

Examples

means <- 2^rgamma(1000, 2, 1)
A1 <- matrix(rpois(10000, lambda=means), ncol=50) # Batch 1
A2 <- matrix(rpois(10000, lambda=means*runif(1000, 0, 2)), ncol=50) # Batch 2

B1 <- log2(A1 + 1)
B2 <- log2(A2 + 1)
out <- regressBatches(B1, B2, restrict=list(1:10, 1:10))
assay(out)[,c(1:10, 50+1:10)]

Compare to actual subsetting:
out.sub <- regressBatches(B1[,1:10], B2[,1:10])
assay(out.sub)

BatchelorParam-class BatchelorParam methods

Description

Constructors and methods for the batchelor parameter classes.

Usage

ClassicMnnParam(...)

FastMnnParam(...)

RescaleParam(...)

RegressParam(...)

NoCorrectParam(...)

Arguments

... Named arguments to pass to individual methods upon dispatch. These should
not include arguments named in the batchCorrect generic.

Details

BatchelorParam objects are intended to store method-specific parameter settings to pass to the
batchCorrect generic. These values should refer to data-agnostic parameters; parameters that
depend on data (or the data itself) should be specified directly in the batchCorrect call.

The BatchelorParam classes are all derived from SimpleList objects and have the same available
methods, e.g., [[, $. These can be used to access or modify the object after construction.

Note that the BatchelorParam class itself is not useful and should not be constructed directly. In-
stead, users should use the constructors shown above to create instances of the desired subclass.

checkBatchConsistency 7

Value

The constructors will return a BatchelorParam object of the specified subclass, containing parameter
settings for the corresponding batch correction method.

Author(s)

Aaron Lun

See Also

batchCorrect, where the BatchelorParam objects are used for dispatch to individual methods.

Examples

Specifying the number of neighbors, dimensionality.
fp <- FastMnnParam(k=20, d=10)
fp

List-like behaviour:
fp$k
fp$k <- 10
fp$k

checkBatchConsistency Check batch inputs

Description

Utilities to check inputs into batch correction functions.

Usage

checkBatchConsistency(batches, cells.in.columns = TRUE)

checkSpikeConsistency(batches)

checkIfSCE(batches)

checkRestrictions(batches, restrictions, cells.in.columns = TRUE)

Arguments

batches A list of batches, usually containing gene expression matrices or SingleCellEx-
periment objects.

cells.in.columns

A logical scalar specifying whether batches contain cells in the columns.

restrictions A list of length equal to batches, specifying the cells in each batch that should
be used for correction.

8 correctExperiments

Details

These functions are intended for internal use and other package developers.

checkBatchConsistency will check whether the input batches are consistent with respect to the
size of the dimension containing features (i.e., not cells). It will also verify that the dimension
names are consistent, to avoid problems from variable ordering of rows/columns in the inputs.

checkSpikeConsistency will check whether the spike-in information is consistent across all batches.
This only works for SingleCellExperiment objects, so one should only run this function if checkIfSCE
returns TRUE.

checkRestrictions will check whether restrictions are consistent with the supplied batches,
in terms of the length and names of the two lists. It will also check that each batch contains at least
one usable cell after restriction.

Value

checkBatchConsistency and checkSpikeConsistency will return an invisible NULL if there are
no errors.

checkIfSCE will return a logical vector specifying whether each element of batches is a Single-
CellExperiment objects.

checkRestrictions will return NULL if restrictions=NULL. Otherwise, it will return a list by
taking restrictions and converting each non-NULL element into an integer subsetting vector.

Author(s)

Aaron Lun

See Also

divideIntoBatches

Examples

checkBatchConsistency(list(cbind(1:5), cbind(1:5, 2:6)))
try(# fails

checkBatchConsistency(list(cbind(1:5), cbind(1:4, 2:5)))
)

correctExperiments Correct SingleCellExperiment objects

Description

Apply a correction to multiple SingleCellExperiment objects, while also combining the assay data
and column metadata for easy use.

correctExperiments 9

Usage

correctExperiments(
...,
batch = NULL,
restrict = NULL,
subset.row = NULL,
correct.all = FALSE,
assay.type = "logcounts",
PARAM = FastMnnParam(),
combine.assays = NULL,
combine.coldata = NULL,
include.rowdata = TRUE

)

Arguments

... One or more SingleCellExperiment objects. If multiple objects are supplied,
each object is assumed to contain all and only cells from a single batch. If a
single object is supplied, batch should also be specified.

batch A factor specifying the batch of origin for each cell if only one batch is supplied
in This will be ignored if two or more batches are supplied.

restrict A list of length equal to the number of objects in Each entry of the list
corresponds to one batch and specifies the cells to use when computing the cor-
rection.

subset.row A vector specifying the subset of genes to use for correction. Defaults to NULL,
in which case all genes are used.

correct.all A logical scalar indicating whether to return corrected expression values for all
genes, even if subset.row is set. Used to ensure that the output is of the same
dimensionality as the input.

assay.type A string or integer scalar specifying the assay to use for correction.

PARAM A BatchelorParam object specifying the batch correction method to dispatch to,
and the parameters with which it should be run. ClassicMnnParam will dispatch
to mnnCorrect; FastMnnParam will dispatch to fastMNN; RescaleParam will
dispatch to rescaleBatches; and RegressParam will dispatch to regressBatches.

combine.assays Character vector specifying the assays from each entry of ... to combine to-
gether without correction. By default, any named assay that is present in all
entries of ... are combined. This can be set to character(0) to avoid combin-
ing any assays.

combine.coldata

Character vector specifying the column metadata fields from each entry of ...
to combine together. By default, any column metadata field that is present in all
entries of ... is combined. This can be set to character(0) to avoid combining
any metadata.

include.rowdata

Logical scalar indicating whether the function should attempt to include rowRanges.

Details

This function makes it easy to retain information from the original SingleCellExperiment objects
in the post-merge object. Operations like differential expression analyses can be easily performed

10 cosineNorm

on the uncorrected expression values, while common annotation can be leveraged in cell-based
analyses like clustering.

Additional assays may be added to the merged object, depending on combine.assays. This will
usually contain uncorrected values from each batch that have been simply cbinded together. If
combine.assays contains a field that overlaps with the name of the corrected assay from batchCorrect,
a warning will be raised and the corrected assay will be preferentially retained.

Any column metadata fields that are shared will also be included in the merged object by default
(tunable by setting combine.coldata). If any existing field is named "batch", it will be ignored
in favor of that produced by batchCorrect and a warning is emitted.

Row metadata is only included in the merged object if include.rowdata=TRUE and all row meta-
data objects are identical across objects in If not, a warning is emitted and no row metadata is
attached to the merged object.

Value

A SingleCellExperiment containing the merged expression values in the first assay and a batch
column metadata field specifying the batch of origin for each cell, as described in batchCorrect.

Author(s)

Aaron Lun

See Also

batchCorrect, which does the correction inside this function.

noCorrect, used to combine uncorrected values for the other assays.

Examples

sce1 <- scater::mockSCE()
sce1 <- scater::logNormCounts(sce1)
sce2 <- scater::mockSCE()
sce2 <- scater::logNormCounts(sce2)

f.out <- correctExperiments(sce1, sce2)
colData(f.out)
assayNames(f.out)

cosineNorm Cosine normalization

Description

Perform cosine normalization on the column vectors of an expression matrix.

cosineNorm 11

Usage

cosineNorm(
x,
mode = c("matrix", "all", "l2norm"),
subset.row = NULL,
BPPARAM = SerialParam()

)

Arguments

x A gene expression matrix with cells as columns and genes as rows.

mode A string specifying the output to be returned.

subset.row A vector specifying which features to use to compute the L2 norm.

BPPARAM A BiocParallelParam object specifying how parallelization is to be performed.
Only used when x is a DelayedArray object.

Details

Cosine normalization removes scaling differences between expression vectors. In the context of
batch correction, this is usually applied to remove differences between batches that are normalized
separately. For example, fastMNN uses this function on the log-expression vectors by default.

Technically, separate normalization introduces scaling differences in the normalized expression,
which should manifest as a shift in the log-transformed expression. However, in practice, single-
cell data will contain many small counts (where the log function is near-linear) or many zeroes
(which remain zero when the pseudo-count is 1). In these applications, scaling differences due to
separate normalization are better represented as scaling differences in the log-transformed values.

If applied to the raw count vectors, cosine normalization is similar to library size-related (i.e., L1)
normalization. However, we recommend using dedicated methods for computing size factors to
normalize raw count data.

While the default is to directly return the cosine-normalized matrix, it may occasionally be desirable
to obtain the L2 norm, e.g., to apply an equivalent normalization to other matrices. This can be
achieved by setting mode accordingly.

The function will return a DelayedMatrix if x is a DelayedMatrix. This aims to delay the calculation
of cosine-normalized values for very large matrices.

Value

If mode="matrix", a double-precision matrix of the same dimensions as X is returned, containing
cosine-normalized values.

If mode="l2norm", a double-precision vector is returned containing the L2 norm for each cell.

If mode="all", a named list is returned containing the fields "matrix" and "l2norm", which are as
described above.

Author(s)

Aaron Lun

See Also

mnnCorrect and fastMNN, where this function gets used.

12 divideIntoBatches

Examples

A <- matrix(rnorm(1000), nrow=10)
str(cosineNorm(A))
str(cosineNorm(A, mode="l2norm"))

divideIntoBatches Divide into batches

Description

Divide a single input object into multiple separate objects according to their batch of origin.

Usage

divideIntoBatches(x, batch, byrow = FALSE, restrict = NULL)

Arguments

x A matrix-like object where one dimension corresponds to cells and another rep-
resents features.

batch A factor specifying the batch to which each cell belongs.

byrow A logical scalar indicating whether rows correspond to cells.

restrict A subsetting vector specifying which cells should be used for correction.

Details

This function is intended for internal use and other package developers. It splits a single input object
into multiple batches, allowing developers to use the same code for the scenario where batch is
supplied with a single input.

Value

A list containing:

• batches, a named list of matrix-like objects where each element corresponds to a level of
batch and contains all cells from that batch.

• reorder, an integer vector to be applied to the combined batches to recover the ordering of
cells in x.

• restricted, a named list of integer vectors specifying which cells are to be used for correc-
tion. Set to NULL if the input restrict was also NULL.

Author(s)

Aaron Lun

fastMNN 13

Examples

X <- matrix(rnorm(1000), ncol=100)
out <- divideIntoBatches(X, sample(3, 100, replace=TRUE))
names(out)

Recovering original order.
Y <- do.call(cbind, out$batches)
Z <- Y[,out$reorder]
all.equal(Z, X) # should be TRUE.

fastMNN Fast mutual nearest neighbors correction

Description

Correct for batch effects in single-cell expression data using a fast version of the mutual nearest
neighbors (MNN) method.

Usage

fastMNN(
...,
batch = NULL,
k = 20,
prop.k = NULL,
restrict = NULL,
cos.norm = TRUE,
ndist = 3,
d = 50,
weights = NULL,
merge.order = NULL,
auto.merge = FALSE,
auto.order = NULL,
min.batch.skip = 0,
subset.row = NULL,
correct.all = FALSE,
pc.input = FALSE,
assay.type = "logcounts",
get.spikes = FALSE,
use.dimred = NULL,
BSPARAM = IrlbaParam(deferred = TRUE),
BNPARAM = KmknnParam(),
BPPARAM = SerialParam()

)

Arguments

... One or more log-expression matrices where genes correspond to rows and cells
correspond to columns. Each matrix should contain the same number of rows,
corresponding to the same genes in the same order.

14 fastMNN

Alternatively, one or more SingleCellExperiment objects can be supplied con-
taining a log-expression matrix in the assay.type assay. Note the same restric-
tions described above for gene expression matrix inputs.
If multiple objects are supplied, each object is assumed to contain all and only
cells from a single batch. Objects of different types can be mixed together. If a
single object is supplied, batch should also be specified.

batch A factor specifying the batch of origin for all cells when only a single object is
supplied in This is ignored if multiple objects are present.

k An integer scalar specifying the number of nearest neighbors to consider when
identifying MNNs.

prop.k A numeric scalar in (0, 1) specifying the proportion of cells in each dataset to
use for mutual nearest neighbor searching. If set, k for the search in each batch
is redefined as max(k,prop.k*N) where N is the number of cells in that batch.

restrict A list of length equal to the number of objects in Each entry of the list
corresponds to one batch and specifies the cells to use when computing the cor-
rection.

cos.norm A logical scalar indicating whether cosine normalization should be performed
on the input data prior to PCA.

ndist A numeric scalar specifying the threshold beyond which neighbours are to be
ignored when computing correction vectors. Each threshold is defined as a mul-
tiple of the number of median distances.

d Number of dimensions to use for dimensionality reduction in multiBatchPCA.

weights Numeric scalar of weights to use in multiBatchPCA.

merge.order An integer vector containing the linear merge order of batches in Alterna-
tively, a list of lists representing a tree structure specifying a hierarchical merge
order.

auto.merge Logical scalar indicating whether to automatically identify the “best” merge or-
der.

auto.order Deprecated, use merge.order or auto.merge instead.

min.batch.skip Numeric scalar specifying the minimum relative magnitude of the batch effect,
below which no correction will be performed at a given merge step.

subset.row A vector specifying which features to use for correction.

correct.all Logical scalar indicating whether a rotation matrix should be computed for
genes not in subset.row.

pc.input Deprecated, use reducedMNN instead.

assay.type A string or integer scalar specifying the assay containing the log-expression
values. Only used for SingleCellExperiment inputs.

get.spikes Deprecated.

use.dimred Deprecated, use reducedMNN instead.

BSPARAM A BiocSingularParam object specifying the algorithm to use for PCA. This uses
a fast approximate algorithm from irlba by default, see multiBatchPCA for de-
tails.

BNPARAM A BiocNeighborParam object specifying the nearest neighbor algorithm.

BPPARAM A BiocParallelParam object specifying whether the PCA and nearest-neighbor
searches should be parallelized.

fastMNN 15

Details

This function provides a variant of the mnnCorrect function, modified for speed and more robust
performance. In particular:

• It performs a multi-sample PCA via multiBatchPCA and subsequently performs all calcu-
lations in the PC space. This reduces computational work and provides some denoising for
improved neighbour detection. As a result, though, the corrected output cannot be interpreted
on a gene level and is useful only for cell-level comparisons, e.g., clustering and visualization.

• The correction vector for each cell is directly computed from its k nearest neighbours in the
same batch. Specifically, only the k nearest neighbouring cells that also participate in MNN
pairs are used. Each MNN-participating neighbour is weighted by distance from the current
cell, using a tricube scheme with bandwidth equal to the median distance multiplied by ndist.
This ensures that the correction vector only uses information from the closest cells, improving
the fidelity of local correction.

• Issues with “kissing” are avoided with a two-step procedure that removes variation along the
batch effect vector. First, the average correction vector across all MNN pairs is computed.
Cell coordinates are adjusted such that all cells in a single batch have the same position along
this vector. The correction vectors are then recalculated with the adjusted coordinates (but the
same MNN pairs).

The default setting of cos.norm=TRUE provides some protection against differences in scaling be-
tween log-expression matrices from batches that are normalized separately (see cosineNorm for
details). However, if possible, we recommend using the output of multiBatchNorm as input to
fastMNN. This will equalize coverage on the count level before the log-transformation, which is a
more accurate rescaling than cosine normalization on the log-values.

The batch argument allows users to easily perform batch correction when all cells have already
been combined into a single object. This avoids the need to manually split the matrix or SingleCell-
Experiment object into separate objects for input into fastMNN. In this situation, the order of input
batches is defined by the order of levels in batch.

Value

A SingleCellExperiment is returned where each row is a gene and each column is a cell. This
contains:

• A corrected matrix in the reducedDims slot, containing corrected low-dimensional coordi-
nates for each cell. This has number of columns equal to d and number of rows equal to the
total number of cells in

• A batch column in the colData slot, containing the batch of origin for each row (i.e., cell) in
corrected.

• A rotation column the rowData slot, containing the rotation matrix used for the PCA. This
has d columns and number of rows equal to the number of genes to report (see the “Choice of
genes” section).

• A reconstructed matrix in the assays slot, containing the low-rank reconstruction of the
expression matrix. This can be interpreted as per-gene corrected log-expression values (af-
ter cosine normalization, if cos.norm=TRUE) but should not be used for quantitative analy-
ses. This has number of rows equal to the number of input genes if subset.row=NULL or
correct.all=TRUE, otherwise each row corresponds to a gene in subset.row.

Cells in the output object are always ordered in the same manner as supplied in For a single
input object, cells will be reported in the same order as they are arranged in that object. In cases
with multiple input objects, the cell identities are simply concatenated from successive objects, i.e.,

16 fastMNN

all cells from the first object (in their provided order), then all cells from the second object, and so
on. This is true regardless of the value of merge.order and auto.merge, which only affects the
internal merge order of the batches.

The metadata of the output object contains merge.info, a DataFrame of diagnostic information
about each merge step. See the “Merge diagnostics” section for more details.

Controlling the merge order

By default, batches are merged in the user-supplied order, i.e., the first batch is merged with the
second batch, the third batch is merged with the combined first-second batch, the fourth batch
is merged with the combined first-second-third batch and so on. We refer to this approach as a
progressive merge.

If merge.order is an integer vector, it is treated as an ordering permutation with which to perform a
progressive merge. For example, if merge.order=c(4,1,3,2), batches 4 and 1 in ... are merged
first; batch 3 is merged with the combined 4+1 batch; and then batch 2 is merged with the combined
4+1+3 batch. This is often more convenient than changing the order manually in ..., which would
alter the order of batches in the output corrected matrix.

If merge.order is a character vector, it is treated as an ordering permutation for named batches.

If merge.order is a nested list, it is treated as a tree that specifies a hierarchical merge. Each
element of the list should either be a string or integer scalar, corresponding to a leaf node that
specifies a batch; or another list, corresponding to an internal node that should contain at least two
children; or an integer or character vector of length 2 or more, again corresponding to an internal
node.

• For example, list(list(1,2),list(3,4)) indicates that batch 1 should be merged with
batch 2; batch 3 should be merged with batch 4; and that, finally, the combined batches 1+2
and 3+4 should be merged.

• More than two children per node are supported and will result in a progressive merge within
that node. For example, list(list(1,2,3),list(4,5,6)) will merge batch 1 with 2, then
1+2 with 3; batch 4 with 5, and then 4+5 with 6; and finally, 1+2+3 with 4+5+6.

• The same approach can be used for integer or character vectors, e.g., list(1:3,4:6) has the
same effect as above.

Note that, while batches can be specified by name (character) or index (integer), users cannot use
both in the same tree.

The merge order may occasionally be important as it determines the number of MNN pairs avail-
able at each merge step. MNN pairs results in greater stability of the batch vectors and increased
likelihood of identifying shared subpopulations, which are important to the precision and accuracy
of the MNN-based correction, respectively.

• In a progressive merge, the reference increases in size at each step, ensuring that more cells
are available to identify MNN pairs in later merges. We suggest setting the largest, most
heterogeneous batch as the first reference, which favors detection of sufficient MNN pairs be-
tween the first and other batches. Conversely, if two small batches without shared populations
are supplied first, the wrong MNN pairs will be detected and the result of the merge will be
incorrect.

• A merge tree is useful for merging together batches that are known to be more closely related
(e.g., replicates) before attempting difficult merges involving more dissimilar batches. The
idea is to increase the number of cells and thus MNN pairs prior to merging batches with few
shared subpopulations. By comparison, performing the more difficult merges first is more
likely to introduce errors whereby distinct subpopulations are incorrectly placed together,

fastMNN 17

which is propagated to later steps as the initial merge is used as a reference for subsequent
merges.

• If auto.merge=TRUE, merge steps are chosen to maximize the number of MNN pairs at each
step. The aim is to improve the stability of the correction by first merging more similar batches
with more MNN pairs. This can be somewhat time-consuming as MNN pairs need to be
iteratively recomputed for all possible batch pairings.

The order of cells in the output is never affected by the setting of merge.order or auto.order. It
depends only on the order of objects in ... and the order of cells within each object.

Choice of genes

All genes are used with the default setting of subset.row=NULL. Users can set subset.row to
subset the inputs to highly variable genes or marker genes. This improves the quality of the PCA
and identification of MNN pairs by reducing the noise from irrelevant genes. Note that users should
not be too restrictive with subsetting, as high dimensionality is required to satisfy the orthogonality
assumption in MNN detection.

By default, only the selected genes are used to compute rotation vectors and a low-rank corrected
expression matrix. However, setting correct.all=TRUE will return rotation vectors that span all
genes in the supplied input data. This is useful for ensuring that corrected values are returned for
all input genes, e.g., in correctExperiments. Note that this setting will not affect the corrected
low-dimension coordinates or the rotation values for the selected genes.

Using restriction

See ?"batchelor-restrict" for a description of the restrict argument. Specifically, fastMNN
will only use the restricted subset of cells in each batch to identify MNN pairs and the center of the
orthogonalization. It will then extrapolate the correction to all cells in each batch.

Note that all cells are used to perform the PCA, regardless of whether restrict is set. This is gen-
erally desirable in applications where restrict is useful. For example, constructing the projection
vectors with only control cells will not guarantee resolution of unique non-control populations in
each batch.

However, this also means that the corrected values for the restricted cells will differ from the output
when the inputs are directly subsetted to only contain the restricted cells. If this is not desirable,
users can perform the PCA manually and apply reducedMNN instead.

Merge diagnostics

We can consider fastMNN’s operation in terms of pairwise merge steps. Each merge step involves
two mutually exclusive sets of cells, a “left” set and “right” set. Each set may consist of cells from
different batches if those batches were merged in a previous step. The merge will then create a new
set of cells that combines the left and right sets. Iteratively repeating this process with the newly
formed sets will eventually merge all batches together.

The output metadata contains merge.info, a DataFrame where each row corresponds to a merge
step. It contains the following fields:

• left, a List of integer or character vectors. Each vector specifies the batches in the left set at
a given merge step.

• right, a similar List of integer or character vectors. Each vector specifies the batches in the
right set at a given merge step.

18 fastMNN

• pairs, a List of DataFrames specifying which pairs of cells were identified as MNNs at each
step. In each DataFrame, each row corresponds to a single MNN pair and specifies the paired
cells that were in the left and right sets, respectively. Note that the indices refer to those paired
cells in the output ordering of cells, i.e., users can identify the paired cells at each step by
column-indexing the output of the fastMNN function.

• batch.size, a numeric vector specifying the relative magnitude of the batch effect at each
merge, see “Orthogonalization details”.

• skipped, a logical vector indicating whether the correction was skipped if the magnitude of
the batch effect was below min.batch.skip.

• lost.var, a numeric matrix specifying the percentage of variance lost due to orthogonaliza-
tion at each merge step. This is reported separately for each batch (columns, ordered according
to the input order, not the merge order).

Specifying the number of neighbors

The threshold to define nearest neighbors is defined by k, which is passed to findMutualNN to
identify MNN pairs. The size of k can be roughly interpreted as the anticipated minimum size of
a shared subpopulation in each batch. If a batch has fewer than k cells of a shared subpopulation,
there is an increased risk that its counterparts in other batches will form incorrect MNN pairs.

From the perspective of the algorithm, larger values allow for more MNN pairs to be obtained,
which improves the stability of the correction vectors. Larger values also increase robustness against
non-orthogonality, by ignoring a certain level of biological variation when identifying pairs. This
can be used to avoid the kissing problem where MNN pairs are only detected on the “surface” of
the distribution. However, values of k should not be too large, as this would result in MNN pairs
being inappropriately identified between biologically distinct populations.

In practice, increasing k will generally result in more aggressive merging as the algorithm is more
generous in matching subpopulations across batches. We suggest starting with the default k and
increasing it if one is confident that the same cell types are not adequately merged across batches.
This is better than starting with a large k as incorrect merging is much harder to diagnose than
insufficient merging.

An additional consideration is that the effect of any given k will vary with the number of cells in
each batch. With more cells, a larger k may be preferable to achieve better merging in the presence
of non-orthogonality. We can achieve this by setting prop.k, which allows the choice of k to adapt
to the size of each batch at each merge step. This also handles asymmetry in batch sizes via the k1
and k2 arguments in findMutualNN.

Orthogonalization details

fastMNN will compute the percentage of variance that is lost from each batch during orthogonal-
ization at each merge step. This represents the variance in each batch that is parallel to the average
correction vectors (and hence removed during orthogonalization) at each merge step. Large propor-
tions suggest that there is biological structure that is parallel to the batch effect, corresponding to
violations of the assumption that the batch effect is orthogonal to the biological subspace.

If fastMNN is called with DataFrame inputs, each DataFrame is assumed to be the result of a pre-
vious fastMNN call and have a set of vectors used for orthogonalization in the merge steps of that
previous call. In the current call, fastMNN will gather all such batch vectors across all DataFrame
inputs. Each batch is then re-orthogonalized with respect to each of these vectors. This ensures
that the same variation is removed from each batch prior to merging. The variance lost due to this
pre-correction orthogonalization is reported in the pre.orthog field in the output metadata.

Orthogonalization may cause problems if there is actually no batch effect, resulting in large losses
of variance. To avoid this, fastMNN will not perform any correction if the relative magnitude of

findMutualNN 19

the batch effect is less than min.batch.skip. The relative magnitude is defined as the L2 norm
of the average correction vector divided by the root-mean-square of the L2 norms of the per-MNN
pair correction vectors. This will be large when the per-pair vectors are all pointing in the same
direction, and small when the per-pair vectors point in random directions due to the absence of a
consistent batch effect. If a large loss of variance is observed along with a small batch effect in a
given merge step, users can set min.batch.skip to simply skip correction in that step.

Author(s)

Aaron Lun

References

Haghverdi L, Lun ATL, Morgan MD, Marioni JC (2018). Batch effects in single-cell RNA-sequencing
data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36(5):421

Lun ATL (2018). Further MNN algorithm development. https://MarioniLab.github.io/FurtherMNN2018/
theory/description.html

See Also

cosineNorm and multiBatchPCA, to obtain the values to be corrected.

reducedMNN, for a version of the function that operates in low-dimensional space.

mnnCorrect for the “classic” version of the MNN correction algorithm.

Examples

B1 <- matrix(rnorm(10000, -1), ncol=50) # Batch 1
B2 <- matrix(rnorm(10000, 1), ncol=50) # Batch 2
out <- fastMNN(B1, B2)

Corrected values for use in clustering, etc.
str(reducedDim(out))

Extracting corrected expression values for gene 10.
summary(assay(out)[10,])

findMutualNN Find mutual nearest neighbors

Description

Find mutual nearest neighbors (MNN) across two data sets.

Usage

findMutualNN(
data1,
data2,
k1,
k2 = k1,
BNPARAM = KmknnParam(),

https://MarioniLab.github.io/FurtherMNN2018/theory/description.html
https://MarioniLab.github.io/FurtherMNN2018/theory/description.html

20 findMutualNN

BPPARAM = SerialParam()
)

Arguments

data1 A numeric matrix containing samples (e.g., cells) in the rows and variables/dimensions
in the columns.

data2 A numeric matrix like data1 for another data set with the same variables/dimensions.

k1 Integer scalar specifying the number of neighbors to search for in data1.

k2 Integer scalar specifying the number of neighbors to search for in data2.

BNPARAM A BiocNeighborParam object specifying the neighbour search algorithm to use.

BPPARAM A BiocParallelParam object specifying how parallelization should be performed.

Details

The concept of a MNN pair can be explained by considering cells in each of two data sets. For
each cell in data set 1, the set of k2 nearest cells in data set 2 is identified, based on the Euclidean
distance in expression space. For each cell in data set 2, the set of k1 nearest cells in data set 1 is
similarly identified. Two cells in different batches are considered to be MNNs if each cell is in the
other’s set.

Value

A list containing the integer vectors first and second. Corresponding entries in first and second
specify a MNN pair of cells from data1 and data2, respectively.

Author(s)

Aaron Lun

See Also

queryKNN for the underlying neighbor search code.

fastMNN and mnnCorrect, which call this function to identify MNNs.

Examples

B1 <- matrix(rnorm(10000), ncol=50) # Batch 1
B2 <- matrix(rnorm(10000), ncol=50) # Batch 2
out <- findMutualNN(B1, B2, k1=20)
head(out$first)
head(out$second)

mnnCorrect 21

mnnCorrect Mutual nearest neighbors correction

Description

Correct for batch effects in single-cell expression data using the mutual nearest neighbors method.

Usage

mnnCorrect(
...,
batch = NULL,
restrict = NULL,
k = 20,
prop.k = NULL,
sigma = 0.1,
cos.norm.in = TRUE,
cos.norm.out = TRUE,
svd.dim = 0L,
var.adj = TRUE,
subset.row = NULL,
correct.all = FALSE,
merge.order = NULL,
auto.merge = FALSE,
auto.order = NULL,
assay.type = "logcounts",
get.spikes = FALSE,
BSPARAM = ExactParam(),
BNPARAM = KmknnParam(),
BPPARAM = SerialParam()

)

Arguments

... Two or more log-expression matrices where genes correspond to rows and cells
correspond to columns. Each matrix should contain cells from the same batch;
multiple matrices represent separate batches of cells. Each matrix should con-
tain the same number of rows, corresponding to the same genes (in the same
order).
Alternatively, one or more SingleCellExperiment objects can be supplied con-
taining a log-expression matrix in the assay.type assay. Note the same con-
straints described above for matrix inputs.

batch A factor specifying the batch of origin for all cells when only a single object is
supplied in This is ignored if multiple objects are present.

restrict A list of length equal to the number of objects in Each entry of the list
corresponds to one batch and specifies the cells to use when computing the cor-
rection.

k An integer scalar specifying the number of nearest neighbors to consider when
identifying mutual nearest neighbors.

22 mnnCorrect

prop.k A numeric scalar in (0, 1) specifying the proportion of cells in each dataset to
use for mutual nearest neighbor searching. If set, k for the search in each batch
is redefined as max(k,prop.k*N) where N is the number of cells in that batch.

sigma A numeric scalar specifying the bandwidth of the Gaussian smoothing kernel
used to compute the correction vector for each cell.

cos.norm.in A logical scalar indicating whether cosine normalization should be performed
on the input data prior to calculating distances between cells.

cos.norm.out A logical scalar indicating whether cosine normalization should be performed
prior to computing corrected expression values.

svd.dim An integer scalar specifying the number of dimensions to use for summarizing
biological substructure within each batch.

var.adj A logical scalar indicating whether variance adjustment should be performed on
the correction vectors.

subset.row A vector specifying which features to use for correction.

correct.all A logical scalar specifying whether correction should be applied to all genes,
even if only a subset is used for the MNN calculations.

merge.order An integer vector containing the linear merge order of batches in Alterna-
tively, a list of lists representing a tree structure specifying a hierarchical merge
order.

auto.merge Logical scalar indicating whether to automatically identify the “best” merge or-
der.

auto.order Deprecated, use merge.order or auto.merge instead.

assay.type A string or integer scalar specifying the assay containing the log-expression
values, if SingleCellExperiment objects are present in

get.spikes A logical scalar indicating whether to retain rows corresponding to spike-in tran-
scripts. Only used for SingleCellExperiment inputs.

BSPARAM A BiocSingularParam object specifying the SVD algorithm to use.

BNPARAM A BiocNeighborParam object specifying the neighbor search algorithm to use.

BPPARAM A BiocParallelParam object specifying the parallelization scheme to use.

Details

This function is designed for batch correction of single-cell RNA-seq data where the batches are
partially confounded with biological conditions of interest. It does so by identifying pairs of mutual
nearest neighbors (MNN) in the high-dimensional log-expression space. Each MNN pair represents
cells in different batches that are of the same cell type/state, assuming that batch effects are mostly
orthogonal to the biological manifold. Correction vectors are calculated from the pairs of MNNs and
corrected (log-)expression values are returned for use in clustering and dimensionality reduction.

For each MNN pair, a pairwise correction vector is computed based on the difference in the log-
expression profiles. The correction vector for each cell is computed by applying a Gaussian smooth-
ing kernel with bandwidth sigma is the pairwise vectors. This stabilizes the vectors across many
MNN pairs and extends the correction to those cells that do not have MNNs. The choice of sigma
determines the extent of smoothing - a value of 0.1 is used by default, corresponding to 10% of the
radius of the space after cosine normalization.

mnnCorrect 23

Value

A SingleCellExperiment object containing the corrected assay. This contains corrected expression
values for each gene (row) in each cell (column) in each batch. A batch field is present in the
column data, specifying the batch of origin for each cell.

Cells in the output object are always ordered in the same manner as supplied in For a single
input object, cells will be reported in the same order as they are arranged in that object. In cases
with multiple input objects, the cell identities are simply concatenated from successive objects, i.e.,
all cells from the first object (in their provided order), then all cells from the second object, and so
on.

The metadata of the SingleCellExperiment contains merge.info, a DataFrame where each row
corresponds to a merge step. See “Merge diagnostics” for more information.

Choosing the gene set

All genes are used with the default setting of subset.row=NULL. Users can set subset.row to
subset the inputs to highly variable genes or marker genes. This may provide more meaningful
identification of MNN pairs by reducing the noise from irrelevant genes. Note that users should
not be too restrictive with subsetting, as high dimensionality is required to satisfy the orthogonality
assumption in MNN detection.

If subset.row is specified and correct.all=TRUE, corrected values are returned for all genes.
This is possible as subset.row is only used to identify the MNN pairs and other cell-based distance
calculations. Correction vectors between MNN pairs can then be computed in for all genes in the
supplied matrices. Note that setting correct.all=TRUE will not alter the corrected expression
values for the subsetted genes.

Expected type of input data

The input expression values should generally be log-transformed, e.g., log-counts, see normalize
for details. They should also be normalized within each data set to remove cell-specific biases in
capture efficiency and sequencing depth. By default, a further cosine normalization step is per-
formed on the supplied expression data to eliminate gross scaling differences between data sets.

• When cos.norm.in=TRUE, cosine normalization is performed on the matrix of expression
values used to compute distances between cells. This can be turned off when there are no
scaling differences between data sets.

• When cos.norm.out=TRUE, cosine normalization is performed on the matrix of values used
to calculate correction vectors (and on which those vectors are applied). This can be turned
off to obtain corrected values on the log-scale, similar to the input data.

The cosine normalization is achieved using the cosineNorm function.

Further options

The function depends on a shared biological manifold, i.e., one or more cell types/states being
present in multiple batches. If this is not true, MNNs may be incorrectly identified, resulting in
over-correction and removal of interesting biology. Some protection can be provided by removing
components of the correction vectors that are parallel to the biological subspaces in each batch.
The biological subspace in each batch is identified with a SVD on the expression matrix to obtain
svd.dim dimensions. (By default, this option is turned off by setting svd.dim=0.)

If var.adj=TRUE, the function will adjust the correction vector to equalize the variances of the
two data sets along the batch effect vector. In particular, it avoids “kissing” effects whereby MNN
pairs are identified between the surfaces of point clouds from different batches. Naive correction

24 mnnCorrect

would then bring only the surfaces into contact, rather than fully merging the clouds together. The
adjustment ensures that the cells from the two batches are properly intermingled after correction.
This is done by identifying each cell’s position on the correction vector, identifying corresponding
quantiles between batches, and scaling the correction vector to ensure that the quantiles are matched
after correction.

See ?"batchelor-restrict" for a description of the restrict argument. Specifically, mnnCorrect
will only use the restricted subset of cells in each batch to identify MNN pairs (and to perform vari-
ance adjustment, if var.adj=TRUE), and then apply the correction to all cells in each batch.

Merge diagnostics

Each merge step combines two mutually exclusive sets of cells, a “left” set and “right” set. The
metadata thus contains the following fields:

• left, a List of integer or character vectors. Each vector specifies the batches in the left set at
a given merge step.

• right, a similar List of integer or character vectors. Each vector specifies the batches in the
right set at a given merge step.

• pairs, a List of DataFrames specifying which pairs of cells were identified as MNNs at each
step. In each DataFrame, each row corresponds to a single MNN pair and specifies the paired
cells that were in the left and right sets, respectively. Note that the indices refer to those paired
cells in the output ordering of cells, i.e., users can identify the paired cells at each step by
column-indexing the output of the mnnCorrect function.

Specifying the number of neighbors

The threshold to define nearest neighbors is defined by k, which is passed to findMutualNN to
identify MNN pairs. The size of k can be roughly interpreted as the anticipated minimum size of
a shared subpopulation in each batch. If a batch has fewer than k cells of a shared subpopulation,
there is an increased risk that its counterparts in other batches will form incorrect MNN pairs.

From the perspective of the algorithm, larger values allow for more MNN pairs to be obtained,
which improves the stability of the correction vectors. Larger values also increase robustness against
non-orthogonality, by ignoring a certain level of biological variation when identifying pairs. This
can be used to avoid the kissing problem where MNN pairs are only detected on the “surface” of
the distribution. However, values of k should not be too large, as this would result in MNN pairs
being inappropriately identified between biologically distinct populations.

In practice, increasing k will generally result in more aggressive merging as the algorithm is more
generous in matching subpopulations across batches. We suggest starting with the default k and
increasing it if one is confident that the same cell types are not adequately merged across batches.
This is better than starting with a large k as incorrect merging is much harder to diagnose than
insufficient merging.

An additional consideration is that the effect of any given k will vary with the number of cells in
each batch. With more cells, a larger k may be preferable to achieve better merging in the presence
of non-orthogonality. We can achieve this by setting prop.k, which allows the choice of k to adapt
to the size of each batch at each merge step. This also handles asymmetry in batch sizes via the k1
and k2 arguments in findMutualNN.

Controlling the merge order

By default, batches are merged in the user-supplied order, i.e., the first batch is merged with the
second batch, the third batch is merged with the combined first-second batch, the fourth batch

mnnCorrect 25

is merged with the combined first-second-third batch and so on. We refer to this approach as a
progressive merge.

If merge.order is an integer vector, it is treated as an ordering permutation with which to perform a
progressive merge. For example, if merge.order=c(4,1,3,2), batches 4 and 1 in ... are merged
first; batch 3 is merged with the combined 4+1 batch; and then batch 2 is merged with the combined
4+1+3 batch. This is often more convenient than changing the order manually in ..., which would
alter the order of batches in the output corrected matrix.

If merge.order is a character vector, it is treated as an ordering permutation for named batches.

If merge.order is a nested list, it is treated as a tree that specifies a hierarchical merge. Each
element of the list should either be a string or integer scalar, corresponding to a leaf node that
specifies a batch; or another list, corresponding to an internal node that should contain at least two
children; or an integer or character vector of length 2 or more, again corresponding to an internal
node.

• For example, list(list(1,2),list(3,4)) indicates that batch 1 should be merged with
batch 2; batch 3 should be merged with batch 4; and that, finally, the combined batches 1+2
and 3+4 should be merged.

• More than two children per node are supported and will result in a progressive merge within
that node. For example, list(list(1,2,3),list(4,5,6)) will merge batch 1 with 2, then
1+2 with 3; batch 4 with 5, and then 4+5 with 6; and finally, 1+2+3 with 4+5+6.

• The same approach can be used for integer or character vectors, e.g., list(1:3,4:6) has the
same effect as above.

Note that, while batches can be specified by name (character) or index (integer), users cannot use
both in the same tree.

The merge order may occasionally be important as it determines the number of MNN pairs avail-
able at each merge step. MNN pairs results in greater stability of the batch vectors and increased
likelihood of identifying shared subpopulations, which are important to the precision and accuracy
of the MNN-based correction, respectively.

• In a progressive merge, the reference increases in size at each step, ensuring that more cells
are available to identify MNN pairs in later merges. We suggest setting the largest, most
heterogeneous batch as the first reference, which favors detection of sufficient MNN pairs be-
tween the first and other batches. Conversely, if two small batches without shared populations
are supplied first, the wrong MNN pairs will be detected and the result of the merge will be
incorrect.

• A merge tree is useful for merging together batches that are known to be more closely related
(e.g., replicates) before attempting difficult merges involving more dissimilar batches. The
idea is to increase the number of cells and thus MNN pairs prior to merging batches with few
shared subpopulations. By comparison, performing the more difficult merges first is more
likely to introduce errors whereby distinct subpopulations are incorrectly placed together,
which is propagated to later steps as the initial merge is used as a reference for subsequent
merges.

• If auto.merge=TRUE, merge steps are chosen to maximize the number of MNN pairs at each
step. The aim is to improve the stability of the correction by first merging more similar batches
with more MNN pairs. This can be somewhat time-consuming as MNN pairs need to be
iteratively recomputed for all possible batch pairings.

The order of cells in the output is never affected by the setting of merge.order or auto.order. It
depends only on the order of objects in ... and the order of cells within each object.

26 multiBatchNorm

Author(s)

Laleh Haghverdi, with modifications by Aaron Lun

References

Haghverdi L, Lun ATL, Morgan MD, Marioni JC (2018). Batch effects in single-cell RNA-sequencing
data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36(5):421

See Also

fastMNN for a faster equivalent.

Examples

B1 <- matrix(rnorm(10000), ncol=50) # Batch 1
B2 <- matrix(rnorm(10000), ncol=50) # Batch 2
out <- mnnCorrect(B1, B2) # corrected values

multiBatchNorm Per-batch scaling normalization

Description

Perform scaling normalization within each batch to provide comparable results to the lowest-coverage
batch.

Usage

multiBatchNorm(
...,
batch = NULL,
assay.type = "counts",
norm.args = list(),
min.mean = 1,
subset.row = NULL,
normalize.all = FALSE,
preserve.single = TRUE

)

Arguments

... One or more SingleCellExperiment objects containing counts and size factors.
Each object should contain the same number of rows, corresponding to the same
genes in the same order.
If multiple objects are supplied, each object is assumed to contain all and only
cells from a single batch. If a single object is supplied, batch should also be
specified.

batch A factor specifying the batch of origin for all cells when only a single object is
supplied in This is ignored if multiple objects are present.

assay.type A string specifying which assay values contains the counts.

multiBatchNorm 27

norm.args A named list of further arguments to pass to normalize.

min.mean A numeric scalar specifying the minimum (library size-adjusted) average count
of genes to be used for normalization.

subset.row A vector specifying which features to use for normalization.

normalize.all A logical scalar indicating whether normalized values should be returned for all
genes.

preserve.single

A logical scalar indicating whether to combine the results into a single matrix if
only one object was supplied in

Details

When performing integrative analyses of multiple batches, it is often the case that different batches
have large differences in coverage. This function removes systematic differences in coverage across
batches to simplify downstream comparisons. It does so by resaling the size factors using median-
based normalization on the ratio of the average counts between batches. This is roughly equivalent
to the between-cluster normalization described by Lun et al. (2016).

This function will adjust the size factors so that counts in high-coverage batches are scaled down-
wards to match the coverage of the most shallow batch. The logNormCounts function will then add
the same pseudo-count to all batches before log-transformation. By scaling downwards, we favour
stronger squeezing of log-fold changes from the pseudo-count, mitigating any technical differences
in variance between batches. Of course, genuine biological differences will also be shrunk, but this
is less of an issue for upregulated genes with large counts.

For comparison, imagine if we ran logNormCounts separately in each batch prior to correction. In
most cases, size factors will be computed within each batch; batch-specific application in logNormCounts
will not account for scaling differences between batches. In contrast, multiBatchNorm will rescale
the size factors so that they are comparable across batches. This removes at least one difference
between batches to facilitate easier correction.

Only genes with library size-adjusted average counts greater than min.mean will be used for com-
puting the rescaling factors. This improves precision and avoids problems with discreteness. By
default, we use min.mean=1, which is usually satisfactory but may need to be lowered for very
sparse datasets.

Users can also set subset.row to restrict the set of genes used for computing the rescaling fac-
tors. By default, normalized values will only be returned for genes specified in the subset. Setting
normalize.all=TRUE will return normalized values for all genes.

Value

A list of SingleCellExperiment objects with normalized log-expression values in the "logcounts"
assay (depending on values in norm.args). Each object contains cells from a single batch.

If preserve.single=TRUE and ... contains only one SingleCellExperiment, that object is returned
with an additional "logcounts" assay containing normalized log-expression values. The order of
cells is not changed.

Note about spike-ins

Rescaling is only performed on endogenous genes in each SingleCellExperiment object. If any
spike-in transcripts are present in the altExps, their abundances will not be rescaled here, and are
no longer directly comparable to the rescaled abundances of the genes. This is usually not a major
problem as spike-ins are rarely used during the batch correction itself - however, users should not
attempt to perform variance modelling with the spike-ins on the output of this function.

28 multiBatchPCA

Author(s)

Aaron Lun

References

Lun ATL (2018). Further MNN algorithm development. https://MarioniLab.github.io/FurtherMNN2018/
theory/description.html

See Also

mnnCorrect and fastMNN, for methods that can benefit from rescaling.

normalize for the calculation of log-transformed normalized expression values.

Examples

d1 <- matrix(rnbinom(50000, mu=10, size=1), ncol=100)
sce1 <- SingleCellExperiment(list(counts=d1))
sizeFactors(sce1) <- runif(ncol(d1))

d2 <- matrix(rnbinom(20000, mu=50, size=1), ncol=40)
sce2 <- SingleCellExperiment(list(counts=d2))
sizeFactors(sce2) <- runif(ncol(d2))

out <- multiBatchNorm(sce1, sce2)
summary(sizeFactors(out[[1]]))
summary(sizeFactors(out[[2]]))

multiBatchPCA Multi-batch PCA

Description

Perform a principal components analysis across multiple gene expression matrices to project all
cells to a common low-dimensional space.

Usage

multiBatchPCA(
...,
batch = NULL,
d = 50,
subset.row = NULL,
weights = NULL,
get.all.genes = FALSE,
rotate.all = FALSE,
get.variance = FALSE,
preserve.single = FALSE,
assay.type = "logcounts",
get.spikes = FALSE,
BSPARAM = ExactParam(),
BPPARAM = SerialParam()

)

https://MarioniLab.github.io/FurtherMNN2018/theory/description.html
https://MarioniLab.github.io/FurtherMNN2018/theory/description.html

multiBatchPCA 29

Arguments

... Two or more matrices containing expression values (usually log-normalized).
Each matrix is assumed to represent one batch and should contain the same
number of rows, corresponding to the same genes (in the same order).
Alternatively, two or more SingleCellExperiment objects containing these ma-
trices. Note the same restrictions described above for gene expression matrix
inputs.
Alternatively, one matrix or SingleCellExperiment can be supplied containing
cells from all batches. This requires batch to also be specified.

batch A factor specifying the batch identity of each cell in the input data. Ignored if
... contains more than one argument.

d An integer scalar specifying the number of dimensions to keep from the initial
multi-sample PCA.

subset.row A vector specifying which features to use for correction.

weights Numeric vector of length equal to the number of entries in ..., specifying the
scaling of the weight of each batch. This defaults to 1 for all batches.

get.all.genes A logical scalar indicating whether the reported rotation vectors should include
genes that are excluded by a non-NULL value of subset.row.

rotate.all A deprecated synonym for get.all.genes.

get.variance A logical scalar indicating whether to return the (weighted) variance explained
by each PC.

preserve.single

A logical scalar indicating whether to combine the results into a single matrix if
only one object was supplied in

assay.type A string or integer scalar specifying the assay containing the expression values,
if SingleCellExperiment objects are present in

get.spikes Deprecated, a logical scalar indicating whether to retain rows corresponding to
spike-in transcripts. Only used for SingleCellExperiment inputs.

BSPARAM A BiocSingularParam object specifying the algorithm to use for PCA, see runSVD
for details.

BPPARAM A BiocParallelParam object specifying whether the SVD should be parallelized.

Details

This function is roughly equivalent to cbinding all matrices in ... and performing PCA on the
merged matrix. The main difference is that each sample is forced to contribute equally to the
identification of the rotation vectors. Specifically, the mean vector used for centering is defined as
the grand mean of the mean vectors within each batch. Each batch’s contribution to the gene-gene
covariance matrix is also divided by the number of cells in that batch.

Our approach is to effectively weight the cells in each batch to mimic the situation where all batches
have the same number of cells. This ensures that the low-dimensional space can distinguish sub-
populations in smaller batches. Otherwise, batches with a large number of cells would dominate
the PCA, i.e., the definition of the mean vector and covariance matrix. This may reduce resolution
of unique subpopulations in smaller batches that differ in a different dimension to the subspace of
the larger batches.

When weights is set, this will scale the weight of each batch by the specified value. For example,
each batch may represent one replicate, with multiple replicates per study. In such cases, it may
be more appropriate to ensure that each study has equal weight. This is done by assigning a value

30 multiBatchPCA

of weights to each replicate that is inversely proportional to the number of replicates in the same
study - see Examples.

If ... contains SingleCellExperiment objects, any spike-in transcripts should be the same across all
batches. These will be removed prior to PCA unless get.spikes=TRUE. If subset.row is specified
and get.spikes=FALSE, only the non-spike-in specified features will be used.

Setting get.all.genes=TRUE will report rotation vectors that span all genes, even when only a
subset of genes are used for the PCA. This is done by projecting all non-used genes into the low-
dimensional “cell space” defined by the first d components.

If BSPARAM is defined with deferred=TRUE, the per-gene centering and per-cell scaling will be
manually deferred during matrix multiplication. This can greatly improve speeds when the input
matrices are sparse, as deferred operations avoids loss of sparsity (at the cost of numerical preci-
sion).

Value

A List of numeric matrices is returned where each matrix corresponds to a batch and contains the
first d PCs (columns) for all cells in the batch (rows).

If preserve.single=TRUE and ... contains a single object, the List will only contain a single
matrix. This contains the first d PCs (columns) for all cells in the same order as supplied in the
single input object.

The metadata contains rotation, a matrix of rotation vectors, which can be used to construct a
low-rank approximation of the input matrices. This has number of rows equal to the number of
genes after any subsetting, except if rotate.all=TRUE, where the number of rows is equal to the
genes before subsetting.

If get.variance=TRUE, the metadata will also contain var.explained, the weighted variance ex-
plained by each PC; and var.total, the total variance after weighting.

Author(s)

Aaron Lun

See Also

runSVD

Examples

d1 <- matrix(rnorm(5000), ncol=100)
d1[1:10,1:10] <- d1[1:10,1:10] + 2 # unique population in d1
d2 <- matrix(rnorm(2000), ncol=40)
d2[11:20,1:10] <- d2[11:20,1:10] + 2 # unique population in d2

out <- multiBatchPCA(d1, d2)

Examining results.
xlim <- range(c(out[[1]][,1], out[[2]][,1]))
ylim <- range(c(out[[1]][,2], out[[2]][,2]))
plot(out[[1]][,1], out[[1]][,2], col="red", xlim=xlim, ylim=ylim)
points(out[[2]][,1], out[[2]][,2], col="blue")

Using the weighting scheme, assuming that 'd2' and 'd3'
are replicates and should contribute the same combined
weight as 'd1'.

noCorrect 31

d3 <- d2 + 5
out <- multiBatchPCA(d1, d2, d3, weights=c(1, 0.5, 0.5))

noCorrect No correction

Description

Provides a no-correction method that has the same interface as the correction functions. This allows
users to easily swap function calls to examine the effect of correction.

Usage

noCorrect(..., batch = NULL, subset.row = NULL, assay.type = "logcounts")

Arguments

... One or more log-expression matrices where genes correspond to rows and cells
correspond to columns, if pc.input=FALSE. Each matrix should contain the
same number of rows, corresponding to the same genes in the same order.
Alternatively, one or more SingleCellExperiment objects can be supplied con-
taining a log-expression matrix in the assay.type assay. Note the same restric-
tions described above for gene expression matrix inputs.
If multiple objects are supplied, each object is assumed to contain all and only
cells from a single batch. Objects of different types can be mixed together. If a
single object is supplied, batch should also be specified.

batch A factor specifying the batch of origin for all cells when only a single object is
supplied in This is ignored if multiple objects are present.

subset.row A vector specifying which features to retain.

assay.type A string or integer scalar specifying the assay containing the log-expression
values. Only used for SingleCellExperiment inputs.

Details

This function is effectively equivalent to cbinding the matrices together without any correction.
The aim is to provide a consistent interface that allows users to simply combine batches without
additional operations. This is often desirable as a negative control to see if the transformation
is actually beneficial. It also allows for convenient downstream analyses that are based on the
uncorrected data, e.g., differential expression.

Value

A SingleCellExperiment is returned where each row is a gene and each column is a cell. This
contains:

• A merged matrix in the assays slot, containing the merged expression values from all ele-
ments of

• A batch column in the colData slot, containing the batch of origin for each row (i.e., cell) in
corrected.

32 reducedMNN

Author(s)

Aaron Lun

Examples

B1 <- matrix(rnorm(10000), ncol=50) # Batch 1
B2 <- matrix(rnorm(10000), ncol=50) # Batch 2
out <- noCorrect(B1, B2)

Same as combining the expression values.
stopifnot(all(assay(out)==cbind(B1, B2)))

Specifies which cell came from which batch:
str(out$batch)

reducedMNN MNN correction in reduced dimensions

Description

MNN correction in reduced dimensions

Usage

reducedMNN(
...,
batch = NULL,
k = 20,
prop.k = NULL,
restrict = NULL,
ndist = 3,
merge.order = NULL,
auto.merge = FALSE,
auto.order = NULL,
min.batch.skip = 0,
BNPARAM = KmknnParam(),
BPPARAM = SerialParam()

)

Arguments

... One or more matrices of low-dimensional representations where rows are cells
and columns are dimensions. Each object should contain the same number of
columns, corresponding to the same dimensions. These should have been gen-
erated by a single call to multiBatchPCA.
If multiple objects are supplied, each object is assumed to contain all and only
cells from a single batch. If a single object is supplied, batch should also be
specified.

batch A factor specifying the batch of origin for all cells when only a single object is
supplied in This is ignored if multiple objects are present.

reducedMNN 33

k An integer scalar specifying the number of nearest neighbors to consider when
identifying MNNs.

prop.k A numeric scalar in (0, 1) specifying the proportion of cells in each dataset to
use for mutual nearest neighbor searching. If set, k for the search in each batch
is redefined as max(k,prop.k*N) where N is the number of cells in that batch.

restrict A list of length equal to the number of objects in Each entry of the list
corresponds to one batch and specifies the cells to use when computing the cor-
rection.

ndist A numeric scalar specifying the threshold beyond which neighbours are to be
ignored when computing correction vectors. Each threshold is defined as a mul-
tiple of the number of median distances.

merge.order An integer vector containing the linear merge order of batches in Alterna-
tively, a list of lists representing a tree structure specifying a hierarchical merge
order.

auto.merge Logical scalar indicating whether to automatically identify the “best” merge or-
der.

auto.order Deprecated, use merge.order or auto.merge instead.

min.batch.skip Numeric scalar specifying the minimum relative magnitude of the batch effect,
below which no correction will be performed at a given merge step.

BNPARAM A BiocNeighborParam object specifying the nearest neighbor algorithm.

BPPARAM A BiocParallelParam object specifying whether the PCA and nearest-neighbor
searches should be parallelized.

Details

reducedMNN performs the same operations as fastMNN but assumes that the PCA has already been
performed. This is useful as the PCA (via multiBatchPCA) is often the most time-consuming step.
By performing the PCA once, reducedMNN allows the MNN correction to be quickly repeated with
different parameters.

reducedMNN operates on the same principles as fastMNN, so users are referred to the documentation
for the latter for more details on the effect of each of the arguments. Obviously, any arguments
pertaining to gene-based steps in fastMNN are not relevant here.

Note that multiBatchPCA will not perform cosine-normalization, so it is the responsibility of the
user to cosine-normalize each batch beforehand with cosineNorm to recapitulate results of fastMNN
with cos.norm=TRUE. In addition, multiBatchPCA must be run on all samples at once, to ensure
that all cells are projected to the same low-dimensional space.

Value

A DataFrame is returned where each row corresponds to a cell, containing:

• corrected, the matrix of corrected low-dimensional coordinates for each cell.

• batch, the Rle specifying the batch of origin for each row.

Cells in the output object are always ordered in the same manner as supplied in The metadata
on this object is the same as that in the output of fastMNN.

Author(s)

Aaron Lun

34 regressBatches

See Also

multiBatchPCA, to obtain the values to be corrected.

fastMNN, for the version that operates on gene-expression values.

Examples

B1 <- matrix(rnorm(10000), nrow=50) # Batch 1
B2 <- matrix(rnorm(10000), nrow=50) # Batch 2

Equivalent to fastMNN().
cB1 <- cosineNorm(B1)
cB2 <- cosineNorm(B2)
pcs <- multiBatchPCA(cB1, cB2)
out2 <- reducedMNN(pcs[[1]], pcs[[2]])

regressBatches Regress out batch effects

Description

Fit a linear model to regress out uninteresting factors of variation.

Usage

regressBatches(
...,
batch = NULL,
restrict = NULL,
subset.row = NULL,
assay.type = "logcounts"

)

Arguments

... Two or more log-expression matrices where genes correspond to rows and cells
correspond to columns. Each matrix should contain the same number of rows,
corresponding to the same genes (in the same order).
Alternatively, one or more SingleCellExperiment objects can be supplied con-
taining a count matrix in the assay.type assay. Note the same restrictions
described above for gene expression matrix inputs.
If multiple objects are supplied, each object is assumed to contain all and only
cells from a single batch. Objects of different types can be mixed together. If a
single object is supplied, batch should also be specified.

batch A factor specifying the batch of origin for all cells when only a single object is
supplied in This is ignored if multiple objects are present.

restrict A list of length equal to the number of objects in Each entry of the list
corresponds to one batch and specifies the cells to use when computing the cor-
rection.

subset.row A vector specifying which features to use for correction.
assay.type A string or integer scalar specifying the assay containing the log-expression

values, if SingleCellExperiment objects are present in

regressBatches 35

Details

This function fits a linear model to the log-expression values for each gene and returns the residuals.
The model is parameterized as a one-way layout with the batch of origin, so the residuals represent
the expression values after correcting for the batch effect.

The novelty of this function is that it returns a ResidualMatrix in as the "corrected" assay. This
avoids explicitly computing the residuals, which would result in a loss of sparsity or similar prob-
lems. Rather, the residuals are either computed as needed or are never explicitly computed as all
(e.g., during matrix multiplication).

All genes are used with the default setting of subset.row=NULL. Users can set subset.row to
subset the inputs, though this is purely for convenience as each gene is processed independently of
other genes.

See ?"batchelor-restrict" for a description of the restrict argument. Specifically, this func-
tion will compute the model coefficients using only the specified subset of cells. The regression
will then be applied to all cells in each batch.

Value

A SingleCellExperiment object containing the corrected assay. This contains corrected log-
expression values for each gene (row) in each cell (column) in each batch. A batch field is present
in the column data, specifying the batch of origin for each cell.

Cells in the output object are always ordered in the same manner as supplied in For a single
input object, cells will be reported in the same order as they are arranged in that object. In cases
with multiple input objects, the cell identities are simply concatenated from successive objects, i.e.,
all cells from the first object (in their provided order), then all cells from the second object, and so
on.

Author(s)

Aaron Lun

See Also

rescaleBatches, for another approach to regressing out the batch effect.

Examples

means <- 2^rgamma(1000, 2, 1)
A1 <- matrix(rpois(10000, lambda=means), ncol=50) # Batch 1
A2 <- matrix(rpois(10000, lambda=means*runif(1000, 0, 2)), ncol=50) # Batch 2

B1 <- log2(A1 + 1)
B2 <- log2(A2 + 1)
out <- regressBatches(B1, B2)

36 rescaleBatches

rescaleBatches Scale counts across batches

Description

Scale counts so that the average count within each batch is the same for each gene.

Usage

rescaleBatches(
...,
batch = NULL,
restrict = NULL,
log.base = 2,
pseudo.count = 1,
subset.row = NULL,
assay.type = "logcounts",
get.spikes = FALSE

)

Arguments

... Two or more log-expression matrices where genes correspond to rows and cells
correspond to columns. Each matrix should contain the same number of rows,
corresponding to the same genes (in the same order).
Alternatively, one or more SingleCellExperiment objects can be supplied con-
taining a count matrix in the assay.type assay. Note the same restrictions
described above for gene expression matrix inputs.
If multiple objects are supplied, each object is assumed to contain all and only
cells from a single batch. Objects of different types can be mixed together. If a
single object is supplied, batch should also be specified.

batch A factor specifying the batch of origin for all cells when only a single object is
supplied in This is ignored if multiple objects are present.

restrict A list of length equal to the number of objects in Each entry of the list
corresponds to one batch and specifies the cells to use when computing the cor-
rection.

log.base A numeric scalar specifying the base of the log-transformation.

pseudo.count A numeric scalar specifying the pseudo-count used for the log-transformation.

subset.row A vector specifying which features to use for correction.

assay.type A string or integer scalar specifying the assay containing the log-expression
values, if SingleCellExperiment objects are present in

get.spikes Deprecated, a logical scalar indicating whether to retain rows corresponding to
spike-in transcripts. Only used for SingleCellExperiment inputs.

Details

This function assumes that the log-expression values were computed by a log-transformation of
normalized count data, plus a pseudo-count. It reverses the log-transformation and scales the un-
derlying counts in each batch so that the average (normalized) count is equal across batches. The

rescaleBatches 37

assumption here is that each batch contains the same population composition. Thus, any scaling
difference between batches is technical and must be removed.

This function is equivalent to centering in log-expression space, the simplest application of linear
regression methods for batch correction. However, by scaling the raw counts, it avoids loss of
sparsity that would otherwise result from centering. It also mitigates issues with artificial differences
in variance due to log-transformation.

The output values are always re-log-transformed with the same log.base and pseudo.count.
These can be used directly in place of the input values for downstream operations.

All genes are used with the default setting of subset.row=NULL. Users can set subset.row to
subset the inputs, though this is purely for convenience as each gene is processed independently of
other genes.

See ?"batchelor-restrict" for a description of the restrict argument. Specifically, the func-
tion will compute the scaling differences using only the specified subset of cells, and then apply the
re-scaling to all cells in each batch.

Value

A SingleCellExperiment object containing the corrected assay. This contains corrected log-
expression values for each gene (row) in each cell (column) in each batch. A batch field is present
in the column data, specifying the batch of origin for each cell.

Cells in the output object are always ordered in the same manner as supplied in For a single
input object, cells will be reported in the same order as they are arranged in that object. In cases
with multiple input objects, the cell identities are simply concatenated from successive objects, i.e.,
all cells from the first object (in their provided order), then all cells from the second object, and so
on.

Author(s)

Aaron Lun

Examples

means <- 2^rgamma(1000, 2, 1)
A1 <- matrix(rpois(10000, lambda=means), ncol=50) # Batch 1
A2 <- matrix(rpois(10000, lambda=means*runif(1000, 0, 2)), ncol=50) # Batch 2

B1 <- log2(A1 + 1)
B2 <- log2(A2 + 1)
out <- rescaleBatches(B1, B2)

Index

altExps, 27

batchCorrect, 2, 6, 7, 10
batchCorrect,ClassicMnnParam-method

(batchCorrect), 2
batchCorrect,FastMnnParam-method

(batchCorrect), 2
batchCorrect,NoCorrectParam-method

(batchCorrect), 2
batchCorrect,RegressParam-method

(batchCorrect), 2
batchCorrect,RescaleParam-method

(batchCorrect), 2
batchelor-restrict, 5
BatchelorParam, 4, 9
BatchelorParam-class, 6
BiocNeighborParam, 14, 20, 22, 33
BiocParallelParam, 11, 14, 20, 22, 29, 33
BiocSingularParam, 14, 22, 29

checkBatchConsistency, 7
checkIfSCE (checkBatchConsistency), 7
checkRestrictions

(checkBatchConsistency), 7
checkSpikeConsistency

(checkBatchConsistency), 7
ClassicMnnParam, 4, 9
ClassicMnnParam (BatchelorParam-class),

6
ClassicMnnParam-class

(BatchelorParam-class), 6
correctExperiments, 8, 17
cosineNorm, 10, 15, 19, 23, 33

DataFrame, 16, 33
DelayedArray, 11
DelayedMatrix, 11
divideIntoBatches, 8, 12

fastMNN, 4–6, 9, 11, 13, 20, 26, 28, 33, 34
FastMnnParam, 4, 9
FastMnnParam (BatchelorParam-class), 6
FastMnnParam-class

(BatchelorParam-class), 6

findMutualNN, 18, 19, 24

List, 17, 24, 30
logNormCounts, 27

mnnCorrect, 4, 6, 9, 11, 15, 19, 20, 21, 28
multiBatchNorm, 15, 26
multiBatchPCA, 14, 15, 19, 28, 32–34

noCorrect, 10, 31
NoCorrectParam (BatchelorParam-class), 6
NoCorrectParam-class

(BatchelorParam-class), 6
normalize, 23, 27, 28

queryKNN, 20

reducedMNN, 14, 17, 19, 32
regressBatches, 4, 6, 9, 34
RegressParam, 4, 9
RegressParam (BatchelorParam-class), 6
RegressParam-class

(BatchelorParam-class), 6
rescaleBatches, 4, 6, 9, 35, 36
RescaleParam, 4, 9
RescaleParam (BatchelorParam-class), 6
RescaleParam-class

(BatchelorParam-class), 6
ResidualMatrix, 35
rowRanges, 9
runSVD, 29, 30

SimpleList, 6
SingleCellExperiment, 3, 7–9, 14, 15, 21,

23, 26, 29, 31, 34–37

38

	batchCorrect
	batchelor-restrict
	BatchelorParam-class
	checkBatchConsistency
	correctExperiments
	cosineNorm
	divideIntoBatches
	fastMNN
	findMutualNN
	mnnCorrect
	multiBatchNorm
	multiBatchPCA
	noCorrect
	reducedMNN
	regressBatches
	rescaleBatches
	Index

