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1 Introduction

This vignette shows the use of the sigaR package. The following features are discussed in some
detail:

• the matching of features from different genomic platforms of Van Wieringen et al. (2012a),
• the detection of the cis-effect of DNA copy number on gene expression levels as proposed by

Van Wieringen and Van de Wiel (2009),
• the fitting of the random coefficients model described in Van Wieringen et al. (2010) and the

assessment of significance of its parameters, and
• the study of genomic entropy within gene sets, as done in Van Wieringen et al. (2011a).

These are illustrated on a small example data set, which is introduced first.

2 Breast cancer data

The breast cancer data set of Pollack et al. (2002) is available at http://www.pnas.org. Pollack
et al. (2002) used the same cDNA microarrays to measure both DNA copy number and gene
expression of 41 primary breast tumors. Pre-processing is done as detailed in Van Wieringen and
Van de Wiel (2009), where the same data set is analyzed. Here, for completeness, the preprocessing
is briefly described. The pre-processing of the DNA copy number data consists of removal of clones
with more than 30% missing values, imputation of remaining missing values using the k-nearest
neighbor method (Troyanskaya et al, 2001), mode normalization, segmentation using the CBS
method of Olshen et al. (2004), and calling using CGHcall of Van de Wiel et al. (2007). The
gene expression data are within-array median normalized. After pre-processing, only data from
chromosome 16 is maintained and included in the sigaR-package.

Load the full Pollack breast cancer data:

> library(sigaR)

> data(pollackCN16)

> data(pollackGE16)

The code above loads a cghCall and ExpressionSet object containing annotated DNA copy
number and gene expression data, respectively.

Each of the pre-processing steps yields a different data set: normalized data, segmented
data, and (hard or soft) called data. There appears to be little consensus on which should be used
for down-stream (integrative) analysis. The methods, whose implementation is illustrated below,
vary in the type of pre-processed DNA copy number data used. This reflects our own varying
opinion on the matter. See Van Wieringen et al. (2007) or Van de Wiel et al. (2011) or for a more
elaborate discussion on the type of DNA copy number data to use for downstream analysis.
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3 Matching

The first step of an integrative analysis often comprises of the matching of the features of the
platforms involved. For the matching of array CGH and gene expression data, the objective is to
assign the appropriate DNA copy number to each feature on the gene expression array. Note this is
not the same as to reproduce the matching produced by, say, Ensemble. In order to do the matching
chromosome, start and end base pair information of the features of both platforms needs to be
included in the cghCall- and ExpressionSet-object. The function matchCGHcall2ExpressionSet

is tailor-made for the matching of DNA copy number and gene expression data stored in cghCall-
and ExpressionSet-objects, and provides three types of matching. The function matchAnn2Ann

provides other ways of matching. Details of all matching methods incorporated in the sigaR-
package are described in Van Wieringen et al. (2012a).

The DNA copy number and gene expression data of the breast cancer data set included in the
package have been generated on the same platform. Hence, features need not be matched, i.e.,
they are already matched. For the sake of illustration we will pretend they are not.

Order the cghCall- and ExpressionSet-objects genomically:

> pollackCN16 <- cghCall2order(pollackCN16, chr=1, bpstart=2, verbose=FALSE)

> pollackGE16 <- ExpressionSet2order(pollackGE16, chr=1, bpstart=2, verbose=FALSE)

Match the features of both platforms:

> matchIDs <- matchCGHcall2ExpressionSet(pollackCN16, pollackGE16, CNchr=1, CNbpstart=2,

+ CNbpend=3, GEchr=1, GEbpstart=2, GEbpend=3, method = "distance", verbose=FALSE)

Limit the cghCall and ExpressionSet-objects to the matched features:

> pollackCN16 <- cghCall2subset(pollackCN16, matchIDs[,1], verbose=FALSE)

> pollackGE16 <- ExpressionSet2subset(pollackGE16, matchIDs[,2], verbose=FALSE)

In this case (as they were already matched) the objects are unchanged.

For the matching of other platforms the function matchAnn2Ann can be used. Let us illus-
trate the use of this function on the provided breast cancer data:

> data(pollackCN16)

> data(pollackGE16)

> matchedIDs <- matchAnn2Ann(fData(pollackCN16)[,1], fData(pollackCN16)[,2],

+ fData(pollackCN16)[,3], fData(pollackGE16)[,1], fData(pollackGE16)[,2],

+ fData(pollackGE16)[,3], method="distance", verbose=FALSE)

How many gene expression features not been mapped?

> nrow(exprs(pollackGE16)) - length(matchedIDs)

[1] 0

The distribution of the number of DNA copy number features matched to a gene expression feature:
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> table(sapply(matchedIDs, nrow, simplify=TRUE))

1 2 3

206 32 2

Most gene expression features are matched to a single DNA copy number feature, but some are
matched to two or more features. In the latter case, the data from those features needs to be
summarized into a single DNA copy number signature for that gene expression features. This may
be done by weighted averaging, but other suggestions are given in Van Wieringen et al. (2012a).
Hereto, add offset to distances (avoids infinitely large weights):

> matchedIDs <- lapply(matchedIDs, function(Z, offset){ Z[,3] <- Z[,3] + offset; return(Z)},

+ offset=1)

Extract id’s for object subsetting:

> matchedIDsGE <- lapply(matchedIDs, function(Z){ return(Z[, -2, drop=FALSE]) })

> matchedIDsCN <- lapply(matchedIDs, function(Z){ return(Z[, -1, drop=FALSE]) })

Generate matched objects:

> GEdata <- ExpressionSet2weightedSubset(pollackGE16, matchedIDsGE, 1, 2, 3, verbose=FALSE)

> CNdata <- cghCall2weightedSubset(pollackCN16, matchedIDsCN, 1, 2, 3, verbose=FALSE)

The results are matched cghCall- and ExpressionSet-objects, which are (almost) identical the
matching. Almost, as the weights are chosen differently here.
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4 Joint plotting

To get a overall impression of the relation between DNA copy number and gene expression data,
plot the heatmaps of both molecular levels simultaneously:

> CNGEheatmaps(pollackCN16, pollackGE16, location = "mode", colorbreaks = "equiquantiles")

16

copy number data gene expression data

Common features in DNA copy number and gene expression data become more emphasized if,
prior to simultaneous heatmap plotting, the samples both are ordered in accordance with, say, a
hierarchical clustering of either of the two data sets. At all time the order of the samples should
be the same for both DNA copy number and gene expression data.
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Alternatively, one may be interested in the relation between DNA copy number and gene
expression levels within an individual sample. This is visualized by plotting the profiles of two
samples on top each other. This plotting may be limited to a particular chromosome of interest
via the chr parameter.

> profilesPlot(pollackCN16, pollackGE16, 23)
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The color coding in the background indicate the aberration call probabilities as produced by CGH-

call (Van de Wiel et al., 2007).
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5 Statistical unit

Before to engage in any integrative analysis it is important to identify the statistical unit of interest.
The statistical unit refers to the biological entity upon which the integrative analysis is supposed
to shed light w.r.t. the relationship between the molecular levels involved. The following statistical
units are discerned (and illustrated in Figure 1):

• Gene: The individual transcripts interrogated by the expression array.
• Region: This is a set of contiguous genes with the same DNA copy number signature. Ex-

treme cases of a region are the chromosomes, or even the whole genome. Regions are often
determined by the data of the samples in the study. This implies that their definition may
vary between data sets, even though they have been generated on the same platform.

• Pathway : This is a set of genes from all over the genome. A pathway is determined by
knowledge from previous experiments that has been casked in repositories like GO (Gene
Ontology Consortium, 2000) and KEGG (Ogata et al., 1999). Also the presence of genes on
the expression array determines the actual constitution of the set.

A gene is a limiting case of either a region or a pathway. Similarly, a region is a special case of a
pathway.

DNA gene

DNA region

DNA pathway

Figure 1: The three statistical units discerned.
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6 Gene-wise analysis

We illustrate the integration of DNA copy number and mRNA gene expression data. The two
are linked through the central dogma of molecular biology. The dogma suggests that a(n) de-
crease/increase in copy number of a particular genomic segment leads to a(n) decrease/increase in
the expression of genes that map to that segment. This proportional relationship will be a leading
principle in our integrative approaches.

A sensible starting point is a univariate integrative analysis, i.e. an analysis at the level of
the individual gene Van Wieringen and Van de Wiel (2009). Such approaches aim to detect
genes whose expression levels are positively associated with copy number changes. Such genes are
candidate cancer genes. The detection of cancer genes is performed within a model relating the
two molecular levels. The model enables the estimation of the amount of differential expression
due to copy number changes and the employment of a statistical test to assess the significance of
the association.

The method of Van Wieringen and Van de Wiel (2009) comes out second in a comparison of
genomic cis-effect detection methods (Louhimo et al., 2012). That is, second after the method
developed by the authors of the same comparison.

Note that the method for cis-effect detection of Van Wieringen and Van de Wiel (2009)
uses the call probabilities of the preprocessed DNA copy number data. Would one prefer to use
the segmentated DNA copy number data, a good alternative is the method of Leday et al. (2012).
The method of Leday et al. (2012) models the cis-effect of DNA copy number on gene expression
levels by means of piecewise linear regression splines. The method of Leday et al. (2012) is
implemented in the plrs-package.

6.1 Pre-test and tuning

The method of Van Wieringen and Van de Wiel (2009) exploits the census of cancer genes (Futreal
et al., 2004), which distinguishes between proto-onco and tumor-suppressor genes associated with
gain and loss, respectively. This gain (or loss) of a particular genomic segment is, through the
central dogma of biology, likely to result in increased (or decreased) transcription levels of the
genes on the segment. Motived by Figure 1b of Beroukhim et al. (2010), it is assumed that, within
cancer of a particular tissue, a gene cannot be a proto-onco gene as well as tumor-suppressor gene
for that tissue.

Unfortunately it is unknown for every gene whether it is a proto-onco or tumor-suppressor
gene. Consequently, one does not know whether to compare the gene expression between samples
with a normal and gain, or between those with a loss and normal. This is decided by the array
CGH data: e.g., if, for a particular gene, the call probability mass (as measured over the samples)
of a gain exceeds that of a loss, the loss and normal call probability masses will be merged and
the ‘no-gain vs. gain’ comparison is carried out for this gene.

Also prior to testing, it is recommendable to discard genes beforehand. This benefits the
overall (FDR) power of the testing procedure. Exclusion of genes is done:

1. On the basis of the sum of a gene’s marginal call probabilities of loss and gain. If it is smaller
than minCallProbMass, the gene is discarded from further analysis. Effectively, this ensures
identifiability of the copy number effect on expression levels.
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2. On the basis of a metric, calculated from the DNA copy number data only, which aims to
identify two situations for which the test is likely to have low power.

• The first situation occurs when there is an unbalance between the expected call proba-
bilities, as assessed over all samples. For instance, genes with

n∑
i=1

P (sample i has a loss at the location of gene j) = 0.001

and
n∑

i=1

P (sample i has no aberration at the location of gene j) = 0.999

have an unbalanced call probability distribution. A priori one expects that the proposed
tests may not be powerful to detect a shift for such genes.

• The second situation occurs when many samples individually
(i.e. within sample) have a uniformly distributed call probabil-
ity mass: P (sample i has loss at the location of gene j) = 1

2 and
P (sampleihas an aberration at the location of genej) = 1

2 . This indecision on the
call is propagated into the test, resulting in low power.

The cut-off for this metric is chosen in such a way that the expected number of true discoveries
is maximized.

The following command line performs the pre-testing and tuning:

> genes2test <- cisEffectTune(pollackCN16, pollackGE16, "wmw", nGenes = 100,

nPerm = 250, minCallProbMass = 0.10)

To obtain the number of excluded genes:

> nrow(pollackGE16) - length(genes2test)

The genes2test object is a vector of the genes that are passed on for testing.
The number of excluded genes depends among others on the DNA copy number profiles. If

these are ‘wild’, exhibiting many aberrations all over the genome, we expect most genes to have a
reasonably balanced expected (over the samples) call probability distribution. If, however, there
are only few genomic regions aberrated, the contrary is expected, and more genes are expected
to be excluded. The number of excluded genes also depends upon the number of genes whose
expression is affected by copy number changes. This, in combination with an FDR rule, increases
the probability of detecting shifts for genes with unbalanced or imprecise call probability mass.

6.2 Testing

We are now ready to test for DNA copy number induced differential gene expression on the set of
selected genes:

> cisTestResults <- cisEffectTest(pollackCN16, pollackGE16, genes2test, 1,

"univariate", "wmw", nPerm = 10000, lowCiThres = 0.10)
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The number of significant genes, obtained through:

> fdrCutoff <- 0.10

> sum(cisTestResults@adjP.values < fdrCutoff)

equals 11 at a FDR significance level of 0.05 and 16 at 0.10. Hence, approximately 10% of the
genes included in the test (114) are declared significant. This is somewhat lower than the roughly
20% found in the analysis of the full data set (Van Wieringen and Van de Wiel, 2009), and
may be due to the fact that fewer genomic aberrations occur on this chromosome compared to
other in the data set. Irrespectively, such large percentages of significant genes are in line with
‘major direct role’ of DNA copy number alterations in the transcriptional program as claimed by
Pollack et al. (2002), but forces us to look not only at statistical significance, but also at biological
relevance. Gene prioritization (ranking) could be done by using the effect size and/or the coefficient
of determination.

Finally, a global view of the effect of DNA copy number on gene expression levels is provided
by a histogram of the effect sizes for all selected genes, which may be obtained through:

> hist(cisTestResults@effectSize, n=50, col="blue", border="lightblue",

xlab="effect size", main="histogram of effect size")

histogram of effect size

effect size
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For the Pollack chromosome 16 data the histogram shows an effect size distribution that is clearly
shifted away from zero, indicating that many genes have affected expression levels, in turn con-
firming the aformentioned ‘major direct role’.

The top ten of most significant genes are obtained as follows:
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> cisEffectTable(cisTestResults, number=10, sort.by="p.value")

... geneId comparison av.prob1 av.prob2 effectSize R2 p.value adjP.value

IMAGE:366728 ... 174 1 0.1110 0.8888 1.1840 0.3138 0.0001 0.00570000

IMAGE:51320 ... 237 2 0.8970 0.1029 1.3465 0.4165 0.0002 0.00570000

IMAGE:625683 ... 229 2 0.8977 0.1022 1.5268 0.3378 0.0002 0.00570000

IMAGE:825335 ... 239 2 0.8970 0.1029 1.1664 0.1830 0.0002 0.00570000

IMAGE:897774 ... 236 2 0.8970 0.1029 1.8775 0.3143 0.0004 0.00912000

IMAGE:845419 ... 238 2 0.8970 0.1029 1.6652 0.4841 0.0011 0.01646667

IMAGE:52226 ... 90 2 0.8911 0.1087 2.6185 0.2609 0.0012 0.01646667

IMAGE:261971 ... 240 2 0.8970 0.1029 1.0780 0.3931 0.0013 0.01646667

IMAGE:279152 ... 55 2 0.8764 0.1234 0.6754 0.1778 0.0013 0.01646667

IMAGE:487831 ... 89 2 0.8911 0.1087 2.0120 0.2403 0.0019 0.02166000

The most significant gene is interrogated by clone IMAGE:366728. It is lost in approximately 11%
of the samples. The estimated cis-effect size of DNA copy number aberrations on the expression
levels of this transcripts equals 1.1840. With an R2 = 0.31, the genomic aberrations explain
explains 31% of the variation in the expression of the transcript interratogated by IMAGE:366728.
The multiplicity corrected p-value of the proposed test equals IMAGE:366728 is depicted in the
figure below.
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6.3 Regional analysis

The breakpoint nature of the copy number data implies that neighboring genes share the same copy
number signature. One expects that their expression levels are affected in a similar fashion. Indeed,
it has been observed that co-expressed neighborhoods, neighborhoods of contiguous genes showing
markedly similar expression patterns, appear throughout the cancer genome and often coincide
with the location of well-known recurrent copy number aberrations. This suggests that CNAs
(Copy Number Aberrations) not only affect the expression of key proto-onco or tumor-suppressor
genes, but may also alter the expression levels of many other genes in the cancer genome. In
particular, whole chromosome aberrations have been shown to affect expression levels of many
genes are affected in accordance with the gene dosage.

The above motivates the modification of the univariate approach. In Van Wieringen and Van de
Wiel (2009) this is done by borrowing information across the genes within each region (defined as
a series of adjacent clones with the same DNA copy number signature), but test for DNA copy
number induced differential expression per gene. This is done by shrinking the test statistics within
the region. In order to perform such a ‘regional analysis’ change the analysisType parameter:

> cisTestResults <- cisEffectTest(pollackCN16, pollackGE16, genes2test, 1,

"regional", "wcvm", nPerm = 10000, lowCiThres = 0.10)

Compare this to the results of the univariate analysis.
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7 Region analysis

A more formaly extension of the univariate approach would describe the relation between the
two molecular levels in a set of neighboring genes with identical copy number aberration patterns
explicitly. In Van Wieringen et al. (2010) we proposed a multivariate random coefficients model
which addresses regional co-expression through the incorporation of fixed parameters for the joint
copy number effect on the expression levels of all genes in the region, with the inclusion of random
coefficients for possible individual gene effects. In addition, co-expression non-attributable to
copy number changes is accounted for by the correlation structure of the residual gene expression
(caused by, e.g., epigenetic effects or a common transcription factor). This random coefficients
model facilitates a global analysis of CNA associated regional co-expression at the level of the
region (rather than its genes). It allows to assess a) whether there is a shared CNA effect on
the expression levels of the genes within the region, and b) whether the CNA effect is identical
for all genes. The model parameters are estimated from high-throughput data. In order to deal
with the data’s high-dimensionality (p > n), we have optimized the estimation procedure in
terms of computational speed and memory use. Hypotheses of interest regarding copy number
induced co-expression model parameters are evaluated by re-sampling. The prior knowledge on
the direction of the effect of copy number changes on gene expression is incorporated in the
estimation. Two real data examples illustrate how the proposed methodology may be utilized to
study regional co-expression associated with DNA copy number aberrations. The proposed random
coefficients model may also be applied to expression data of other products that are transcribed
from the DNA, such as microRNAs, that share the same copy number signature. The application
of the random coefficients model of Van Wieringen et al. (2010) is illustrated on these Pollack data.

The data are first put in the appropriate format. Select feature of interest:

> featureNo <- 240

Determine features having the same DNA copy number signature:

> ids <- getSegFeatures(featureNo, pollackCN16)

perform input checks...

Extract copy number and expression data of features comprising the region:

> Y <- exprs(pollackGE16)[ids,]

Transpose Y, the traditional data matrix representation for regression

> Y <- t(Y)

Extract copy number profile of the region (segmented log2-ratios):

> X <- segmented(pollackCN16)[featureNo,]

Put X in the right format:

> X <- matrix(as.numeric(X), ncol=1)
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To fit the random coefficients model to the gene expression data Y and DNA copy number data
X of the selected region, first center the expression data of each gene around zero (to avoid having
to fit an intercept), and make the linear parameter constraints matrix R:

> Y <- sweep(Y, 2, apply(Y, 2, mean))

> R <- matrix(1, ncol=1)

The regression parameter β̄ represents the DNA copy number effect on expression levels, and is
assumed to be non-negative as the relationship between the two molecular levels is believed to be
concordant.

Now fit the random coefficients model to the data:

> RCMresult <- RCMestimation(Y, X, R)

To display the results of the model fit:

> summary(RCMresult)

Coefficients:

[,1]

[1,] 1.624

Random effects (as variances):

[,1]

[1,] 0.228

Variance (average): 0.29

Correlation (unif): 0.487

Shrinkage: 0

Log-likelihood: -124.607

This analysis reveals that there is a non-zero shared copy number effect on the expression levels of
the genes in the region:

> RCMresult@betas

[1] 1.62361

In addition, the analysis indicates that expression levels of the genes are not affected in a hetero-
geneous manner (there is no random effect) by the gene dosage:

> RCMresult@tau2s

[1] 0.2283116

Also noteworthy is the estimate of the ‘residual co-expression’ ρ, which is rather high:

> RCMresult@rho

[1] 0.48688
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This suggests that other factors (like a common transcription factor or methylation) may play a
role in the co-expression of the region.

Significance of either the shared or heterogeneous (or jointly) DNA copy number effect is as-
sessed through the parametric bootstrap. This is illustrated for the shared DNA copy number
effect for the selected region. To test the hypothesis of no DNA copy effect vs. the hypothesis of
a shared effect:

> RCMtestResult <- RCMtest(Y, X, R, testType="II")

Display the results:

> summary(RCMtestResult)

Coefficients:

[,1]

[1,] 1.265

Random effects (as variances):

[,1]

[1,] 0

Variance (average): 0.29

Correlation (unif): 0.487

Shrinkage: 0

Log-likelihood: -125.948

Test statistic: 13.165, p-value: 0

Remarks: none

The test for a DNA copy number effect (both shared and random) on the expression levels is
significant at the 0.05 level.

The results of this analysis may be visualized. This visualization should also provide us
with an impression of the variation of the DNA copy number-gene expression relationship over
the genes. To that end, we sample from the random coefficient distribution, and calculate
corresponding expected expression values:

> GEpred <- numeric()

> for (u in 1:1000){

+ slope <- rnorm(1, mean=RCMresult@betas[1], sd=sqrt(RCMresult@tau2s[1]))

+ slope[slope < 0] <- 0

+ GEpred <- rbind(GEpred, as.numeric(slope * X[,1]))

+ }

> verts <- rbind(apply(GEpred, 2, min), apply(GEpred, 2, max))

Now plot the result:

The pink area indicates where we would expect – on the basis of the fitted random coeffients model
– the regression lines of the individual genes. Indeed, they fall inside the pink area. The red line
represents the shared DNA copy number effect on gene expression levels within the region.
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> plot(lm(Y[,1] ~ X[,1])$fitted.values ~ X[,1], type="l", ylim=c(-1.0, 2.2),

+ ylab="gene expression", xlab="DNA copy number")

> polygon(x=c(X[order(X[,1]), 1], X[order(X[,1], decreasing = TRUE), 1]),

+ y=c(verts[1, order(X[,1])], verts[2, order(X[,1], decreasing = TRUE)]),

+ col="pink", border="pink")

> for (j in 1:ncol(Y)){

+ lines(X[,1], lm(Y[,j] ~ X[,1])$fitted.values)

+ }

> lines(X[,1], RCMresult@betas[1] * X[,1], type="l", col="red", lwd=4)
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8 Pathway analysis

The random coefficients model of Van Wieringen et al. (2010) analyzes regions, a gene set that
comprises of contiguous genes. As such, the relationship between DNA copy number and gene
expression is investigated locally at the genome. Alternatively, one may wish the study gene sets
that constitue of genes originating from all over the genome, and that together form a pathway.
The presence of a DNA copy number effect shared by all genes in the pathway – as is modeled by
the random coefficients model of Van Wieringen et al. (2010) – is unlikely, and we resort to the
methodology discussed in Van Wieringen et al. (2011a).

Van Wieringen et al. (2011a) jointly analyze DNA copy number and gene expression data within
pathways rather then regions. In particular, a pathway may comprise the whole genome. To this
end, Van Wieringen et al. (2011a) use the information theoretic concepts entropy (a multivariate
measure of spread) and mutual information (a multivariate measure of correlation). The estima-
tion of and testing procedures related to these concepts using high-dimensional genomics data of
Van Wieringen et al. (2011a) have been implemented in the sigaR-package.

The Pollack breast cancer data is used to illustrate how these concepts may be employed for
the integrative analysis of DNA copy number and gene expression. To assess whether there is an
assocation between the DNA copy number and gene expression of chromosome 16 in breast cancer,
we analyze the mutual information between the two molecular levels. By studying the mutual
information between Y and X, we compare the unconditional entropy of the gene expression to
its conditional counterpart, conditional on DNA copy number.

Again, extract the DNA copy number (normalized log2 ratios) and gene expression data:

> X <- copynumber(pollackCN16)

> Y <- exprs(pollackGE16)

Transpose both data matrices to the traditional regression representation:

> Y <- t(Y)

> X <- t(X)

Calculate the MI (mutual information):

> hdMI(Y, X, method="knn")

[1] 1.103678

Test whether the MI is equal to zero:

> MItestResults <- mutInfTest(Y, X, nPerm=100, method="knn", verbose=FALSE)

> summary(MItestResults)

Mutual information test:

Test statistic: 1.104, p-value: 0

Remarks: none

The p-value is smaller the 0.01. Using a significance level of 0.05, this implies that there is a
significant association between the two molecular levels. This ‘mutual information’ test can be
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used as a general purpose gene set test to investigate the association between two molecular levels
within pathways.

This association between the two molecular levels as suggested by the mutual information
test, may be visualized. The k-NN entropy statistic is composed of the entropies at each
observation. Each sample’s contribution to the k-th nearest neighbor genomic entropy estimate
may then be plotted against its contribution to the k-th nearest neighbor transcriptomic entropy
estimate. If indeed the entropies of the two molecular levels are closely related, we expect the
‘marginal’ entropies at each observation to be positively associated. Below we plot these ‘marginal’
entropies of both molecular levels against other:

> plot(isoreg(hdEntropy(Y, method="knn") ~ hdEntropy(X, method="knn")),

+ lwd=2, pch=20, main="", ylab="marginal transcriptomic entropy",

+ xlab="marginal genomic entropy")
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There is a small positive association visible. To emphasize this we have added the isotonic regression
curve. This may also be assessed by Spearman’s correlation coefficient:

> cor(hdEntropy(Y, method="knn"), hdEntropy(X, method="knn"), m="s")

[1] 0.2332665

The correlation between the ‘marginal’ entropies of the two molecular levels too reveals a positive
association.
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