
Using the GEOquery Package
Sean Davis

September 21, 2014

Contents

Overview of GEO 2

Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Getting Started using GEOquery 2

GEOquery Data Structures 3

The GDS, GSM, and GPL classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

The GSE class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Converting to BioConductor ExpressionSets and limma MALists 7

Getting GSE Series Matrix files as an ExpressionSet . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Converting GDS to an ExpressionSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Converting GDS to an MAList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Converting GSE to an ExpressionSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Accessing Raw Data from GEO 12

Use Cases 12

Getting all Series Records for a Given Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Conclusion 13

Citing GEOquery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Reporting problems or bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Session info 14

1



Overview of GEO

The NCBI Gene Expression Omnibus (GEO) serves as a public repository for a wide range of high-throughput
experimental data. These data include single and dual channel microarray-based experiments measuring
mRNA, genomic DNA, and protein abundance, as well as non-array techniques such as serial analysis of gene
expression (SAGE), mass spectrometry proteomic data, and high-throughput sequencing data.

At the most basic level of organization of GEO, there are four basic entity types. The first three (Sample,
Platform, and Series) are supplied by users; the fourth, the dataset, is compiled and curated by GEO staff
from the user-submitted data. See the GEO home page for more information.

Platforms

A Platform record describes the list of elements on the array (e.g., cDNAs, oligonucleotide probesets, ORFs,
antibodies) or the list of elements that may be detected and quantified in that experiment (e.g., SAGE
tags, peptides). Each Platform record is assigned a unique and stable GEO accession number (GPLxxx). A
Platform may reference many Samples that have been submitted by multiple submitters.

Samples

A Sample record describes the conditions under which an individual Sample was handled, the manipulations it
underwent, and the abundance measurement of each element derived from it. Each Sample record is assigned
a unique and stable GEO accession number (GSMxxx). A Sample entity must reference only one Platform
and may be included in multiple Series.

Series

A Series record defines a set of related Samples considered to be part of a group, how the Samples are related,
and if and how they are ordered. A Series provides a focal point and description of the experiment as a whole.
Series records may also contain tables describing extracted data, summary conclusions, or analyses. Each
Series record is assigned a unique and stable GEO accession number (GSExxx). Series records are available
in a couple of formats which are handled by GEOquery independently. The smaller and new GSEMatrix files
are quite fast to parse; a simple flag is used by GEOquery to choose to use GSEMatrix files (see below).

Datasets

GEO DataSets (GDSxxx) are curated sets of GEO Sample data. A GDS record represents a collection of
biologically and statistically comparable GEO Samples and forms the basis of GEO’s suite of data display
and analysis tools. Samples within a GDS refer to the same Platform, that is, they share a common set
of probe elements. Value measurements for each Sample within a GDS are assumed to be calculated in an
equivalent manner, that is, considerations such as background processing and normalization are consistent
across the dataset. Information reflecting experimental design is provided through GDS subsets.

Getting Started using GEOquery

Getting data from GEO is really quite easy. There is only one command that is needed, getGEO. This one
function interprets its input to determine how to get the data from GEO and then parse the data into useful
R data structures. Usage is quite simple. This loads the GEOquery library.

2

http://www.ncbi.nih.gov/geo


library(GEOquery)

Now, we are free to access any GEO accession. Note that in the following, I use a file packaged with the
GEOquery package. In general, you will use only the GEO accession, as noted in the code comments.

# If you have network access, the more typical way to do this
# would be to use this:
# gds <- getGEO("GDS507")
gds <- getGEO(filename=system.file("extdata/GDS507.soft.gz",package="GEOquery"))

Now, gds contains the R data structure (of class GDS) that represents the GDS507 entry from GEO. You’ll
note that the filename used to store the download was output to the screen (but not saved anywhere) for
later use to a call to getGEO(filename=...).

We can do the same with any other GEO accession, such as GSM11805, a GEO sample.

# If you have network access, the more typical way to do this
# would be to use this:
# gds <- getGEO("GSM11805")
gsm <- getGEO(filename=system.file("extdata/GSM11805.txt.gz",package="GEOquery"))

GEOquery Data Structures

The GEOquery data structures really come in two forms. The first, comprising GDS, GPL, and GSM all behave
similarly and accessors have similar effects on each. The fourth GEOquery data structure, GSE is a composite
data type made up of a combination of GSM and GPL objects. I will explain the first three together first.

The GDS, GSM, and GPL classes

Each of these classes is comprised of a metadata header (taken nearly verbatim from the SOFT format
header) and a GEODataTable. The GEODataTable has two simple parts, a Columns part which describes
the column headers on the Table part. There is also a show method for each class. For example, using the
gsm from above:

# Look at gsm metadata:
head(Meta(gsm))

## $channel_count
## [1] "1"
##
## $comment
## [1] "Raw data provided as supplementary file"
##
## $contact_address
## [1] "715 Albany Street, E613B"
##
## $contact_city
## [1] "Boston"
##
## $contact_country

3



## [1] "USA"
##
## $contact_department
## [1] "Genetics and Genomics"

# Look at data associated with the GSM:
# but restrict to only first 5 rows, for brevity
Table(gsm)[1:5,]

## ID_REF VALUE ABS_CALL
## 1 AFFX-BioB-5_at 953.9 P
## 2 AFFX-BioB-M_at 2982.8 P
## 3 AFFX-BioB-3_at 1657.9 P
## 4 AFFX-BioC-5_at 2652.7 P
## 5 AFFX-BioC-3_at 2019.5 P

# Look at Column descriptions:
Columns(gsm)

## Column
## 1 ID_REF
## 2 VALUE
## 3 ABS_CALL
## Description
## 1
## 2 MAS 5.0 Statistical Algorithm (mean scaled to 500)
## 3 MAS 5.0 Absent, Marginal, Present call with Alpha1 = 0.05, Alpha2 = 0.065

The GPL class behaves exactly as the GSM class. However, the GDS class has a bit more information associated
with the Columns method:

Columns(gds)[,1:3]

## sample disease.state individual
## 1 GSM11815 RCC 035
## 2 GSM11832 RCC 023
## 3 GSM12069 RCC 001
## 4 GSM12083 RCC 005
## 5 GSM12101 RCC 011
## 6 GSM12106 RCC 032
## 7 GSM12274 RCC 2
## 8 GSM12299 RCC 3
## 9 GSM12412 RCC 4
## 10 GSM11810 normal 035
## 11 GSM11827 normal 023
## 12 GSM12078 normal 001
## 13 GSM12099 normal 005
## 14 GSM12269 normal 1
## 15 GSM12287 normal 2
## 16 GSM12301 normal 3
## 17 GSM12448 normal 4

4



The GSE class

The GSE entity is the most confusing of the GEO entities. A GSE entry can represent an arbitrary number
of samples run on an arbitrary number of platforms. The GSE class has a metadata section, just like the
other classes. However, it doesn’t have a GEODataTable. Instead, it contains two lists, accessible using the
GPLList and GSMList methods, that are each lists of GPL and GSM objects. To show an example:

# Again, with good network access, one would do:
# gse <- getGEO("GSE781",GSEMatrix=FALSE)
gse <- getGEO(filename=system.file("extdata/GSE781_family.soft.gz",package="GEOquery"))

## Parsing....

head(Meta(gse))

## $contact_address
## [1] "715 Albany Street, E613B"
##
## $contact_city
## [1] "Boston"
##
## $contact_country
## [1] "USA"
##
## $contact_department
## [1] "Genetics and Genomics"
##
## $contact_email
## [1] "mlenburg@bu.edu"
##
## $contact_fax
## [1] "617-414-1646"

# names of all the GSM objects contained in the GSE
names(GSMList(gse))

## [1] "GSM11805" "GSM11810" "GSM11814" "GSM11815" "GSM11823" "GSM11827"
## [7] "GSM11830" "GSM11832" "GSM12067" "GSM12069" "GSM12075" "GSM12078"
## [13] "GSM12079" "GSM12083" "GSM12098" "GSM12099" "GSM12100" "GSM12101"
## [19] "GSM12105" "GSM12106" "GSM12268" "GSM12269" "GSM12270" "GSM12274"
## [25] "GSM12283" "GSM12287" "GSM12298" "GSM12299" "GSM12300" "GSM12301"
## [31] "GSM12399" "GSM12412" "GSM12444" "GSM12448"

# and get the first GSM object on the list
GSMList(gse)[[1]]

## An object of class "GSM"
## channel_count
## [1] "1"
## comment
## [1] "Raw data provided as supplementary file"

5



## contact_address
## [1] "715 Albany Street, E613B"
## contact_city
## [1] "Boston"
## contact_country
## [1] "USA"
## contact_department
## [1] "Genetics and Genomics"
## contact_email
## [1] "mlenburg@bu.edu"
## contact_fax
## [1] "617-414-1646"
## contact_institute
## [1] "Boston University School of Medicine"
## contact_name
## [1] "Marc,E.,Lenburg"
## contact_phone
## [1] "617-414-1375"
## contact_state
## [1] "MA"
## contact_web_link
## [1] "http://gg.bu.edu"
## contact_zip/postal_code
## [1] "02130"
## data_row_count
## [1] "22283"
## description
## [1] "Age = 70; Gender = Female; Right Kidney; Adjacent Tumor Type = clear cell; Adjacent Tumor Fuhrman Grade = 3; Adjacent Tumor Capsule Penetration = true; Adjacent Tumor Perinephric Fat Invasion = true; Adjacent Tumor Renal Sinus Invasion = false; Adjacent Tumor Renal Vein Invasion = true; Scaling Target = 500; Scaling Factor = 7.09; Raw Q = 2.39; Noise = 2.60; Background = 55.24."
## [2] "Keywords = kidney"
## [3] "Keywords = renal"
## [4] "Keywords = RCC"
## [5] "Keywords = carcinoma"
## [6] "Keywords = cancer"
## [7] "Lot batch = 2004638"
## geo_accession
## [1] "GSM11805"
## last_update_date
## [1] "May 28 2005"
## molecule_ch1
## [1] "total RNA"
## organism_ch1
## [1] "Homo sapiens"
## platform_id
## [1] "GPL96"
## series_id
## [1] "GSE781"
## source_name_ch1
## [1] "Trizol isolation of total RNA from normal tissue adjacent to Renal Cell Carcinoma"
## status
## [1] "Public on Nov 25 2003"
## submission_date
## [1] "Oct 20 2003"
## supplementary_file
## [1] "ftp://ftp.ncbi.nih.gov/pub/geo/DATA/supplementary/samples/GSM11nnn/GSM11805/GSM11805.CEL.gz"

6



## title
## [1] "N035 Normal Human Kidney U133A"
## type
## [1] "RNA"
## An object of class "GEODataTable"
## ****** Column Descriptions ******
## Column
## 1 ID_REF
## 2 VALUE
## 3 ABS_CALL
## Description
## 1
## 2 MAS 5.0 Statistical Algorithm (mean scaled to 500)
## 3 MAS 5.0 Absent, Marginal, Present call with Alpha1 = 0.05, Alpha2 = 0.065
## ****** Data Table ******
## ID_REF VALUE ABS_CALL
## 1 AFFX-BioB-5_at 953.9 P
## 2 AFFX-BioB-M_at 2982.8 P
## 3 AFFX-BioB-3_at 1657.9 P
## 4 AFFX-BioC-5_at 2652.7 P
## 5 AFFX-BioC-3_at 2019.5 P
## 22278 more rows ...

# and the names of the GPLs represented
names(GPLList(gse))

## [1] "GPL96" "GPL97"

See below for an additional, preferred method of obtaining GSE information.

Converting to BioConductor ExpressionSets and limma MALists

GEO datasets are (unlike some of the other GEO entities), quite similar to the limma data structure MAList
and to the Biobase data structure ExpressionSet. Therefore, there are two functions, GDS2MA and GDS2eSet
that accomplish that task.

Getting GSE Series Matrix files as an ExpressionSet

GEO Series are collections of related experiments. In addition to being available as SOFT format files, which
are quite large, NCBI GEO has prepared a simpler format file based on tab-delimited text. The getGEO
function can handle this format and will parse very large GSEs quite quickly. The data structure returned
from this parsing is a list of ExpressionSets. As an example, we download and parse GSE2553.

# Note that GSEMatrix=TRUE is the default
gse2553 <- getGEO('GSE2553',GSEMatrix=TRUE)
show(gse2553)

## $GSE2553_series_matrix.txt.gz
## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 12600 features, 181 samples

7



## element names: exprs
## protocolData: none
## phenoData
## sampleNames: GSM48681 GSM48682 ... GSM48861 (181 total)
## varLabels: title geo_accession ... data_row_count (30 total)
## varMetadata: labelDescription
## featureData
## featureNames: 1 2 ... 12600 (12600 total)
## fvarLabels: ID PenAt ... Chimeric_Cluster_IDs (13 total)
## fvarMetadata: Column Description labelDescription
## experimentData: use 'experimentData(object)'
## Annotation: GPL1977

show(pData(phenoData(gse2553[[1]]))[1:5,c(1,6,8)])

## title
## GSM48681 Patient sample ST18, Dermatofibrosarcoma
## GSM48682 Patient sample ST410, Ewing Sarcoma
## GSM48683 Patient sample ST130, Sarcoma, NOS
## GSM48684 Patient sample ST293, Malignant Peripheral Nerve Sheath Tumor
## GSM48685 Patient sample ST367, Liposarcoma
## type source_name_ch1
## GSM48681 RNA Dermatofibrosarcoma
## GSM48682 RNA Ewing Sarcoma
## GSM48683 RNA Sarcoma, NOS
## GSM48684 RNA Malignant Peripheral Nerve Sheath Tumor
## GSM48685 RNA Liposarcoma

Converting GDS to an ExpressionSet

Taking our gds object from above, we can simply do:

eset <- GDS2eSet(gds,do.log2=TRUE)

Now, eset is an ExpressionSet that contains the same information as in the GEO dataset, including the
sample information, which we can see here:

eset

## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 22645 features, 17 samples
## element names: exprs
## protocolData: none
## phenoData
## sampleNames: GSM11815 GSM11832 ... GSM12448 (17 total)
## varLabels: sample disease.state individual description
## varMetadata: labelDescription
## featureData
## featureNames: 200000_s_at 200001_at ... AFFX-TrpnX-M_at (22645
## total)
## fvarLabels: ID Gene title ... GO:Component ID (21 total)
## fvarMetadata: Column labelDescription

8



## experimentData: use 'experimentData(object)'
## pubMedIds: 14641932
## Annotation:

pData(eset)[,1:3]

## sample disease.state individual
## GSM11815 GSM11815 RCC 035
## GSM11832 GSM11832 RCC 023
## GSM12069 GSM12069 RCC 001
## GSM12083 GSM12083 RCC 005
## GSM12101 GSM12101 RCC 011
## GSM12106 GSM12106 RCC 032
## GSM12274 GSM12274 RCC 2
## GSM12299 GSM12299 RCC 3
## GSM12412 GSM12412 RCC 4
## GSM11810 GSM11810 normal 035
## GSM11827 GSM11827 normal 023
## GSM12078 GSM12078 normal 001
## GSM12099 GSM12099 normal 005
## GSM12269 GSM12269 normal 1
## GSM12287 GSM12287 normal 2
## GSM12301 GSM12301 normal 3
## GSM12448 GSM12448 normal 4

Converting GDS to an MAList

No annotation information (called platform information by GEO) was retrieved from because ExpressionSet
does not contain slots for gene information, typically. However, it is easy to obtain this information. First,
we need to know what platform this GDS used. Then, another call to getGEO will get us what we need.

#get the platform from the GDS metadata
Meta(gds)$platform

## [1] "GPL97"

#So use this information in a call to getGEO
gpl <- getGEO(filename=system.file("extdata/GPL97.annot.gz",package="GEOquery"))

So, gpl now contains the information for GPL5 from GEO. Unlike ExpressionSet, the limma MAList does
store gene annotation information, so we can use our newly created gpl of class GPL in a call to GDS2MA like
so:

MA <- GDS2MA(gds,GPL=gpl)
class(MA)

## [1] "MAList"
## attr(,"package")
## [1] "limma"

Now, MA is of class MAList and contains not only the data, but the sample information and gene information
associated with GDS507.

9



Converting GSE to an ExpressionSet

First, make sure that using the method described above in the section “Getting GSE Series Matrix files as
an ExpressionSet” for using GSE Series Matrix files is not sufficient for the task, as it is much faster and
simpler. If it is not (i.e., other columns from each GSM are needed), then this method will be needed.

Converting a GSE object to an ExpressionSet object currently takes a bit of R data manipulation due to
the varied data that can be stored in a GSE and the underlying GSM and GPL objects. However, using a simple
example will hopefully be illustrative of the technique.

First, we need to make sure that all of the ‘GSMs} are from the same platform:

gsmplatforms <- lapply(GSMList(gse),function(x) {Meta(x)$platform})
head(gsmplatforms)

## $GSM11805
## [1] "GPL96"
##
## $GSM11810
## [1] "GPL97"
##
## $GSM11814
## [1] "GPL96"
##
## $GSM11815
## [1] "GPL97"
##
## $GSM11823
## [1] "GPL96"
##
## $GSM11827
## [1] "GPL97"

Indeed, they all used GPL5 as their platform (which we could have determined by looking at the GPLList
for gse, which shows only one GPL for this particular GSE.). So, now we would like to know what column
represents the data that we would like to extract. Looking at the first few rows of the Table of a single GSM
will likely give us an idea (and by the way, GEO uses a convention that the column that contains the single
measurement for each array is called the VALUE column, which we could use if we don’t know what other
column is most relevant).

Table(GSMList(gse)[[1]])[1:5,]

## ID_REF VALUE ABS_CALL
## 1 AFFX-BioB-5_at 953.9 P
## 2 AFFX-BioB-M_at 2982.8 P
## 3 AFFX-BioB-3_at 1657.9 P
## 4 AFFX-BioC-5_at 2652.7 P
## 5 AFFX-BioC-3_at 2019.5 P

# and get the column descriptions
Columns(GSMList(gse)[[1]])[1:5,]

## Column

10



## 1 ID_REF
## 2 VALUE
## 3 ABS_CALL
## NA <NA>
## NA.1 <NA>
## Description
## 1
## 2 MAS 5.0 Statistical Algorithm (mean scaled to 500)
## 3 MAS 5.0 Absent, Marginal, Present call with Alpha1 = 0.05, Alpha2 = 0.065
## NA <NA>
## NA.1 <NA>

We will indeed use the VALUE column. We then want to make a matrix of these values like so:

# get the probeset ordering
probesets <- Table(GPLList(gse)[[1]])$ID
# make the data matrix from the VALUE columns from each GSM
# being careful to match the order of the probesets in the platform
# with those in the GSMs
data.matrix <- do.call('cbind',lapply(GSMList(gse),function(x)

{tab <- Table(x)
mymatch <- match(probesets,tab$ID_REF)
return(tab$VALUE[mymatch])

}))
data.matrix <- apply(data.matrix,2,function(x) {as.numeric(as.character(x))})
data.matrix <- log2(data.matrix)
data.matrix[1:5,]

## GSM11805 GSM11810 GSM11814 GSM11815 GSM11823 GSM11827 GSM11830
## [1,] 10.926963 NA 11.105254 NA 11.275019 NA 11.438636
## [2,] 5.749534 NA 7.908092 NA 7.093814 NA 7.514122
## [3,] 7.066089 NA 7.750205 NA 7.244126 NA 7.962896
## [4,] 12.660353 NA 12.479755 NA 12.215897 NA 11.458355
## [5,] 6.195741 NA 6.061776 NA 6.565293 NA 6.583459
## GSM11832 GSM12067 GSM12069 GSM12075 GSM12078 GSM12079 GSM12083
## [1,] NA 11.424376 NA 11.222795 NA 11.469845 NA
## [2,] NA 7.901470 NA 6.407693 NA 5.165912 NA
## [3,] NA 7.337176 NA 6.569856 NA 7.477354 NA
## [4,] NA 11.397568 NA 12.529870 NA 12.240046 NA
## [5,] NA 6.877744 NA 6.652486 NA 3.981853 NA
## GSM12098 GSM12099 GSM12100 GSM12101 GSM12105 GSM12106 GSM12268
## [1,] 10.823367 NA 10.835971 NA 10.810893 NA 11.062653
## [2,] 6.556123 NA 8.207014 NA 6.816344 NA 6.563768
## [3,] 7.708739 NA 7.428779 NA 7.754888 NA 7.126188
## [4,] 12.336534 NA 11.762839 NA 11.237509 NA 12.412490
## [5,] 5.501439 NA 6.247928 NA 6.017922 NA 6.525129
## GSM12269 GSM12270 GSM12274 GSM12283 GSM12287 GSM12298 GSM12299
## [1,] NA 10.323055 NA 11.181028 NA 11.566387 NA
## [2,] NA 7.353147 NA 5.770829 NA 6.912889 NA
## [3,] NA 8.742815 NA 7.339850 NA 7.602142 NA
## [4,] NA 11.213408 NA 12.678380 NA 12.232901 NA
## [5,] NA 6.683696 NA 5.918863 NA 5.837943 NA
## GSM12300 GSM12301 GSM12399 GSM12412 GSM12444 GSM12448

11



## [1,] 11.078151 NA 11.535178 NA 11.105450 NA
## [2,] 4.812498 NA 7.471675 NA 7.488644 NA
## [3,] 7.383704 NA 7.432959 NA 7.381110 NA
## [4,] 12.090939 NA 11.421802 NA 12.172834 NA
## [5,] 6.281698 NA 5.419539 NA 5.469235 NA

Note that we do a match to make sure that the values and the platform information are in the same order.
Finally, to make the ExpressionSet object:

require(Biobase)
# go through the necessary steps to make a compliant ExpressionSet
rownames(data.matrix) <- probesets
colnames(data.matrix) <- names(GSMList(gse))
pdata <- data.frame(samples=names(GSMList(gse)))
rownames(pdata) <- names(GSMList(gse))
pheno <- as(pdata,"AnnotatedDataFrame")
eset2 <- new('ExpressionSet',exprs=data.matrix,phenoData=pheno)
eset2

## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 22283 features, 34 samples
## element names: exprs
## protocolData: none
## phenoData
## sampleNames: GSM11805 GSM11810 ... GSM12448 (34 total)
## varLabels: samples
## varMetadata: labelDescription
## featureData: none
## experimentData: use 'experimentData(object)'
## Annotation:

So, using a combination of lapply on the GSMList, one can extract as many columns of interest as necessary
to build the data structure of choice. Because the GSM data from the GEO website are fully downloaded
and included in the GSE object, one can extract foreground and background as well as quality for two-channel
arrays, for example. Getting array annotation is also a bit more complicated, but by replacing “platform” in
the lapply call to get platform information for each array, one can get other information associated with each
array.

Accessing Raw Data from GEO

NCBI GEO accepts (but has not always required) raw data such as .CEL files, .CDF files, images, etc.
Sometimes, it is useful to get quick access to such data. A single function, getGEOSuppFiles, can take as an
argument a GEO accession and will download all the raw data associate with that accession. By default, the
function will create a directory in the current working directory to store the raw data for the chosen GEO
accession. Combining a simple sapply statement or other loop structure with getGEOSuppFiles makes for a
very simple way to get gobs of raw data quickly and easily without needing to know the specifics of GEO raw
data URLs.

Use Cases

GEOquery can be quite powerful for gathering a lot of data quickly. A few examples can be useful to show
how this might be done for data mining purposes.

12



Getting all Series Records for a Given Platform

For data mining purposes, it is sometimes useful to be able to pull all the GSE records for a given platform.
GEOquery makes this very easy, but a little bit of knowledge of the GPL record is necessary to get started.
The GPL record contains both the GSE and GSM accessions that reference it. Some code is useful to illustrate
the point:

gpl97 <- getGEO('GPL97')
Meta(gpl97)$title

## [1] "[HG-U133B] Affymetrix Human Genome U133B Array"

head(Meta(gpl97)$series_id)

## [1] "GSE362" "GSE473" "GSE620" "GSE674" "GSE781" "GSE907"

length(Meta(gpl97)$series_id)

## [1] 151

head(Meta(gpl97)$sample_id)

## [1] "GSM3922" "GSM3924" "GSM3926" "GSM3928" "GSM3930" "GSM3932"

length(Meta(gpl97)$sample_id)

## [1] 6213

The code above loads the GPL97 record into R. The Meta method extracts a list of header information from
the GPL record. The title gives the human name of the platform. The series_id gives a vector of series
ids. Note that there are 151 series associated with this platform and 6213 samples. Code like the following
could be used to download all the samples or series. I show only the first 5 samples as an example:

gsmids <- Meta(gpl97)$sample_id
gsmlist <- sapply(gsmids[1:5],getGEO)
names(gsmlist)

## [1] "GSM3922" "GSM3924" "GSM3926" "GSM3928" "GSM3930"

Conclusion

The GEOquery package provides a bridge to the vast array resources contained in the NCBI GEO repositories.
By maintaining the full richness of the GEO data rather than focusing on getting only the “numbers”, it is
possible to integrate GEO data into current Bioconductor data structures and to perform analyses on that
data quite quickly and easily. These tools will hopefully open GEO data more fully to the array community
at large.

13



Citing GEOquery

Please consider citing GEOquery if used in support of your own research:

citation("GEOquery")

##
## Please cite the following if utilizing the GEOquery software:
##
## Davis, S. and Meltzer, P. S. GEOquery: a bridge between the Gene
## Expression Omnibus (GEO) and BioConductor. Bioinformatics, 2007,
## 14, 1846-1847
##
## A BibTeX entry for LaTeX users is
##
## @Article{,
## author = {Sean Davis and Paul Meltzer},
## title = {GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor},
## journal = {Bioinformatics},
## year = {2007},
## volume = {14},
## pages = {1846--1847},
## }

Reporting problems or bugs

If you run into problems using GEOquery, the Bioconductor Support site is a good first place to ask for help.
If you are convinced that there is a bug in GEOquery (this is pretty unusual, but not unheard of), feel free to
submit an issue on the GEOquery github site or file a bug report directly from R (will open a new github
issue):

bug.report(package='GEOquery')

Session info

The following package and versions were used in the production of this vignette.

## R version 3.2.0 RC (2015-04-08 r68161)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows Server 2008 R2 x64 (build 7601) Service Pack 1
##
## locale:
## [1] LC_COLLATE=C
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] parallel stats graphics grDevices utils datasets methods

14

https://support.bioconductor.org/
https://github.com/seandavi/GEOquery


## [8] base
##
## other attached packages:
## [1] limma_3.24.0 GEOquery_2.34.0 Biobase_2.28.0
## [4] BiocGenerics_0.14.0 knitr_1.9
##
## loaded via a namespace (and not attached):
## [1] codetools_0.2-11 XML_3.98-1.1 digest_0.6.8 bitops_1.0-6
## [5] formatR_1.1 evaluate_0.6 rmarkdown_0.5.1 tools_3.2.0
## [9] stringr_0.6.2 RCurl_1.95-4.5 yaml_2.1.13 htmltools_0.2.6

15


	Overview of GEO
	Platforms
	Samples
	Series
	Datasets

	Getting Started using GEOquery
	GEOquery Data Structures
	The GDS, GSM, and GPL classes
	The GSE class

	Converting to BioConductor ExpressionSets and limma MALists
	Getting GSE Series Matrix files as an ExpressionSet
	Converting GDS to an ExpressionSet
	Converting GDS to an MAList
	Converting GSE to an ExpressionSet

	Accessing Raw Data from GEO
	Use Cases
	Getting all Series Records for a Given Platform

	Conclusion
	Citing GEOquery
	Reporting problems or bugs

	Session info

