
ExpressionView

Andreas Lüscher

April 16, 2015

Contents

1 Introduction 1

2 Loading the gene expression data 1

3 Find biclusters 2
3.1 Iterative Signature Algorithm (ISA) . 2
3.2 Algorithms of the Biclust package . 2
3.3 External clustering programs . 3

4 Order 3

5 Export 4

6 Visualize 4

7 Using ExpressionView with non-gene expression data 7

8 Session information 8

1 Introduction

Clustering genes according to their expression profiles is an important task in analyzing microarray
data. In this tutorial, we explain how to use ExpressionView, an R package designed to interactively
explore biclusters identified in gene expression data, in conjunction with the Iterative Signature Al-
gorithm (ISA) [1] and the biclustering methods available in the Biclust package [2].

2 Loading the gene expression data

The ExpressionView package requires the gene expression data to be available in the form of a Bio-
Conductor ExpressionSet. In this tutorial we will use the BioConductor sample data from a clini-
cal trial in acute lymphoblastic leukemia provided by the ALL package.

> library(ALL)

> library(hgu95av2.db)

> data(ALL)

The data set contains 128 samples and 12625 features.

1

3 Find biclusters

There are many biclustering algorithms described in the literature [3]. All of them aim to reduce
the complexity of the gene expression data by identifying suitable groups of genes and conditions
that are co-expressed. In this tutorial show how to use ExpressionView with some of the available
biclustering algorithms.

3.1 Iterative Signature Algorithm (ISA)

The ISA [1] for gene expression data is implemented in the eisa package:

> library(eisa)

To run the ISA for the given data set, simply call the ISA function on the ExpressionSet object:

> set.seed(5) # initialize random number generator to get always the same results

> modules <- ISA(ALL)

Depending on your computing resources, this should take roughly two minutes. If you do not want
to wait that long, you can shorten the calculation by selecting the thresholds for genes and condi-
tions:

> threshold.genes <- 2.7

> threshold.conditions <- 1.4

> set.seed(5)

> modules <- ISA(ALL, thr.gene=threshold.genes, thr.cond=threshold.conditions)

If you leave the thresholds undefined, as in the first example, the ISA runs with the default values,
i.e., thr.gene=c(2,2.5,3,3.5,4) and thr.cond=c(1,1.5,2,2.5,3). In both cases, the random
number generator is initialized manually using set.seed(5), to give reproducible results. The isa

function returns an ISAModules object. Typing its name returns a brief summary of the results:

> modules

An ISAModules instance.

Number of modules: 4

Number of features: 3375

Number of samples: 128

Gene threshold(s): 2.7

Conditions threshold(s): 1.4

This object can be directly used with the functions of the ExpressionView package. See Section 4
for details.

3.2 Algorithms of the Biclust package

The biclust package implements several biclustering algorithms in a unified framework. It uses the
Biclust class to store a set of biclusters. Let us use the Plaid Model Bicluster Algorithm [4] on the
ALL data set

> library(biclust)

> biclusters <- biclust(exprs(ALL), BCPlaid(), fit.model=~m+a+b, verbose=FALSE)

Biclust objects can be directly used with the ExpressionView functions. Alternatively, they can be
converted to ISAModules objects, using the standard as R function:

> as(biclusters, "ISAModules")

2

An ISAModules instance.

Number of modules: 6

Number of features: 12625

Number of samples: 128

Gene threshold(s):

Conditions threshold(s):

results an ISAModules object.

3.3 External clustering programs

Since the structure of biclustering results is independent of the applied method, it is straightforward
to import results obtained from external clustering programs and convert them to ISAModules. To
illustrate the conversion, let us consider the sample data and randomly assign the 12625 genes and
128 samples to 4 modules. The resulting modules can be described by two binary matrices

> modules.genes <- matrix(as.integer(runif(nrow(ALL) * length(modules)) > 0.8),

nrow=nrow(ALL))

> modules.conditions <- matrix(as.integer(runif(ncol(ALL) *

length(modules))>0.8),

nrow=ncol(ALL))

indicating if a given gene i is contained in module j if modules.genes[i,j]6=0. Using these matri-
ces, it is straightforward to create an ISAModules object:

> new("ISAModules",

genes=modules.genes, conditions=modules.conditions,

rundata=data.frame(), seeddata=data.frame())

An ISAModules instance.

Number of modules: 4

Number of features: 12625

Number of samples: 128

Gene threshold(s):

Conditions threshold(s):

4 Order

To present the tens of possibly overlapping biclusters in a visually appealing form, it is necessary to
reorder the rows and columns of the gene expression matrix in such a way that biclusters form con-
tiguous rectangles. Since for more than two mutually overlapping biclusters, it is in general impossi-
ble to find such an arrangement, one has to make concessions. In contrast methods that propose to
repeat rows and columns as necessary to achieve this goal [5], we prefer to optimize the arrangement
within the original data by maximizing the area of the largest contiguous biclusters.
The OrderEV function implemented in the ExpressionView package determines the optimal order
of the gene expression matrix for a given set of biclusters. It can be called with ISAModules or Bi-
clust objects as the first argument:

> library(ExpressionView)

> optimalorder <- OrderEV(modules)

The result is a list containing various mappings between the original data and the optimal arrange-
ment. Note that the genes and the samples can be ordered separately. Apart form reordering the full
gene expression matrix, the algorithm also determines the best arrangement of individual biclusters.
The mapping of the genes and the samples contained in bicluster i can be accessed by

3

> optimalorder$genes[i+1]

> optimalorder$samples[i+1]

The first elements of the lists contain the optimal ordering of the complete matrix. By default, the
OrderEV function runs for roughly one minute, this might not be sufficient to find an appropriate
order for data containing many overlapping biclusters. The status of the ordering is stored in

> optimalorder$status

$genes

[1] 1 1 1 1 1

$samples

[1] 1 1 1 1 1

If the status is set to 1, the algorithm has found the optimal solution. A 0 indicates that the the cal-
culation could not be terminated within the given timeframe. The OrderEV function accepts two ad-
ditional parameters to circumvent the problem of partial alignment: One can start the ordering from
a given initial configuration, i.e., the result of a previous arrangement by defining the initialorder ar-
gument

> optimalorderp <- OrderEV(modules, initialorder=optimalorder, maxtime=120)

and one can increase the time limit by specifying maxtime. Note that the time is indicated in sec-
onds and cannot be smaller than 1.

5 Export

The ExportEV function allows the user to combine the available data and export it to an XML file
that can be read by the Flash applet:

> ExportEV(modules, ALL, optimalorder, filename="file.evf")

The function gathers the data contained in the ExpressionSet ALL, orders it according to the op-
timal arrangement optimalorder and adds the biclusters defined in modules. The output is an un-
compressed XML file that can be opened with any text viewer. We have chosen to use the extension
.evf (for ExpressionView file) for the data files. This extension is associated with the stand-alone
version of the viewer, so that one can simply double-click on such a file to launch the program and
load the data. The file association is the reason why we do not use the .xml extension. A descrip-
tion of the XML layout can be found on the ExpressionView website at http://www.unil.ch/cbg/
ExpressionView. Before exporting the data, the ExportEV function automatically calculates GO [6]
and KEGG [7] enrichments for the given biclusters.

6 Visualize

The ExpressionView Flash applet can be launched from the R environment:

> LaunchEV()

Video tutorials describing how to use the applet can be found on the ExpressionView website at
http://www.unil.ch/cbg/ExpressionView. The screenshot shown in Fig. 1 and the description
below illustrate the main features of the applet:

a Opens an ExpressionView data file. Note that before opening a new data file, you should restart
the applet, i.e., refresh your browser window.

4

http://www.unil.ch/cbg/ExpressionView
http://www.unil.ch/cbg/ExpressionView
http://www.unil.ch/cbg/ExpressionView

(a
)

(b
)

(c
)

(d
)

(e
)

(f)
(g
)
(h
)

(i)
(j)

(k
)

(l)
(m
)

(o
)

(r)
(s
)

(n
)

(p
)

(q
)

(t) (u
)

(v
)

(w
)

(x
)

(y
)

(z
)

(u
1)

(u
2)

Figure 1: Screenshot of the ExpressionView Flash applet.

5

b Exports the current view to a pdf file. The file also includes the title (o) of the gene expression
data.

c Exports the data of the currently viewed module (=bicluster) to a CSV file, that can be opened as
a spreadsheet.

d In inspect mode, you can use the mouse to explore the gene expression data. The information
about the data under the mouse pointer is shown in the Info Panel (t).

e, f Zoom and pan modes allow you to restrict the view to a particular part of the gene expression
data.

e In zoom mode, you can also use keyboard shortcuts: a to auto-zoom onto the modules and e to
see the whole data. In addition to the simple zoom-in feature, you can also use the mouse to
select the rectangular area you want to have a closer look at.

f Pan mode.

g, h, i, j Module highlighting and viewing. It is in general impossible to present mutually overlap-
ping biclusters as single rectangles. They are made up of a collection of rectangles. The order-
ing algorithm used in the R package realigns the gene expression matrix in a way that maxi-
mizes the total area of the largest rectangle in every bicluster. The outlines of these parts are
drawn in a slightly brighter color than the background, making them easily recognizable.

g, h Modules are highlighted as the user moves the mouse over the gene expression data. The two
check boxes allow you to choose between highlighting all the parts of a module (Filling) or al-
ternatively only the largest rectangle (Outline). You can also turn it off completely. For data
sets with many modules, it can be helpful to restrict highlighting to Outline.

i, j Similar to the highlighting, these two check boxes allow you to show either all the parts of the
modules (Filling) or only the largest rectangles (Outline). By shift-clicking one of the check-
boxes you can switch between showing only the modules or only the gene expression data.

k Sets the visibility of the modules layer. Moving the slider to the left fades out the gene expression
data, thus focusing on the Biclusters, while towards the opposite direction, the gene expression
data moves to the foreground.

l Realigns the windows at their initial positions.

m Puts the program in fullscreen mode. Note that due to security reasons, it is impossible to enter
text in this mode. On Mac OS X, a bug in Flash player prevents you from exporting data in
fullscreen mode.

n Opens the ExpressionView website, from where you can download sample files and tutorials.

o Description and dimensions of the data set.

p Modules navigator. The Global tab is always available and shows the complete gene expression
data. Additional tabs appear as you open individual modules. To close a module, simply move
the mouse over the tab and click the close button that appears.

q, r, s Selected genes, samples and modules. The highlighting reflects the selection in the tables
(w). The selection is maintained when switching tabs (p).

q Selected genes (=probes).

r Selected samples (=conditions).

6

s Selected modules (=biclusters).

t Info panel showing the data associated with the current mouse position. The GO and KEGG list
contain the five most significant categories and pathways associated with the modules under
the mouse pointer.

u Lists the selected genes, samples and modules, together with the intersecting modules.

u1 Opens intersecting modules.

u2 Clears the selection.

v Lists the selected GO categories and KEGG pathways

w List navigator. Note that depending on the view (p), the lists only show genes and samples con-
tained in the currently viewed module. Modules can also be opened by double-clicking on the
corresponding row. The Experiment tab contains a brief description of the data.

x Searches the tables for a given expression and restricts the view to the matching entries. The
search function uses Perl-style regular expressions. By default, the search functions is ap-
plied to the whole table. To restrict it to a particular column, shift-click the corresponding col-
umn header.

z Select a column header to sort the entries according to that column. Shift-click to restrict the
search function to that column.

7 Using ExpressionView with non-gene expression data

While ExpressionView is designed to work with gene expression data available in the form of a Bio-

conductor ExpressionSet, it can also be used to visualize other data. Let us for instance use in-
silico data generated by the isa package with dimensions 50 × 500 containing 10 overlapping mod-
ules:

> library(ExpressionView)

> # generate in-silico data with dimensions m x n

> # containing M overlapping modules

> # and add some noise

> m <- 50

> n <- 500

> M <- 10

> data <- isa.in.silico(num.rows=m, num.cols=n,

num.fact=M, noise=0.1, overlap.row=5)[[1]]

> modules <- isa(data)

The ExportEV uses the named list provided by the description variable to label the data. First, let
us annotate the rows and columns of the data set

> rownames(data) <- paste("row", seq_len(nrow(data)))

> colnames(data) <- paste("column", seq_len(ncol(data)))

Next, we assign the meta data associated with the rows of the data matrix. In this example we use 5
tags labelled “row tag”:

> rowdata <- outer(1:nrow(data), 1:5, function(x, y) {

paste("row description (", x, ", ", y, ")", sep="")

})

> rownames(rowdata) <- rownames(data)

> colnames(rowdata) <- paste("row tag", seq_len(ncol(rowdata)))

7

And similarly for the columns, using 10 “column tags”:

> coldata <- outer(1:ncol(data), 1:10, function(x, y) {

paste("column description (", x, ", ", y, ")", sep="")

})

> rownames(coldata) <- colnames(data)

> colnames(coldata) <- paste("column tag", seq_len(ncol(coldata)))

To finish the description, we add some general information and merge it with the above tables to get
a single named list:

> description <- list(

experiment=list(

title="Title",

xaxislabel="x-Axis Label",

yaxislabel="y-Axis Label",

name="Author",

lab="Address",

abstract="Abstract",

url="URL",

annotation="Annotation",

organism="Organism"),

coldata=coldata,

rowdata=rowdata

)

When dealing with gene expression data, the xaxislabel is equal to “genes” and the yaxislabel is
“samples”. Finally, we export the data set to an ExpressionView file:

> ExportEV(modules, data, filename="file.evf",

description=description)

Simply load this file with the Flash applet and check where the various labels appear.

8 Session information

The version number of R and packages loaded for generating this vignette were:

� R version 3.2.0 RC (2015-04-08 r68161), x86_64-w64-mingw32

� Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,
LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

� Base packages: base, datasets, grDevices, graphics, grid, methods, parallel, stats, stats4, utils

� Other packages: ALL 1.9.1, AnnotationDbi 1.30.0, Biobase 2.28.0, BiocGenerics 0.14.0,
DBI 0.3.1, ExpressionView 1.20.0, GO.db 3.1.2, GenomeInfoDb 1.4.0, IRanges 2.2.0,
KEGG.db 3.1.2, MASS 7.3-40, RSQLite 1.0.0, S4Vectors 0.6.0, biclust 1.1.0, bitops 1.0-6,
caTools 1.17.1, colorspace 1.2-6, eisa 1.20.0, hgu95av2.db 3.1.2, isa2 0.3.4, lattice 0.20-31,
org.Hs.eg.db 3.1.2

� Loaded via a namespace (and not attached): Category 2.34.0, GSEABase 1.30.0, Matrix 1.2-0,
RBGL 1.44.0, XML 3.98-1.1, annotate 1.46.0, flexclust 1.3-4, genefilter 1.50.0, graph 1.46.0,
modeltools 0.2-21, splines 3.2.0, survival 2.38-1, tools 3.2.0, xtable 1.7-4

8

References

[1] Sven Bergmann, Jan Ihmels, and Naama Barkai. Iterative signature algorithm for the analysis of
large-scale gene expression data. Physical Review E, 67:031902, 2003.

[2] Sebastian Kaiser and Friedrich Leisch. A toolbox for bicluster analysis in R. Technical Report
028, Department of Statistics, University of Munich, 2008.

[3] S.C. Madeira and A.L. Oliveira. Biclustering algorithms for biological data analysis: a survey.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1:24–45, 2004.

[4] Heather Turner, Trevor Baileya, and Wojtek Krzanowski. Improved biclustering of microarray
data demonstrated through systematic performance tests. Computational Statistics & Data Anal-
ysis, 48:235–254, 2004.

[5] Gregory Grothaus, Adeel Mufti, and TM Murali. Automatic layout and visualization of biclus-
ters. Algorithms for Molecular Biology, 1:15, 2006.

[6] Michael Ashburner, Catherine A. Ball, Judith A. Blake, David Botstein, Heather Butler,
J. Michael Cherry, Allan P. Davis, Kara Dolinski, Selina S. Dwight, Janan T. Eppig, Midori A.
Harris, David P. Hill, Laurie Issel-Tarver, Andrew Kasarskis, Suzanna Lewis, John C. Matese,
Joel E. Richardson, Martin Ringwald, Gerald M. Rubin, and Gavin Sherlock. Gene ontology:
tool for the unification of biology. Nature Genetics, 25:25 – 29, 2000.

[7] Minoru Kanehisa, Susumu Goto, Shuichi Kawashima, Yasushi Okuno, and Masahiro Hattori.
The KEGG resource for deciphering the genome. Nucleic Acids Research, 32:D277–D280, 2004.

9

	Introduction
	Loading the gene expression data
	Find biclusters
	Iterative Signature Algorithm (ISA)
	Algorithms of the Biclust package
	External clustering programs

	Order
	Export
	Visualize
	Using ExpressionView with non-gene expression data
	Session information

