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1 Introduction

This document offers an introduction and overview of the R Bioconductor package DiffBind , which provides functions
for processing ChIP-Seq data enriched for genomic loci where specific protein/DNA binding occurs, including peak
sets identified by ChIP-Seq peak callers and aligned sequence read datasets. It is designed to work with multiple
peak sets simultaneously, representing different ChIP experiments (antibodies, transcription factor and/or histone marks,
experimental conditions, replicates) as well as managing the results of multiple peak callers.

The primary emphasis of the package is on identifying sites that are differentially bound between two sample groups.
It includes functions to support the processing of peak sets, including overlapping and merging peak sets, counting
sequencing reads overlapping intervals in peak sets, and identifying statistically significantly differentially bound sites
based on evidence of binding affinity (measured by differences in read densities). To this end it uses statistical routines
developed in an RNA-Seq context (primarily the Bioconductor packages edgeR and DESeq ). Additionally, the package
builds on Rgraphics routines to provide a set of standardized plots to aid in binding analysis.

This guide includes a brief overview of the processing flow, followed by three sections of examples: the first focusing
on the core task of obtaining differentially bound sites based on affinity data, the second working through the main
plotting routines, and the third revisiting occupancy data (peak calls) in more detail, as well as comparing the results of
an occupancy-based analysis with an affinity-based one. Finally, some technical aspects of the how these analyses are
accomplished are detailed.

2 Processing overview

DiffBind works primarily with peaksets, which are sets of genomic intervals representing candidate protein binding sites.
Each interval consists of a chromosome, a start and end position, and usually a score of some type indicating confidence
in, or strength of, the peak. Associated with each peakset are metadata relating to the experiment from which the
peakset was derived. Additionally, files containing mapped sequencing reads (BAM//BED) can be associated with each
peakset (one for the ChIP data, and optionally another representing a control dataset).

Generally, processing data with DiffBind involves five phases:

1. Reading in peaksets: The first step is to read in a set of peaksets and associated metadata. Peaksets are
derived either from ChIP-Seq peak callers, such as MACS ([1]), or using some other criterion (e.g. all the promoter
regions in a genome). The easiest way to read in peaksets is using a comma-separated value (csv) sample sheet
with one line for each peakset. (Spreadsheets in Excel® format, with a .xls or .xlsx suffix, are also accepted.) A
single experiment can have more than one associated peakset, e.g. if multiple peak callers are used for comparison
purposes, and hence have more than one line in the sample sheet. Once the peaksets are read in, a merging function
finds all overlapping peaks and derives a single set of unique genomic intervals covering all the supplied peaks.

2. Occupancy analysis: Peaksets, especially those generated by peak callers, provide an insight into the potential
occupancy of the protein being ChIPed for at specific genomic loci. After the peaksets have been loaded, it can be
useful to perform some exploratory plotting to determine how these occupancy maps agree with each other, e.g.
between experimental replicates (re-doing the ChIP under the same conditions), between different peak callers on the
same experiment, and within groups of samples representing a common experimental condition. DiffBind provides
functions to enable overlaps to be examined, as well as functions to determine how well similar samples cluster
together. Beyond quality control, the product of an occupancy analysis may be a consensus peakset, representing
an overall set of candidate binding sites to be used in further analysis.

3. Counting reads: Once a consensus peakset has been derived, DiffBind can use the supplied sequence read files
to count how many reads overlap each interval for each unique sample. The result of this is a binding affinity
matrix containing a (normalized) read count for each sample at every potential binding site. With this matrix, the
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samples can be re-clustered using affinity, rather than occupancy, data. The binding affinity matrix is used for QC
plotting as well as for subsequent differential analysis.

4. Differential binding affinity analysis: The core functionality of DiffBind is the differential binding affin-
ity analysis, which enables binding sites to be identified that are statistically significantly differentially bound between
sample groups. To accomplish this, first a contrast (or contrasts) is established, dividing the samples into groups
to be compared. Next the core analysis routines are executed, by default using edgeR . This will assign a p-value
and FDR to each candidate binding site indicating the significance of their being differentially bound.

5. Plotting and reporting: Once one or more contrasts have been run, DiffBind provides a number of functions
for reporting and plotting the results. MA plots give an overview of the results of the analysis, while correlation
heatmaps and PCA plots show how the groups cluster based on differentially bound sites. Boxplots show the
distribution of reads within differentially bound sites corresponding to whether they gain or lose affinity between the
two sample groups. A reporting mechanism enables differentially bound sites to be extracted for further processing,
such as annotation and/or pathway analysis.

3 Example: obtaining differentially bound sites

This section offers a quick example of how to use DiffBind to identify significantly differentially bound sites using affinity
(read count) data.

The dataset for this example consists of ChIPs against the transcription factor ERa using five breast cancer cell lines ([2]).
Three of these cell lines are responsive to tamoxifen, while two others are resistant to tamoxifen treatment. There are
at least two replicates for each of the cell lines, with one cell line having three replicates, for a total of eleven sequenced
libraries. Note that this experiment includes two types of MCF7 cells: the regular tamoxifen responsive line as well as
MCF7 cells specially treated with tamoxifen until a tamoxifen resistant cell line is obtained. For each sample, we have
one peakset originally derived using the MACS peak caller ([1]), for a total of eleven peaksets. Note that to save space in
the package, only data for chromosome 18 is used. The metadata and peak data are available in the extra subdirectory
of the DiffBind package directory; you can make this your working directory by entering:

> library(DiffBind)

> setwd(system.file("extra", package="DiffBind"))

Obtaining the sites significantly differentially bound (DB) between the samples that respond to tamoxifen and those that
are resistant can be done in a five-step script:

> print(savewd)

> tamoxifen = dba(sampleSheet="tamoxifen.csv")

> tamoxifen = dba.count(tamoxifen)

> tamoxifen = dba.contrast(tamoxifen, categories=DBA_CONDITION)

> tamoxifen = dba.analyze(tamoxifen)

> tamoxifen.DB = dba.report(tamoxifen)

The following subsections describe these steps in more detail

3.1 Reading in the peaksets

The easiest way to set up an experiment to analyze is with a sample sheet. The sample sheet can be a dataframe, or it
can be read directly from a csv file. Here is the example sample sheet read into a dataframe form a csv file:

> samples = read.csv(file.path(system.file("extra", package="DiffBind"),

+ "tamoxifen.csv"))

> samples

SampleID Tissue Factor Condition Treatment Replicate bamReads

1 BT4741 BT474 ER Resistant Full-Media 1 reads/Chr18_BT474_ER_1.bam

2 BT4742 BT474 ER Resistant Full-Media 2 reads/Chr18_BT474_ER_2.bam

http://bioconductor.org/packages/release/bioc/html/DiffBind.html
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3 MCF71 MCF7 ER Responsive Full-Media 1 reads/Chr18_MCF7_ER_1.bam

4 MCF72 MCF7 ER Responsive Full-Media 2 reads/Chr18_MCF7_ER_2.bam

5 MCF73 MCF7 ER Responsive Full-Media 3 reads/Chr18_MCF7_ER_3.bam

6 T47D1 T47D ER Responsive Full-Media 1 reads/Chr18_T47D_ER_1.bam

7 T47D2 T47D ER Responsive Full-Media 2 reads/Chr18_T47D_ER_2.bam

8 MCF7r1 MCF7 ER Resistant Full-Media 1 reads/Chr18_TAMR_ER_1.bam

9 MCF7r2 MCF7 ER Resistant Full-Media 2 reads/TAMR_ER_2.bam

10 ZR751 ZR75 ER Responsive Full-Media 1 reads/Chr18_ZR75_ER_1.bam

11 ZR752 ZR75 ER Responsive Full-Media 2 reads/Chr18_ZR75_ER_2.bam

ControlID bamControl Peaks PeakCaller

1 BT474c reads/Chr18_BT474_input.bam peaks/BT474_ER_1.bed.gz raw

2 BT474c reads/Chr18_BT474_input.bam peaks/BT474_ER_2.bed.gz raw

3 MCF7c reads/Chr18_MCF7_input.bam peaks/MCF7_ER_1.bed.gz raw

4 MCF7c reads/Chr18_MCF7_input.bam peaks/MCF7_ER_2.bed.gz raw

5 MCF7c reads/Chr18_MCF7_input.bam peaks/MCF7_ER_3.bed.gz raw

6 T47Dc reads/T47D_input.bam peaks/T47D_ER_1.bed.gz raw

7 T47Dc reads/T47D_input.bam peaks/T47D_ER_2.bed.gz raw

8 TAMRc reads/TAMR_input.bam peaks/TAMR_ER_1.bed.gz raw

9 TAMRc reads/TAMR_input.bam peaks/TAMR_ER_2.bed.gz raw

10 ZR75c reads/ZR75_input.bam peaks/ZR75_ER_1.bed.gz raw

11 ZR75c reads/ZR75_input.bam peaks/ZR75_ER_2.bed.gz raw

The peaksets are read in using the following DiffBind function:

> tamoxifen = dba(sampleSheet="tamoxifen.csv")

The result is a DBA object; the metadata associated with this object can be displayed simply as follows:

> tamoxifen

11 Samples, 2602 sites in matrix (3557 total):

ID Tissue Factor Condition Treatment Replicate Caller Intervals

1 BT4741 BT474 ER Resistant Full-Media 1 raw 1084

2 BT4742 BT474 ER Resistant Full-Media 2 raw 1115

3 MCF71 MCF7 ER Responsive Full-Media 1 raw 1513

4 MCF72 MCF7 ER Responsive Full-Media 2 raw 1037

5 MCF73 MCF7 ER Responsive Full-Media 3 raw 1372

6 T47D1 T47D ER Responsive Full-Media 1 raw 509

7 T47D2 T47D ER Responsive Full-Media 2 raw 347

8 MCF7r1 MCF7 ER Resistant Full-Media 1 raw 1148

9 MCF7r2 MCF7 ER Resistant Full-Media 2 raw 933

10 ZR751 ZR75 ER Responsive Full-Media 1 raw 2111

11 ZR752 ZR75 ER Responsive Full-Media 2 raw 1975

This shows how many peaks are in each peakset, as well as (in the first line) total number of unique peaks after merging
overlapping ones (3557) and the default binding matrix of 11 samples by the 2602 sites that overlap in at least two of
the samples. This object is available for loading using data(tamoxifen_peaks).

Using only this peak caller data, a correlation heatmap can be generated which gives an initial clustering of the samples
using the cross-correlations of each row of the binding matrix:

> plot(tamoxifen)

The resulting plot (Figure 1) shows that while the replicates for each cell line cluster together appropriately, the cell
lines do not cluster into groups corresponding to those that are responsive (MCF7, T47D, and ZR75) vs. those resistant
(BT474 and MCF7r) to tamoxifen treatment. It also shows that the two most highly correlated cell lines are the two
MCF7-based ones, even though they respond differently to tamoxifen treatment.

http://bioconductor.org/packages/release/bioc/html/DiffBind.html
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Figure 1: Correlation heatmap, using occupancy (peak caller score) data. Generated by: plot(tamoxifen); can
also be generated by: dba.plotHeatmap(tamoxifen).

3.2 Counting reads

The next step is to calculate a binding matrix with scores based on read counts for every sample (affinity scores), rather
than confidence scores for only those peaks called in a specific sample (occupancy scores). These reads are obtained
using the dba.count function:1

> tamoxifen = dba.count(tamoxifen, minOverlap=3)

> plot(tamoxifen)

If you do not have the raw reads available to you, this object is available loading using data(tamoxifen_counts).
The dba.count call plots a new correlation heatmap based on the affinity scores, seen in Figure 2. While this shows
overall higher correlation levels (evidenced by the shift in the scale), and a slightly different clustering, responsiveness to
tamoxifen treatment does not appear to form a basis for clustering when using all of the affinity scores. (Note that the
clustering can change based on what scoring metric is used; see Section 4.4 for more details).

3.3 Establishing a contrast

Before running the differential analysis, we need to tell DiffBind which cell lines fall in which groups. This is done using
the dba.contrast function, as follows:

1Note that due to space limitations the reads are not shipped with the package. See Section 8 for options to obtains the full dataset.
Alternatively, you can get the result of the dba.count call by loading the supplied Robject by invoking data(tamoxifen_counts)

http://bioconductor.org/packages/release/bioc/html/DiffBind.html
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Figure 2: Correlation heatmap, using affinity (read count) data. Generated by: tamoxifen =

dba.count(tamoxifen); can also be generated by: dba.plotHeatmap(tamoxifen)

> tamoxifen = dba.contrast(tamoxifen, categories=DBA_CONDITION)

The uses the Condition metadata (Responsive vs. Resistant) to set up a a contrast with 4 samples in the Resistant group
and 7 samples in the Responsive group.2

3.4 Performing the differential analysis

The main differential analysis function is invoked as follows:

> tamoxifen = dba.analyze(tamoxifen)

This will run an edgeR analysis (see subsequent section discussing the technical details of the edgeR analysis) using the
default binding matrix. Displaying the resultant DBA object shows that 315 of the 1772 sites are identified as being
significantly differentially bound (DB) using the default threshold of FDR <= 0.1

> tamoxifen

11 Samples, 1772 sites in matrix:

ID Tissue Factor Condition Treatment Replicate Caller Intervals FRiP

1 BT4741 BT474 ER Resistant Full-Media 1 counts 1772 0.20

2 BT4742 BT474 ER Resistant Full-Media 2 counts 1772 0.19

2This step is actually optional: if the main analysis function dba.analyze is invoked with no contrasts established, DiffBind will set up a
default set of contrasts automatically, which will include the one we are interested in.

http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
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Figure 3: Correlation heatmap, using only significantly differentially bound sites. Generated by: tamoxifen =

dba.analyze(tamoxifen); can also be generated by: dba.plotHeatmap(tamoxifen, contrast=1)

3 MCF71 MCF7 ER Responsive Full-Media 1 counts 1772 0.36

4 MCF72 MCF7 ER Responsive Full-Media 2 counts 1772 0.22

5 MCF73 MCF7 ER Responsive Full-Media 3 counts 1772 0.29

6 T47D1 T47D ER Responsive Full-Media 1 counts 1772 0.14

7 T47D2 T47D ER Responsive Full-Media 2 counts 1772 0.09

8 MCF7r1 MCF7 ER Resistant Full-Media 1 counts 1772 0.25

9 MCF7r2 MCF7 ER Resistant Full-Media 2 counts 1772 0.16

10 ZR751 ZR75 ER Responsive Full-Media 1 counts 1772 0.36

11 ZR752 ZR75 ER Responsive Full-Media 2 counts 1772 0.25

1 Contrast:

Group1 Members1 Group2 Members2 DB.edgeR

1 Resistant 4 Responsive 7 315

By default, dba.analyze plots a correlation heatmap if it finds any significantly differentially bound sites, shown in
Figure 3. Using only the differentially bound sites, we now see that the four tamoxifen resistant samples (representing
two cell lines) cluster together, although the tamoxifen-responsive MCF7 replicates cluster closer to them than to the
other tamoxifen responsive samples. Comparing Figure 2, which uses all 1772 consensus binding sites, with Figure 3,
which uses only the 315 differentially bound sites, demonstrates how the differential binding analysis isolates sites that
help distinguish between the Resistant and Responsive sample groups.

http://bioconductor.org/packages/release/bioc/html/DiffBind.html
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3.5 Retrieving the differentially bound sites

The final step is to retrieve the differentially bound sites as follows:

> tamoxifen.DB = dba.report(tamoxifen)

These are returned as a GRanges object, appropriate for downstream processing:

> tamoxifen.DB

GRanges object with 315 ranges and 6 metadata columns:

seqnames ranges strand | Conc Conc_Resistant

<Rle> <IRanges> <Rle> | <numeric> <numeric>

542 chr18 [21575222, 21575958] * | 5.41882941705405 6.74405476762194

846 chr18 [34597337, 34598560] * | 5.72960457592668 0.554733022538325

1720 chr18 [74368318, 74370013] * | 7.84020951006764 3.43643541499018

1712 chr18 [74204609, 74206140] * | 4.74371432448878 0.768053981486635

9 chr18 [ 394600, 396513] * | 6.81002702497103 8.05692743167912

... ... ... ... ... ... ...

218 chr18 [ 9474721, 9475890] * | 6.08724127701126 6.88226161684796

1362 chr18 [56553408, 56555188] * | 5.7069612339336 3.22794635540232

808 chr18 [33095610, 33096342] * | 4.18108476839612 2.69162458657477

284 chr18 [10444328, 10445312] * | 6.37674984648163 7.24771918178139

1449 chr18 [59998626, 59999246] * | 3.0230674329385 1.25421878295143

Conc_Responsive Fold p.value FDR

<numeric> <numeric> <numeric> <numeric>

542 2.57808071546269 4.16597405215925 6.56265278608929e-09 8.90874613267257e-06

846 6.36708488424914 -5.81235186171082 1.00550182084341e-08 8.90874613267257e-06

1720 8.46728671873663 -5.03085130374645 1.29249709538046e-07 7.07646786274738e-05

1712 5.36205320386108 -4.59399922237445 1.59739680874659e-07 7.07646786274738e-05

9 4.59412268694525 3.46280474473387 2.50938331889786e-07 7.67368821887877e-05

... ... ... ... ...

218 5.30122132735436 1.5810402894936 0.0171717655066745 0.0978404131119847

1362 6.26173005705313 -3.03378370165081 0.0173120091584484 0.0983233340665721

808 4.63306514204358 -1.94144055546882 0.0173897233854594 0.0984491688148051

284 5.45083824009617 1.79688094168521 0.0174960784436603 0.0987358312170891

1449 3.51235032687037 -2.25813154391894 0.0175723243849026 0.0988512978096741

-------

seqinfo: 1 sequence from an unspecified genome; no seqlengths

The value columns show the mean read concentration over all the samples (the default calculation uses log2 normalized
ChIP read counts with control read counts subtracted) and the mean concentration over the first (Resistant) group
and second (Responsive) group. The Fold column shows the difference in mean concentrations between the two groups
(Conc Resistant - Conc Responsive), with a positive value indicating increased binding affinity in the Resistant group
and a negative value indicating increased binding affinity in the Responsive group. The final two columns give confidence
measures for identifying these sites as differentially bound, with a raw p-value and a multiple testing corrected FDR in
the final column.

4 Example: plotting

Besides the correlation heatmaps automatically generated by the core functions, a number of other plots are available
using the affinity data. This sections covers Venn diagrams, MA plots, PCA plots, Boxplots, and Heatmaps.

http://bioconductor.org/packages/release/bioc/html/DiffBind.html
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Figure 4: MA plot of Resistant-Responsive contrast. Sites identified as significantly differentially bound shown in
red. Generated by: dba.plotMA(tamoxifen)

4.1 Venn diagrams

Venn diagrams are useful for examining overlaps between peaksets, particularly when determining how best to derive
consensus peaksets for further analysis. Section 6.2, which discusses consensus peaksets, shows a number of Venn plots
in context, and the help page for dba.plotVenn has a number of additional examples.

4.2 MA plots

MA plots are a useful way to visualize the effect of normalization on data, as well as seeing which of the datapoints are
being identified as differentially bound. An MA plot can be obtained for the resistant-responsive contrast as follows:

> data(tamoxifen_analysis)

> dba.plotMA(tamoxifen)

The plot is shown in Figure 4. Each point represents a binding site, with points in red representing sites identified as
differentially bound. The plot shows how the differentially bound sites appear to have an absolute log fold difference of
at least 2. This same data can also be shown with the concentrations of each sample groups plotted against each other
plot using dba.plotMA(tamoxifen, bXY=TRUE).

4.3 PCA plots

While the correlation heatmaps already seen are good for showing clustering, plots based on principal components analysis
can be used to give a deeper insight into how samples are associated. A PCA plot corresponding to Figure 2, which
includes normalized read counts for all the binding sites, can be obtained as follows:

> dba.plotPCA(tamoxifen,DBA_TISSUE,label=DBA_CONDITION)

The resulting plot (Figure 5) shows the four Resistant samples (black) not separable from the Responsive samples (red)
in either the first (horizontal) or the second (vertical) components when looking at all the binding sites.

http://bioconductor.org/packages/release/bioc/html/DiffBind.html
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Figure 5: PCA plot using affinity data for all sites. Generated by:
dba.plotPCA(tamoxifen,DBA_TISSUE,label=DBA_CONDITION)

A PCA plot using only the differentially bound sites (corresponding to Figure 3), using an FDR threshold of 0.05, can be
drawn as follows:

> dba.plotPCA(tamoxifen, contrast=1,th=.05,label=DBA_TISSUE)

This plot (Figure 6) shows that the differential analysis identifies sites than can be used to separate the sample groups
along both the first and second components.

The dba.plotPCA function is customizable. For example, if you want to see where the replicates for each of the unique cell
lines lies, type dba.plotPCA(tamoxifen, attributes=c(DBA_TISSUE,DBA_CONDITION),label=DBA_REPLICATE. If
your installation of Rsupports 3D graphics using the rgl package, try dba.plotPCA(tamoxifen, b3D=T). Seeing the
first three principal components can be a useful exploratory exercise.

4.4 Boxplots

Boxplots provide a way to view how read distributions differ between classes of binding sites. Consider the example,
where the 315 differentially bound sites are identified. The MA plot (Figure 4) shows that these are not distributed
evenly between those that increase binding affinity in the Responsive group vs. those that increase binding affinity in the
Resistant groups. This can be seen quantitatively using the sites returned in the report:

> sum(tamoxifen.DB$Fold<0)

[1] 214

http://bioconductor.org/packages/release/bioc/html/DiffBind.html
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Figure 6: PCA plot using affinity data for only differentially bound sites. Generated by:
dba.plotPCA(tamoxifen,contrast=1,th=.05,label=DBA_TISSUE)

> sum(tamoxifen.DB$Fold>0)

[1] 101

But how are reads distributed amongst the different classes of differentially bound sites and sample groups? These data
can be more clearly seen using a boxplot:

> pvals = dba.plotBox(tamoxifen)

The default plot (Figure 7) shows in the first two boxes that amongst differentially bound sites overall, the Responsive
samples have a somewhat higher mean read concentration. The next two boxes show the distribution of reads in
differentially bound sites that exhibit increased affinity in the Responsive samples, while the final two boxes show the
distribution of reads in differentially bound sites that exhibit increased affinity in the Resistant samples.

dba.plotBox returns a matrix of p-values (computed using a two-sided Wilcoxon ‘Mann-Whitney’ test, paired where
appropriate) indicating which of these distributions are significantly different from another distribution.

> pvals

Resistant.DB Responsive.DB Resistant.DB+ Responsive.DB+ Resistant.DB-

Resistant.DB 1.000000e+00 1.016557e-22 1.490052e-09 4.064387e-20 3.424183e-23

Responsive.DB 1.016557e-22 1.000000e+00 1.315625e-62 1.247397e-03 1.309840e-18

Resistant.DB+ 1.490052e-09 1.315625e-62 1.000000e+00 7.340424e-37 1.784959e-43

Responsive.DB+ 4.064387e-20 1.247397e-03 7.340424e-37 1.000000e+00 9.776663e-12

Resistant.DB- 3.424183e-23 1.309840e-18 1.784959e-43 9.776663e-12 1.000000e+00

http://bioconductor.org/packages/release/bioc/html/DiffBind.html
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Figure 7: Box plots of read distributions for significantly differentially bound (DB) sites. Tamoxifen resistant
samples are shown in red, and responsive samples are shown in blue. Left two boxes show distribution of reads over all
DB sites in the Resistant and Responsive groups; middle two boxes show distributions of reads in DB sites that increase
in affinity in the Responsive group; last two boxes show distributions of reads in DB sites that increase in affinity in the
Resistant group. Generated by: dba.plotBox(tamoxifen)

Responsive.DB- 4.253785e-04 1.177624e-07 3.265915e-25 1.554982e-13 2.705328e-18

Responsive.DB-

Resistant.DB 4.253785e-04

Responsive.DB 1.177624e-07

Resistant.DB+ 3.265915e-25

Responsive.DB+ 1.554982e-13

Resistant.DB- 2.705328e-18

Responsive.DB- 1.000000e+00

The significance of the overall difference in distribution of concentrations amongst the differentially bound sites in the two
groups is shown to be p-value=1.016557e-22, while those between the Resistant and Responsive groups in the individual
cases (increased in Responsive or Resistant) have p-values computed as 7.340424e-37 and 2.705328e-18.

4.5 Heatmaps

DiffBind provides two types of heatmaps. This first, correlation heatmaps, we have already seen. For example, the
heatmap shown in Figure 2 can be generated as follows:

> corvals = dba.plotHeatmap(tamoxifen)

http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/DiffBind.html
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Figure 8: Binding affinity heatmap showing affinities for differentially bound sites. Samples cluster first by whether
they are responsive to tamoxifen treatment, then by cell line. Clusters of binding sites show distinct patterns of affinity
levels. Generated by: dba.plotHeatmap(tamoxifen, contrast=1, correlations=FALSE)

The effect of different scoring methods (normalization) can be examined in these plots by setting the score parameter to
a different value. The default value, DBA_SCORE_TMM_MINUS_FULL, uses the TMM normalization procedure from edgeR ,
with control reads subtracted first and using the full library size (total reads in library). Another scoring method is to
use RPKM fold (RPKM of the ChIP reads divided by RPKM of the control reads; a correlation heatmap for all the data
using this scoring method can be obtained by typing dba.plotHeatmap(tamoxifen, score=DBA_SCORE_RPKM_FOLD).

Another way to view the patterns of binding affinity directly in the differentially bound sites is via a binding affinity
heatmap. This can be plotted for the example case as follows:

> corvals = dba.plotHeatmap(tamoxifen, contrast=1, correlations=FALSE)

Figure 8 shows the affinities and clustering of the differentially bound sites (rows), as well as the sample clustering
(columns). This plot can be tweaked to get more contrast, for example by using row-scaling dba.plotHeatmap(tamoxifen,

contrast=1, correlations=FALSE, scale=row).

5 Example: differential binding analysis using a blocking factor

The previous example showed how to perform a differential binding analysis using a single factor with two values; that
is, finding the significantly differentially bound sites between two sets of samples. This section extends the example
by including a second factor, potentially with multiple values, that represents a confounding condition. Examples of
experiments where it is appropriate to use a blocking factor include ones where there are potential batch effects, with

http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
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samples from the two conditions prepared together, or a matched design (e.g. matched normal and tumor pairs, where
the primary factor of interest is to discover sites consistently differentially bound between normal and tumor samples. In
the current example, the confounding effect we want to control for is the presence of two sets of samples, one tamoxifen
responsive and one resistant, that are both derived from the same MCF7 cell line.

In the previous analysis, the two MCF7-derived cell lines tended to cluster together. While the differential binding analysis
was able to identify sites that could be used to separate the resistance from the responsive samples, the confounding
effect of the common ancestry could still be seen even when considering only the significantly differentially bound sites
(Figure 2).

Using the generalized linear modelling (GLM) functionality included in edgeR and DESeq , the confounding factor can
be explicitly modeled. This is done by specifying a blocking factor to dba.contrast. There are a number of ways to
specify this factor. If it is encapsulated in a piece of metadata (eg. DBA REPLICATE, or DBA TREATMENT etc.),
simply specifying the metadata field is sufficient. In the current case, there is no specific metadata field that captures
the factor we want to block (although an unused metadata field, such as DBA TREATMENT, could be used to specify
this factor). An alternate way of specifying the confounded samples is to use a mask:

> data(tamoxifen_counts)

> tamoxifen = dba.contrast(tamoxifen,categories=DBA_CONDITION,

+ block=tamoxifen$masks$MCF7)

Now when the analysis is run, it will be run using both the single-factor comparison as well as fitting a linear model with
the second, blocking factor, for comparison:

> tamoxifen = dba.analyze(tamoxifen)

> tamoxifen

11 Samples, 1772 sites in matrix:

ID Tissue Factor Condition Treatment Replicate Caller Intervals FRiP

1 BT4741 BT474 ER Resistant Full-Media 1 counts 1772 0.20

2 BT4742 BT474 ER Resistant Full-Media 2 counts 1772 0.19

3 MCF71 MCF7 ER Responsive Full-Media 1 counts 1772 0.36

4 MCF72 MCF7 ER Responsive Full-Media 2 counts 1772 0.22

5 MCF73 MCF7 ER Responsive Full-Media 3 counts 1772 0.29

6 T47D1 T47D ER Responsive Full-Media 1 counts 1772 0.14

7 T47D2 T47D ER Responsive Full-Media 2 counts 1772 0.09

8 MCF7r1 MCF7 ER Resistant Full-Media 1 counts 1772 0.25

9 MCF7r2 MCF7 ER Resistant Full-Media 2 counts 1772 0.16

10 ZR751 ZR75 ER Responsive Full-Media 1 counts 1772 0.36

11 ZR752 ZR75 ER Responsive Full-Media 2 counts 1772 0.25

1 Contrast:

Group1 Members1 Group2 Members2 Block1Val InBlock1 Block2Val InBlock2 DB.edgeR

1 Resistant 4 Responsive 7 true 5 false 6 315

DB.edgeR.block

1 523

This indicates that where the standard, single-factor edgeR analysis identifies 315 differentially bound sites, the analysis
using the blocking factor finds 523 such sites. An MA plot shows how the analysis has changed:

> dba.plotMA(tamoxifen,method=DBA_EDGER_BLOCK)

The resulting plot is shown in Figure 9. Comparing this to Figure 4, at least two differences can be observed. The
analysis has become more sensitive, with sites being identified as significantly differentially bound with lower magnitude
fold changes (as low as twofold, as this plot is on a log2 scale). But it is not merely lowering a fold threshold: some sites
with higher fold changes are no longer found to be significant. These were identified as significantly differentially bound
in the earlier analysis because the confounding factor was not being modeled.

Consider the resulting separation and clustering using the newly discovered differentially bound sites:

http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
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Figure 9: MA plot of Resistant-Responsive contrast, using MCF7 origin as a blocking factor. Sites identified as
significantly differentially bound shown in red. Generated by: dba.plotMA(tamoxifen, method=DBA_EDGER_BLOCK)

> dba.plotHeatmap(tamoxifen,contrast=1,method=DBA_EDGER_BLOCK,

+ attributes=c(DBA_TISSUE,DBA_CONDITION,DBA_REPLICATE))

> dba.plotPCA(tamoxifen,contrast=1,method=DBA_EDGER_BLOCK,

+ attributes=DBA_CONDITION,label=DBA_TISSUE)

Frequently, as more sites are included in these plots, the result is often worse clustering/separation along the grouping of
primary interest. As the correlations used for the heatmap and the count scores used for the PCA plots do not take the
blocking factor into account, the separation seen in these plots will not necessarily sharpen after completing a successful
block analysis. Compare the resulting correlation heatmap (Figure 10 to Figure 3). The PCA plot (Figure 11, compared
to Figure 6), shows less distance between the two sample groups along the first component, as more binding sites common
to the two MCF7 cell lines are able to be identified as being significantly differentially bound between the Resistant and
Responsive sample groups.

It is also interesting to compare the performance of edgeR with that of DESeq and DESeq2 on this dataset:

> tamoxifen = dba.analyze(tamoxifen,method=DBA_ALL_METHODS)

.

.

.

.

> tamoxifen

11 Samples, 1772 sites in matrix:

ID Tissue Factor Condition Treatment Replicate Caller Intervals FRiP

1 BT4741 BT474 ER Resistant Full-Media 1 counts 1772 0.20

2 BT4742 BT474 ER Resistant Full-Media 2 counts 1772 0.19

3 MCF71 MCF7 ER Responsive Full-Media 1 counts 1772 0.36

4 MCF72 MCF7 ER Responsive Full-Media 2 counts 1772 0.22

5 MCF73 MCF7 ER Responsive Full-Media 3 counts 1772 0.29

http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
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Figure 10: Correlation heatmap of using scores for significantly differentially bound sites for the Resistant-
Responsive contrast, using MCF7 origin as a blocking factor. Generated by: dba.plotHeatmap(tamoxifen,

contrast=1, method=DBA_EDGER_BLOCK, attributes=c(DBA_TISSUE,DBA_CONDITION,DBA_REPLICATE))

6 T47D1 T47D ER Responsive Full-Media 1 counts 1772 0.14

7 T47D2 T47D ER Responsive Full-Media 2 counts 1772 0.09

8 MCF7r1 MCF7 ER Resistant Full-Media 1 counts 1772 0.25

9 MCF7r2 MCF7 ER Resistant Full-Media 2 counts 1772 0.16

10 ZR751 ZR75 ER Responsive Full-Media 1 counts 1772 0.36

11 ZR752 ZR75 ER Responsive Full-Media 2 counts 1772 0.25

1 Contrast:

Group1 Members1 Group2 Members2 Block1Val InBlock1 Block2Val InBlock2 DB.edgeR

1 Resistant 4 Responsive 7 true 5 false 6 315

DB.edgeR.block DB.DESeq DB.DESeq.block DB.DESeq2 DB.DESeq2.block

1 523 104 562 395 578

DESeq has a much more conservative approach to the single factor analysis, identifying only 104 sites as differentially
bound, while DESeq2 identifies a similar number of sites as edgeR. When modelling the confounding factor, the greater
sensitivity results in many more sites being identified using all three packages. You can check this by looking at the
identified sites using dba.report, and performing MA, heatmap, and PCA plots.

We can also compare the sites identified using edgeR, DESeq, and DESeq2 . An easy way to do this is to use a special
feature of the dba.report function:

> tam.block = dba.report(tamoxifen,method=DBA_ALL_BLOCK,bDB=TRUE,bAll=TRUE)

http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
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Figure 11: Plot of first two principal components, using scores for significantly differen-
tially bound sites for the Resistant-Responsive contrast, using MCF7 origin as a block-
ing factor. Generated by: dba.plotPCA(tamoxifen,contrast=1,method=DBA_EDGER_BLOCK, at-

tributes=DBA_CONDITION,label=DBA_TISSUE)

> tam.block

3 Samples, 543 sites in matrix (683 total):

ID Tissue Factor Condition Treatment Intervals

1 Resistant_vs_Responsive All DB edgeR block 523

2 Resistant_vs_Responsive All DB DESeq block 562

3 Resistant_vs_Responsive All DB DESeq2 block 578

> dba.plotVenn(tam.block,1:3,label1="edgeR",label2="DESeq",label3="DESeq2")

The overlap is shown in Figure 12. Agreement is quite good, with DESeq2 identifying the fewest sites not identified by
at least one other method.

6 Example: occupancy analysis and overlaps

In this section, we look at the tamoxifen resistance ER-binding dataset in some more detail, showing what a pure
occupancy-based analysis would look like, and comparing it to the results obtained using the affinity data. For this we
will start by re-loading the peaksets:

> data(tamoxifen_peaks)

http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html


DiffBind : Differential binding analysis of ChIP-Seq peak data 18

Binding Site Overlaps

Resistant_vs_Responsive:DB:All:block

50 41

49

14

22 70

437

edgeR DESeq

DESeq2

Figure 12: Venn diagram showing overlap of differentially bound peaks identified using edgeR, DESeq, and DE-
Seq2 to do a multi-factor (blocking) analysis. Generated by plotting the result of: dba.plotVenn(tam.block,1:3,
label1="edgeR",label2="DESeq",label3="DESeq2")

6.1 Overlap rates

One reason to do an occupancy-based analysis is to determine what candidate sites should be used in a subsequent
affinity-based analysis. In the example so far, we took all sites that were identified in peaks in at least three of the eleven
peaksets, reducing the number of sites from 3794 overall to the 1772 sites used in the differential analysis. We could
have used a more stringent criterion, such as only taking sites identified in five or six of the peakset, or a less stringent
one, such as including all 3794 sites. In making the decision of what criteria to use many factors come into play, but
it helps to get an idea of the rates at which the peaksets overlap (for more details on how overlaps are determined, see
Section 7.2 on peak merging). A global overview can be obtained using the RATE mode of the dba.overlap function as
follows:

> olap.rate = dba.overlap(tamoxifen,mode=DBA_OLAP_RATE)

> olap.rate

[1] 3794 2844 1772 1387 1073 816 652 483 384 202 129

The returned data in olap.rate is a vector containing the number of peaks that appear in at least one, two, three, and
so on up to all eleven peaksets.

These values can be plotted to show the overlap rate drop-off curve:

> plot(olap.rate,type='b',ylab='# peaks', xlab='Overlap at least this many peaksets')

http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
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Figure 13: Overlap rate plot. Shows how the number of overlapping peaks decreases as the overlap criteria becomes
more stringent. X axis shows the number of peaksets in which the site is identified, while the Y axis shows the number
of overlapping sites. Generated by plotting the result of: dba.overlap(tamoxifen,mode=DBA_OLAP_RATE)

The rate plot is shown in Figure 13. These curves typically exhibit a roughly geometric drop-off, with the number of
overlapping sites halving as the overlap criterion become stricter by one site. When the drop-off is extremely steep, this
is an indication that the peaksets do not agree very well. For example, if there are replicates you expect to agree, there
may be a problem with the experiment. In the current example, peak agreement is high and the curve exhibits a better
than geometric drop-off.

6.2 Deriving consensus peaksets

When performing an overlap analysis, it is often the case that the overlap criteria are set stringently in order to lower
noise and drive down false positives. 3 The presence of a peak in multiple peaksets is an indication that it is a ”real”
binding site, in the sense of being identifiable in a repeatable manner. The use of biological replicates (performing the
ChIP multiple times), as in the tamoxifen dataset, can be used to guide derivation of a consensus peakset. Alternatively,
an inexpensive but less powerful way to help accomplish this is to use multiple peak callers for each ChIP dataset and
look for agreement between peak callers ([3]).

Consider for example the standard (tamoxifen responsive) MCF7 cell line, represented by three replicates in this dataset.
How well do the replicates agree on their peak calls? The overlap rate for just the positive MCF7 samples can be isolated
using a sample mask. A set of sample masks are automatically associated with a DBA object in the $masks field:

> names(tamoxifen$masks)

[1] "BT474" "MCF7" "T47D" "ZR75" "ER" "Resistant"

[7] "Responsive" "Full-Media" "bed" "Replicate.1" "Replicate.2" "Replicate.3"

[13] "All" "None"

Arbitrary masks can be generated using the dba.mask function, or simply by specifying a vector of peakset numbers.
In this case, a mask that isolates the MCF7 samples can be generated by combining to pre-defined masks (MCF7 and
Responsive) and passed into the dba.overlap function:

3It is less clear that limiting the potential binding sites in this way is appropriate when focusing on affinity data, as the differential binding
analysis method will identify only sites that are significantly differentially bound, even if operating on peaksets that include incorrectly identified
sites.

http://bioconductor.org/packages/release/bioc/html/DiffBind.html


DiffBind : Differential binding analysis of ChIP-Seq peak data 20

Binding Site Overlaps

359 47

159

43

230 57

885

MCF71 MCF72

MCF73

Figure 14: Venn diagram showing how the ER peak calls for three replicates of responsive MCF7 cell
line overlap. Generated by plotting the result of: dba.venn(tamoxifen,tamoxifen$masks$MCF7 & tamox-

ifen$masks$Responsive)

> dba.overlap(tamoxifen,tamoxifen$masks$MCF7 & tamoxifen$masks$Responsive,

+ mode=DBA_OLAP_RATE)

[1] 1780 1215 885

There are 885 peaks (out of 1780) identified in all three replicates. A finer grained view of the overlaps can be obtained
with the dba.plotVenn function:

> dba.plotVenn(tamoxifen, tamoxifen$masks$MCF7 & tamoxifen$masks$Responsive)

The resultant plot is shown as Figure 14. This plot shows the 885 consensus peaks identified as common to all replicates,
but further breaks down how the replicates relate to each other. The same can be done for each of the replicated cell line
experiments, and rather than applying a global cutoff (3 of 11), each cell line could be dealt with individually in deriving
a final peakset. A separate consensus peakset for each of the replicated sample types can be added to the DBA object
using dba.peakset:

> tamoxifen = dba.peakset(tamoxifen, consensus = c(DBA_TISSUE,DBA_CONDITION),

+ minOverlap=0.66)

> tamoxifen

16 Samples, 2844 sites in matrix (3794 total):

ID Tissue Factor Condition Treatment Replicate Caller Intervals

1 BT4741 BT474 ER Resistant Full-Media 1 bed 1080

2 BT4742 BT474 ER Resistant Full-Media 2 bed 1122
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3 MCF71 MCF7 ER Responsive Full-Media 1 bed 1556

4 MCF72 MCF7 ER Responsive Full-Media 2 bed 1046

5 MCF73 MCF7 ER Responsive Full-Media 3 bed 1339

6 T47D1 T47D ER Responsive Full-Media 1 bed 527

7 T47D2 T47D ER Responsive Full-Media 2 bed 373

8 MCF7r1 MCF7 ER Resistant Full-Media 1 bed 1438

9 MCF7r2 MCF7 ER Resistant Full-Media 2 bed 930

10 ZR751 ZR75 ER Responsive Full-Media 1 bed 2346

11 ZR752 ZR75 ER Responsive Full-Media 2 bed 2345

12 BT474:Resistant BT474 ER Resistant Full-Media 1-2 bed 896

13 MCF7:Responsive MCF7 ER Responsive Full-Media 1-2-3 bed 1215

14 T47D:Responsive T47D ER Responsive Full-Media 1-2 bed 318

15 MCF7:Resistant MCF7 ER Resistant Full-Media 1-2 bed 879

16 ZR75:Responsive ZR75 ER Responsive Full-Media 1-2 bed 1933

This adds a new consensus peakset for each set of samples that share the same Tissue and Condition values. The exact
effect could be obtained by calling tamoxifen = dba.peakset(tamoxifen, consensus = -DBA_REPLICATE) on the
original set of peaks; this tells DiffBind to generate a consensus peakset for every set of samples that have identical
metadata values except the Replicate number.

From this, a new DBA object can be generated consisting of only the five consensus peaksets (the $Consensus mask
filters peaksets previously formed using dba.peakset) :

> tamoxifen_consensus = dba(tamoxifen, mask = tamoxifen$masks$Consensus)

> tamoxifen_consensus

5 Samples, 1247 sites in matrix (2666 total):

ID Tissue Factor Condition Treatment Replicate Caller Intervals

1 BT474:Resistant BT474 ER Resistant Full-Media 1-2 bed 896

2 MCF7:Responsive MCF7 ER Responsive Full-Media 1-2-3 bed 1215

3 T47D:Responsive T47D ER Responsive Full-Media 1-2 bed 318

4 MCF7:Resistant MCF7 ER Resistant Full-Media 1-2 bed 879

5 ZR75:Responsive ZR75 ER Responsive Full-Media 1-2 bed 1933

Alternatively, a master consensus peakset could be generated, and reads counted, directly using dba.count: tamoxifen
= dba.count(tamoxifen, peaks=tamoxifen$masks$Consensus)

Finally, consider an analysis where we wished to treat all five MCF7 samples together to look for binding sites specific to
that cell line irrespective of tamoxifen resistant/responsive status. We can create consensus peaksets for each cell type,
and look at how the resultant peaks overlap (shown in Figure 15):

> data(tamoxifen_peaks)

> tamoxifen = dba.peakset(tamoxifen, consensus = DBA_TISSUE, minOverlap=0.66)

> dba.plotVenn(tamoxifen, tamoxifen$masks$Consensus)

6.3 A complete occupancy analysis: identifying sites unique to a sample group

Occupancy-based analysis, in addition to offering many ways of deriving consensus peaksets, can also be used to identify
sites unique to a group of samples. This is analogous to, but not the same as, finding differentially bound sites. In these
subsections, the two approaches are directly compared.

Returning to the original tamoxifen dataset:

> data(tamoxifen_peaks)

We can derive consensus peaksets for the Resistant and Responsive groups. First we examine the overlap rates:

> dba.overlap(tamoxifen,tamoxifen$masks$Resistant,mode=DBA_OLAP_RATE)
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Figure 15: Venn diagram showing how the consensus peaks for each cell type overlap. Generated by plotting the
result of: dba.venn(tamoxifen,tamoxifen$masks$Consensus)

[1] 2029 1375 637 456

> dba.overlap(tamoxifen,tamoxifen$masks$Responsive,mode=DBA_OLAP_RATE)

[1] 3416 2503 1284 865 660 284 180

Requiring that consensus peaks overlap in at least one third of the samples in each group results in 1375 sites for the
Resistant group and 1284 sites for the Responsive group:

> tamoxifen = dba.peakset(tamoxifen, consensus = DBA_CONDITION, minOverlap = 0.33)

> dba.plotVenn(tamoxifen,tamoxifen$masks$Consensus)

Figure 16 shows that 475 sites are unique to the Resistant group, and 417 sites are unique to the Responsive group, with
863 sites being identified in both groups (meaning in at least half the Resistant samples and at least three of the seven
Responsive samples). If our primary interest is in finding binding sites that are different between the two groups, it may
seem reasonable to consider the 863 common sites to be uninteresting, and focus on the 892 sites that are unique to a
specific group. These unique sites can be obtained using dba.overlap:

> tamoxifen.OL = dba.overlap(tamoxifen, tamoxifen$masks$Consensus)

The sites unique to the Resistant group are accessible in tamoxifen.OL$onlyA, with the Responsive-unique sites in
tamoxifen.OL$onlyB:

> tamoxifen.OL$onlyA

GRanges object with 475 ranges and 1 metadata column:
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Figure 16: Venn diagram showing how the ER peak calls for two response groups overlap. Generated by plotting
the result of: dba.plotVenn(tamoxifen, tamoxifen$masks$Consensus)

seqnames ranges strand | score

<Rle> <IRanges> <Rle> | <numeric>

2 chr18 [150764, 151269] * | 0.0216970450072851

3 chr18 [188982, 189652] * | 0.0829603544003535

5 chr18 [311530, 312172] * | 0.0647360163743927

7 chr18 [356560, 357362] * | 0.0264811285562276

8 chr18 [371110, 372102] * | 0.0327929633632912

... ... ... ... ... ...

1731 chr18 [76528540, 76529618] * | 0.0367730545440824

1743 chr18 [77056886, 77057516] * | 0.0242664497643353

1744 chr18 [77062037, 77062828] * | 0.0233993536647987

1746 chr18 [77300430, 77301170] * | 0.0386594849737823

1749 chr18 [77424530, 77425198] * | 0.0280821172783238

-------

seqinfo: 1 sequence from an unspecified genome; no seqlengths

> tamoxifen.OL$onlyB

GRanges object with 417 ranges and 1 metadata column:

seqnames ranges strand | score

<Rle> <IRanges> <Rle> | <numeric>

1 chr18 [ 111564, 112005] * | 0.0465361539385305

6 chr18 [ 346464, 347342] * | 0.0589574123703341
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24 chr18 [ 812595, 813462] * | 0.0526326822538518

32 chr18 [1075317, 1076051] * | 0.0670931275898503

37 chr18 [1241658, 1242455] * | 0.0414763618020171

... ... ... ... ... ...

1741 chr18 [76805366, 76806312] * | 0.0398786180425705

1747 chr18 [77318446, 77319078] * | 0.0358981080016437

1748 chr18 [77389690, 77390304] * | 0.0237104056623095

1751 chr18 [77541035, 77541645] * | 0.0499611446024885

1755 chr18 [77987044, 77988289] * | 0.300099483685293

-------

seqinfo: 1 sequence from an unspecified genome; no seqlengths

The scores associated with each site are derived from the peak caller confidence score, and are a measure of confidence
in the peak call (occupancy), not a measure of how strong or distinct the peak is.

6.4 Comparison of occupancy and affinity based analyses

So how does this occupancy-based analysis compare to the previous affinity-based analysis?

First, different criteria were used to select the overall consensus peakset. We can compare them to see how well they
agree:

> tamoxifen = dba.peakset(tamoxifen,tamoxifen$masks$Consensus,

+ minOverlap=1,sampID="OL Consensus")

> tamoxifen = dba.peakset(tamoxifen,!tamoxifen$masks$Consensus,

+ minOverlap=3,sampID="Consensus_3")

> dba.plotVenn(tamoxifen,14:15)

Figure 17 shows that the two sets agree on about 85% of their sites, so the results should be directly comparable between
the differing parameters used to establish the consensus peaksets. 4

Next re-load the affinity analysis:

> data(tamoxifen_analysis)

To compare the sites unique to each sample group identified from the occupancy analysis with those sites identified as
differentially bound based on affinity (read count) data, we use a feature of dba.report that facilitates evaluating the
occupancy status of sites. Here we obtain a report of all the sites (th=1) with occupancy statistics (bCalled=T):

> tamoxifen.rep = dba.report(tamoxifen,bCalled=T,th=1)

The bCalled option adds two columns to the report (Called1 and Called2), one for each group, giving the number of
samples within the group in which the site was identified as a peak in the original peaksets generated by the peak caller.
We can use these to recreate the overlap criteria used in the occupancy analysis:

> onlyResistant = tamoxifen.rep$Called1>=2 & tamoxifen.rep$Called2<3

> sum(onlyResistant )

[1] 339

> onlyResponsive = tamoxifen.rep$Called2>=3 & tamoxifen.rep$Called1<2

> sum(onlyResponsive)

[1] 417

> bothGroups = tamoxifen.rep$Called1>= 2 & tamoxifen.rep$Called2>=3

> sum(bothGroups)

4Alternatively, we could re-run the analysis using the newly derived consensus peakset by passing it into the counting function: > tamoxifen

= dba.count(tamoxifen, peaks = tamoxifen$masks$Consensus)
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Figure 17: Venn diagram showing how the ER peak calls for two different ways of deriving consensus peaksets.
Generated by plotting the result of: dba.plotVenn(tamoxifen,14:15)

[1] 863

Comparing these numbers verifies the similarity with those seen in Figure 16, showing again how the basic analysis is
not oversensitive to differences in how the consensus peaksets are formed. This overlap analysis suggests that 756 of the
sites are uniquely bound in either the Responsive or Resistant groups, while 863 sites are common to both.

Completing a full differential analysis and focusing on only those sites identified as significantly differentially bound (FDR
<= 0.1), however, shows a different story than that obtainable using only occupancy data:

> tamoxifen.DB = dba.report(tamoxifen,bCalled=T,th=.1)

> onlyResistant.DB = tamoxifen.DB$Called1>=2 & tamoxifen.DB$Called2<3

> sum(onlyResistant.DB)

[1] 49

> onlyResponsive.DB = tamoxifen.DB$Called2>=3 & tamoxifen.DB$Called1<2

> sum(onlyResponsive.DB)

[1] 182

> bothGroups.DB = tamoxifen.DB$Called1>=2 & tamoxifen.DB$Called2>=3

> sum(bothGroups.DB)

[1] 81

There are a number of notable differences in the results. First, overall there are many fewer sites identified as differentially
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bound (49+182+81 = 315) than are unique to one condition (339+417 = 756). Indeed, most of the sites identified
in the occupancy analysis as unique to a sample group are not found to be significantly differentially bound using the
affinity data. While partly this is a result of the stringency of the statistical tests, it shows how the affinity analysis can
discriminate between sites where peak callers are making occupancy decisions that do not reflect significant differences in
read densities at these sites. Note that only about 30.5555555555556% of sites unique to one condition are identifiable
as significantly differentially bound (49+182 = 231 out of 756). Secondly, differentially bound sites are as likely to be
called in the consensus of both response groups as they are to be unique to one group, as over a quarter of the total
sites identified as significantly differentially bound (312) are called as peaks in both response groups (81). Indeed, peaks
identified binding sites in both sample groups are almost as likely to be identified as significantly differentially bound
(9.4%, or 81 out of 863) as sites identified only in the Resistant sample group (14%, or 49 out of 339).

A final advantage of a quantitative analysis is that the differentially bound peaks identified using the affinity analysis are
associated with significance statistics (p-value and FDR) that can be used to rank them for further examination, while
the occupancy analysis yields a relatively unordered list of peaks, as the peak caller statistics refer only to the significance
of occupancy, and not of differential binding.

7 Technical notes

This section includes some technical notes explaining some of the technical details of DiffBind processing.

7.1 Loading peaksets

There are a number of ways to get peaksets loaded into a DBA object. Peaksets can be read in from files or loaded from
interval sets already stored in an R object. Samples can be specified either in a sample sheet (using dba) or loaded one
at a time (using dba.peakset).

When loading in peaksets from files, specifying what peak caller generated the file enables peaks from supported peak
callers to be read in. See the help page for dba.peakset for a list of supported peak callers. Any string to indicate
the peak caller; if it is not one of the supported callers, a default ”raw” format is assumed, consisting of a text file with
three or four columns (indicating the chromosome, start position, and end position, with a score for each interval found
in the fourth column, if present). You can further control how peaks are read using the PeakFormat, ScoreCol, and
bLowerBetter fields if you want to override the defaults for the specified peak caller identifier. For example, with the
tamoxifen dataset used in this tutorial, the peaks were called using the MACS peak caller, but the data are supplied as
simple text files, no the expected MACS ”xls” format. To maintain the peak caller in the metadata, we could specify
the PeakCaller as ”macs” but the PeakFormat as ”raw”. If we wanted to use peak scores in a different column than
the fourth, the scorecol parameter could be set to indicate the appropriate column number. When handling scoring,
DiffBind by default assumes that a higher score indicates a ”better”peak. If this is not the case, for example if the score
is a p-value or FDR, we could set bLowerScoreBetter to TRUE.

When using a sample sheet, values for fields missing in the sample sheet can be supplied when calling dba. In addition
to the minimal sample sheet used for the tutorial, an equivalent sample sheet with all the metadata fields is included,
called ”tamoxifen allfields.csv”. See the help page for dba for an example using this sample sheet.

7.2 Merging peaks

When forming the global binding matrix consensus peaksets, DiffBind first identifies all unique peaks amongst the
relevant peaksets. As part of this process, it merges overlapping peaks, replacing them with a single peak representing
the narrowest region that covers all peaks that overlap by at least one base. There are at least two consequences of this
that are worth noting.

First, as more peaksets are included in analysis, the average peak width tends to become longer as more overlapping
peaks are detected and the start/end points are adjusted outward to account for them. Secondly, peak counts may not
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appear to add up as you may expect due to merging. For example, if one peakset contains two small peaks near to each
other, while a second peakset includes a single peak that overlaps both of these by at least one base, these will all be
replaced in the merged matrix with a single peak. As more peaksets are added, multiple peaks from multiple peaksets
may be merged together to form a single, wider peak.

7.3 edgeR analysis

When dba.analyze is invoked using the default method=DBA_EDGER, a standardized differential analysis is performed
using the edgeR package ([4]). This section details the precise steps in that analysis.

For each contrast, a separate analysis is performed. First, a matrix of counts is constructed for the contrast, with columns
for all the samples in the first group, followed by columns for all the samples in the second group. The raw read count
is used for this matrix; if the bSubControl parameter is set to TRUE (as it is by default), the raw number of reads
in the control sample (if available) will be subtracted (with a minimum final read count of 1). Next the library size is
computed for each sample for use in subsequent normalization. By default, this is the total number of reads in the library
(calculated from the source BAM//BED file). Alternatively, if the bFullLibrarySize parameter is set to FALSE,the
total number of reads in peaks (the sum of each column) is used. Note that ëffective”library size (bFullLibrarySize =

FALSE) may be more appropriate for situations when the overall signal (binding rate) is expected to be directly comparable
between the samples. Next comes a call to edgeR ’s DGEList function. The DGEList object that results is next passed
to calcNormFactors with all other parameters retained as defaults (method="TMM"), returning an updated DGEList

object. This is passed to estimateCommonDisp with default parameters.

If the method is DBA_EDGER_CLASSIC, then if bTagwise is TRUE (most useful when there are at least three members
in each group of a contrast), the resulting DGEList object is then passed to estimateTagwiseDisp, with the prior set
to 50 divided by two less than the total number of samples in the contrast, and trend="none". The final steps are to
perform testing to determine the significance measure of the differences between the sample groups by calling exactTest

([5]) using the DGEList with the dispersion set based on the bTagwise parameter.

If the method is DBA_EDGER_GLM (the default), then a a design matrix is generated with two coefficients (the Intercept
and one of the groups). Next estimateGLMCommonDisp is called; if bTagwise=TRUE, estimateGLMTagwiseDisp is
called as well. The model is fitted by calling glmFit, and the specific contrast fitted by calling glmLRT, specifying that
the second coefficient be dropped. Finally, an exactTest ([6]) is performed, using either common or tagwise dispersion
depending on the value specified for bTagwise.

This final DGEList for contrast n is stored in the DBA object as

DBA$contrasts[[n]]$edgeR

and may be examined and manipulated directly for further customization. Note however that if you wish to use this
object directly with edgeR functions, then the bReduceObjects parameter should be set to FALSE, otherwise the default
value of TRUE will result in essential object fields being stripped.

If a blocking factor has been added to the contrast, an additional edgeR analysis is carried out. This follows the
DBA_EDGER_GLM case detailed above, except a more complex design matrix is generated that includes all the unique
values for the blocking factor. These coefficients are all included in the glmLRT call. The resultant object is accessible as

DBA$contrasts[[n]]$edgeR$block.

7.4 DESeq analysis

When dba.analyze is invoked using method=DBA_DESEQ5, a standardized differential analysis is performed using the
DESeq package ([7]). This section details the steps in that analysis.

For each contrast, a separate analysis is performed. First, a matrix of counts is constructed for the contrast, with columns
for all the samples in the first group, followed by columns for all the samples in the second group. The raw read count is

5Note that DESeq can be made the default analysis method for a DBA object by setting DBA$config$AnalysisMethod=DBA_DESEQ.
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used for this matrix; if the bSubControl parameter is set to TRUE (as it is by default), the raw number of reads in the
control sample (if available) will be subtracted. Next the library size is computed for each sample for use in subsequent
normalization. By default, this is the total number of reads in the library (calculated from the source BAM//BED file).
Alternatively, if the bFullLibrarySize parameter is set to FALSE,the total number of reads in peaks (the sum of each
column) is used. Note that ”effective”library size (bFullLibrarySize = FALSE) may be more appropriate for situations
when the overall signal (binding rate) is expected to be directly comparable between the samples. The first step concludes
with a call to DESeq’s newCountDataSet function, which returns a CountDataSet object. If bFullLibrarySize is set
to TRUE, then sizeFactors is called with the number of reads in the BAM/BED files for each ChIP sample, divided by
the minimum of these; otherwise, estimateSizeFactors is invoked. Next, estimateDispersions is called with the
CountDataSet object and fitType set to local. If there are no replicates, (only one sample in each group), method
is set to blind. Otherwise, if bTagwise is TRUE, method is set to per-condition; if it is FALSE, method is set to
pooled (or pooled-CR for a blocking analysis).

If the method is DBA_DESEQ_CLASSIC, nbinomTest is called, and the result (reordered by adjusted p-value) saved for
reporting.

If the method is DBA_DESEQ_GLM (the default), two models are fitted using fitNbinomGLMs: a full model is fitted with
all the coefficients, and a second model is fitted with the second coefficient dropped. These are tested against each other
using nbinomGLMTest, with the resulting p values adjusted using p.adjust (with method="BH").

The final results are accessible within the DBA object as

DBA$contrasts[[n]]$DESeq1$DEdata

and may be examined and manipulated directly for further customization. Note however that if you wish to use this object
directly with DESeq functions, then the bReduceObjects parameter should be set to FALSE, otherwise the default value
of TRUE will result in essential object fields being stripped.

If a blocking factor has been added to the contrast, an additional DESeq analysis is carried out. This follows the
DBA_DESEQ_GLM case detailed above, except a more complex design is generated when newCountDataSet is called that
includes all the unique values for the blocking factor. These coefficients are all included in the fitNbinomGLMs calls.
The resultant object is accessible as

DBA$contrasts[[n]]$DESeq1$block$DEdata.

7.5 DESeq2 analysis

When dba.analyze is invoked using method=DBA_DESEQ26, a standardized differential analysis is performed using the
DESeq2package ([8]). This section details the precise steps in that analysis.

For each contrast, a separate analysis is performed. First, a matrix of counts is constructed for the contrast, with columns
for all the samples in the first group, followed by columns for all the samples in the second group. The raw read count is
used for this matrix; if the bSubControl parameter is set to TRUE (as it is by default), the raw number of reads in the
control sample (if available) will be subtracted. Next the library size is computed for each sample for use in subsequent
normalization. By default, this is the total number of reads in peaks (the sum of each column). Alternatively, if the
bFullLibrarySize parameter is set to TRUE, the total number of reads in the library (calculated from the source
BAM/BED file) is used. The first step concludes with a call to DESeq2 ’s DESeqDataSetFromMatrix function, which
returns a DESeqDataSet object.

If bFullLibrarySize is set to TRUE, then sizeFactors is called with the number of reads in the BAM/BED files for
each ChIP sample, divided by the minimum of these; otherwise, estimateSizeFactors is invoked.

estimateDispersions is then called with the DESeqDataSet object and fitType set to local. Next the model is
fitted and tested using nbinomWaldTest. The final results (as a DESeqDataSet) are accessible within the DBA object
as

DBA$contrasts[[n]]$DESeq2$DEdata

6Note that DESeq2 can be made the default analysis method for a DBA object by setting DBA$config$AnalysisMethod=DBA_DESEQ2.
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and may be examined and manipulated directly for further customization. Note however that if you wish to use this
object directly with DESeq2 functions, then the bReduceObjects parameter should be set to FALSE, otherwise the
default value of TRUE will result in essential object fields being stripped.

If a blocking factor has been added to the contrast, an additional DESeq2 analysis is carried out by setting the design

to include all the unique values for the blocking factor. This occurs before the dispersion values are calculated. The
resultant DESeqDataSet object is accessible as

DBA$contrasts[[n]]$DESeq2$block$DEdata.

8 Vignette Data

Due to space limitations, the aligned reads associated with the cell line data used in this vignette are not included as part
of the DiffBind package.

If you would like to get access to the reads, you can email rory.stark@cruk.cam.ac.uk and ask to be added to the
Dropbox containing the vignette data.

The data are also available in the Short Read Archive (SRA), email for detailed instructions on how to retrieve them in
the appropriate form.

Also included is a sample sheet that uses the downloaded data. This sample sheet can also be examined to see which
GEO accession IDs correspond to which samples. The sample sheet can be found at:

> file.path(system.file("extra", package="DiffBind"),"tamoxifen_GEO.csv")

9 Using DiffBind and ChIPQC together

DiffBind and ChIPQC are both packages that help manage and analyze ChIP-seq experiments, and are designed to be
used together.

If you already have a project in DiffBind , then ChIPQC can accept a DBA object in place of the sample sheet when
creating a ChIPQCexperiment object.

Once a ChIPQCexperiment object has been constructed, it can be used in place of a DBA object in most calls to DiffBind .
All plotting, counting, and analysis functions are available from DiffBind .

It is also possible to extract a DBA object from a ChIPQCexperiment object using the QCdba method. The resulting DBA
object can be used in DiffBind without restriction, although neither it nor DBA objects based on it can be re-attached to
the original ChIPQCexperiment object (although they can be used in lieu of a sample sheet when creating a new one.)

In a typical workflow, the first step would be to run a ChIPQC analysis before peak calling to assess library quality and
establish what filtering should be done at the read level (mapping quality, duplicates, and blacklists). Next peaks would
be called externally, and read into a new ChIPQCexperiment object to assess peak-based metrics, such as FRIP, peak
profiles, and clustering.

At this point, DiffBind could be used to perform occupancy analysis, derive consensus peak sets, re-count reads to form a
binding matrix, and set up contrasts to carry out full differential binding analyses using the edgeR and DESeq2 packages,
along with plotting and reporting functions.
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