
Introduction to the ASSIGN Package

Ying Shen and W. Evan Johnson

April 16, 2015

Contents

1 Introduction 1

2 How to use the ASSIGN package 2

2.1 Run ASSIGN in a step-by-step way . . . . . . . . . . . . . . . . . . . . . 2

2.2 Run ASSIGN in an all-in-one way . . . . . . . . . . . . . . . . . . . . . . 7

3 Conclusion 8

4 Session Info 8

1 Introduction

This vignette provides an overview of the Bioconductor package ASSIGN for signature-
based profiling of heterogeneous biological pathways. ASSIGN (Adaptive Signature
Selection and InteGratioN) is a computational tool to evaluate the pathway dereg-
ulation/activation status in individual patient samples. ASSIGN employs a flexible
Bayesian factor analysis approach that adapts predetermined pathway signatures derived
either from knowledge-based literatures or from perturbation experiments to the cell-
/tissue-specific pathway signatures. The deregulation/activation level of each context-
specific pathway is quantified to a score, which represents the extent to which a patient
sample encompasses the pathway deregulation/activation signature.

Some distinguishable features of ASSIGN are described as follows: 1). multiple

1



pathways profiling: ASSIGN profiles pathway signatures simultaneously, accounting for
‘cross-talks’ between interconnected pathway components. 2). Context specificity in
baseline gene expression: Baseline gene expression levels (i.e., the gene expression level
under normal status) may vary widely due to the differences in tissue types, disease
status, or across different measurement platforms. ASSIGN can adaptively estimate
background gene expression levels across a set of samples. 3). Context specific signa-
ture estimation: ASSIGN provides the flexibility to use either the input gene list or the
magnitudes of signature genes as prior information, allowing for the adaptive refinement
of pathway signatures in specific cell or tissue samples. 4). Regularization of signa-
ture strength estimates: ASSIGN regularizes the signature strength coefficients using a
Bayesian ridge regression formulation by shrinking strength of the irrelevant signature
genes toward zero. The parameter regularization constrains the pathway signature to a
small group of genes, thus, making the results more biologically interpretable.

2 How to use the ASSIGN package

2.1 Run ASSIGN in a step-by-step way

We developed a series of functions: assign.preprocess, assign.mcmc, assign.convergence,
assign.summary, assign.cv.output, and assign.output that work in concert to produce
detailed results. For quick use, we also developed an all-in-one assign.wrapper to in-
tegrated single step functions. The details of assign.wrapper is discribed in the next
section.

In the following example, we will illustrate how to run the functions in the ASSIGN
package in a step-by-step way. The input and output of each function are described
here.

We first load ASSIGN, and create a temporary directory ”tempdir” under the user’s
current directory. All output generated in this vignette will be saved in the ”tempdir”.

> ## create a temporary directory

> library(ASSIGN)

> dir.create("tempdir")

> tempdir <- "tempdir"

Next thing is to load the training and test datasets and the labels of training and
test datasets. The training dataset is a G (Number of genomic measures) x N (number
of samples in pathway perturbation experiments) matrix, including five oncogenic path-
ways: B-Catenin, E2F3, MYC, RAS, and SRC pathways in this example. The training

2



data labels denote the column index of control and experimental samples of each purtur-
bation experiment. For example, we specify the column index of 10 RAS control samples
to be 1:10, and column index of 10 RAS activated samples to be 39:48. The test dataset
is a G (Number of genomic measures) x N (number of patient samples) matrix. The
test data labels denote the classes of the N test samples. In our example, test sample
1-53 are adenocarcinoma and 54-111 are squamous cell carcinoma. We specify ”Adeno”
and ”Squamous” in the vector of test data labels. Notice that the test data labels are
optional. ASSIGN outputs additional validation plots to evaluate classification accuracy
when the test data labels are provided.

> data(trainingData1)

> data(testData1)

> data(geneList1)

> trainingLabel1 <- list(control = list(bcat=1:10, e2f3=1:10,

+ myc=1:10, ras=1:10, src=1:10),

+ bcat = 11:19, e2f3 = 20:28, myc= 29:38,

+ ras = 39:48, src = 49:55)

> testLabel1 <- rep(c("Adeno","Squamous"),c(53,58))

We first run assign.preprocess function on the input datasets. When the genomic
measures (i.g., gene expression profiles) of training samples are provided, but prede-
termined pathway signature gene lists are not provided, assign.preprocess function
utilizes a Bayesian univariate regression module to select a gene set (usually 50-200 but
can be specified by the user) based on the absolute value of the regression coefficient
(fold change) and the posterior probability of the variable to be selected (statistical sig-
nificance). Since we have no predetermined gene lists to provide, we leave the geneList

option as default NULL. Here we specify 200 signature genes for each of the five path-
ways.

> # training dataset is available;

> # the gene list of pathway signature is NOT available

> processed.data <- assign.preprocess(trainingData=trainingData1,

+ testData=testData1,

+ trainingLabel=trainingLabel1,

+ geneList=NULL, n_sigGene=rep(200,5))

Alternatively, the users can have both the training data and the curated/predetermined
pathway signatures. Some genes in the curated pathway signatures, although not sig-
nificantly differently expressed, need to be included for the prediction purpose. In this
case we specify trainingData and geneList when BOTH of the training dataset and
predetermined signature gene list are available.

3



> # training dataset is available;

> # the gene list of pathway signature is available

> processed.data <- assign.preprocess(trainingData=trainingData1,

+ testData=testData1,

+ trainingLabel=trainingLabel1,

+ geneList=geneList1)

In some cases, the expression profiles (training dataset) is unavailable. Only the
knowledge-based gene list or gene list from the joint knowledge of some prior profiling
experiments is available. In this case we specify geneList and leave the trainingData

and trainingLabel as default NULL.

> # training dataset is NOT available;

> # the gene list of pathway signature is available

> processed.data <- assign.preprocess(trainingData=NULL,

+ testData=testData1,

+ trainingLabel=NULL,

+ geneList=geneList1)

The assign.preprocess function returns the processed training dataset (training-
Data sub) and test dataset (testData sub) as well as the prior parameters for the back-
ground vector (B vector), signature matrix (S matrix) and the probability signature
matrix (Pi matrix) and differential expressed gene lists of each pathways (diffGeneList).
The details of the assign.preprocess output are described in the Value section of the
manual page of assign.preprocess function. The output data of assign.preprocess

function are used as the input data of the assign.mcmc function.

For the assign.mcmc function, Y, Bg and X are specified as the output of the as-

sign.preprocess function. The adaptive_B (adaptive background), adaptive_S (adap-
tive signature) and mixture_beta (regularization of signature strength) can be specified
TRUE or FALSE based on the analysis context. When training and test samples are
from the different cell or tissue types, we recommend the adaptive background option to
be TRUE. Notice that when the training dataset is not available, the adaptive signature
option must be set TRUE, meaning that the magnitude of the signature should be es-
timated from the test dataset. The default iter (iteration) is 2000. Particularly, when
training datasets are unavailable, it is better to specify the X option in the assign.mcmc

using a more informative X (specify up- or down- regulated genes) to initiate the model.

> mcmc.chain <- assign.mcmc(Y=processed.data$testData_sub,

+ Bg = processed.data$B_vector,

+ X=processed.data$S_matrix,

4



+ Delta_prior_p = processed.data$Pi_matrix,

+ iter = 2000, adaptive_B=TRUE,

+ adaptive_S=FALSE, mixture_beta=TRUE)

The assign.mcmc function returns the MCMC chain recording default 2000 iterations
for each parameters. The details of assign.mcmc output are described in the Value section
of the manual page of assign.mcmc function. We can make a trace plot to check the
convergence of the model parameters through assign.convergence. The burn_in is set
default 0, so that the trace plot starts from the first iteration. The additional iteration
can be specified if the MCMC chain is not converged in 2000 iterations.

> trace.plot <- assign.convergence(test=mcmc.chain, burn_in=0, iter=2000,

+ parameter="B", whichGene=1,

+ whichSample=NA, whichPath=NA)

The assign.convergence function returns the a vector of the estimated values from
each Gibbs sampling iteration of the model parameter to be checked, and a trace plot
of the parameter.

We then apply the assign.summary function to compute the posterior mean of each
parameter. Typically we use the second half of the MCMC chain to compute the pos-
terior mean. We specify the default burn-in period to be the first 1000 iteration and
the default total iteration to be 2000. The 1000 burn-in iterations are discarded when
we compute the posterior mean. The adaptive_B, adaptive_S and mixture_beta options
have to set the same as those in the assign.mcmc function.

> mcmc.pos.mean <- assign.summary(test=mcmc.chain, burn_in=1000,

+ iter=2000, adaptive_B=TRUE,

+ adaptive_S=FALSE,mixture_beta=TRUE)

The assign.summary function returns the posterior mean of each parameters. The
details of assign.summary output are described in the Value section of the manual page
of assign.summary function.

The assign.cv.output generates the cross-validation results in the training samples.
Output files from assign.cv.output are:

1). pathway activity trainingset.csv: ASSIGN predicted pathway acitivity in train-
ing samples.

2). signature heatmap trainingset.pdf: heatmaps of expression level of signature
genes in training samples.

5



3). pathway activity scatterplot trainingset.pdf: scatterplot of pathway activity in
training samples.

The assigm.output generates the prediction results in the test samples. Output files
from assign.output are:

1). pathway activity testset.csv: ASSIGN predicted pathway acitivity in test sam-
ples.

2). signature heatmap testset prior.pdf: heatmaps of expression level of prior signa-
ture genes in training samples.

3). signature heatmap testset posterior.pdf: heatmaps of expression level of poste-
rior signature genes in training samples. This plot is only generated when Adaptive_S is
specified TRUE.

4). pathway activity scatterplot testset.pdf: scatterplot of pathway activity in test
samples. The x-axis represents test samples ordered by pathway activity; the y-axis
represents pathway activity.

5). pathway activity boxplot testset.pdf: boxplot of pathway activity in every test
class. This plot is only generated only the testLabel argument is not NULL.

The user needs to specify the output directory in the outputDir option, when running
assign.cv.output and assigm.output.

> assign.output(processed.data=processed.data,

+ mcmc.pos.mean.testData=mcmc.pos.mean,

+ trainingData=trainingData1, testData=testData1,

+ trainingLabel=trainingLabel1,

+ testLabel=testLabel1, geneList=NULL,

+ adaptive_B=TRUE, adaptive_S=FALSE,

+ mixture_beta=TRUE, outputDir=tempdir)

> # For cross-validation, Y in the assign.mcmc function

> # should be specified as processed.data$trainingData_sub.

> assign.cv.output(processed.data=processed.data,

+ mcmc.pos.mean.trainingData=mcmc.pos.mean,

+ trainingData=trainingData1,

+ trainingLabel=trainingLabel1, adaptive_B=FALSE,

+ adaptive_S=FALSE, mixture_beta=TRUE,

+ outputDir=tempdir)

6



2.2 Run ASSIGN in an all-in-one way

We developed an all-in-one assign.wrapper function to run ASSIGN in a simple and fast
way. For the purpose of fast run and basic results, the user will ONLY need to run this
assign.wrapper function. The assign.wrapper function output the following files:

1). pathway activity testset.csv: ASSIGN predicted pathway acitivity in test sam-
ples.

2). signature heatmap testset prior.pdf: heatmaps of expression level of prior signa-
ture genes in training samples.

3). signature heatmap testset posterior.pdf: heatmaps of expression level of poste-
rior signature genes in training samples. This plot is only generated when Adaptive_S is
specified TRUE.

4). pathway activity scatterplot testset.pdf: scatterplot of pathway activity in test
samples. The x-axis represents test samples ordered by pathway activity; the y-axis
represents pathway activity.

5). pathway activity boxplot testset.pdf: boxplot of pathway activity in every test
class. This plot is only generated only the testLabel argument is not NULL.

6). output.rda: The intermediate results of individual ASSIGN functions.

Here we illustrate how to run assign.wrapper function by three examples. To start,
first follow the code chuncks 1 and 2 above to create a temporary dirctory ”tempdir”
and load training and test datasets. Parameter settings have been described in details
in the previous section.

> # Example 1: training dataset is available;

> # the gene list of pathway signature is NOT available

> assign.wrapper(trainingData=trainingData1, testData=testData1,

+ trainingLabel=trainingLabel1, testLabel=testLabel1,

+ geneList=NULL, n_sigGene=rep(200,5), adaptive_B=TRUE,

+ adaptive_S=FALSE, mixture_beta=TRUE, outputDir= tempdir,

+ iter=2000, burn_in=1000)

> # Example 2: training dataset is available;

> # the gene list of pathway signature is available

> assign.wrapper(trainingData=trainingData1, testData=testData1,

+ trainingLabel=trainingLabel1, testLabel=NULL,

+ geneList=geneList1, n_sigGene=NULL, adaptive_B=TRUE,

+ adaptive_S=FALSE, mixture_beta=TRUE,

+ outputDir=tempdir, iter=2000, burn_in=1000)

7



> #Example 3: training dataset is NOT available;

> #the gene list of pathway signature is available

> assign.wrapper(trainingData=NULL, testData=testData1,

+ trainingLabel=NULL, testLabel=NULL,

+ geneList=geneList1, n_sigGene=NULL, adaptive_B=TRUE,

+ adaptive_S=TRUE, mixture_beta=TRUE,

+ outputDir= tempdir, iter=2000, burn_in=1000)

3 Conclusion

Please see the ASSIGN reference manual for full descriptions of functions and the various
options they support.

4 Session Info

R version 3.2.0 RC (2015-04-08 r68161)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows Server 2008 R2 x64 (build 7601) Service Pack 1

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] ASSIGN_1.4.0 gplots_2.16.0 msm_1.5 Rlab_2.15.1

loaded via a namespace (and not attached):

[1] Matrix_1.2-0 tools_3.2.0 expm_0.99-1.1 survival_2.38-1

[5] KernSmooth_2.23-14 mvtnorm_1.0-2 splines_3.2.0 gdata_2.13.3

[9] grid_3.2.0 caTools_1.17.1 bitops_1.0-6 gtools_3.4.2

[13] lattice_0.20-31

8


	Introduction
	How to use the ASSIGN package
	Run ASSIGN in a step-by-step way
	Run ASSIGN in an all-in-one way

	Conclusion
	Session Info

