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Chapter 1

Introduction

The Subread/Rsubread packages comprise a suite of high-performance software programs for
processing next-generation sequencing data. Included in these packages are Subread aligner,
Subjunc aligner, Subindel long indel detection program, featureCounts read quantification
program, exactSNP SNP calling program and other utility programs. This document provides
a detailed description to the programs included in the packages.

Subread and Subjunc aligners adopt a mapping paradigm called “seed-and-vote” [1]. This
is an elegantly simple multi-seed strategy for mapping reads to a reference genome. This
strategy chooses the mapped genomic location for the read directly from the seeds. It uses a
relatively large number of short seeds (called subreads) extracted from each read and allows
all the seeds to vote on the optimal location. When the read length is <160 bp, overlapping
subreads are used. More conventional alignment algorithms are then used to fill in detailed
mismatch and indel information between the subreads that make up the winning voting block.
The strategy is fast because the overall genomic location has already been chosen before the
detailed alignment is done. It is sensitive because no individual subread is required to map
exactly, nor are individual subreads constrained to map close by other subreads. It is accurate
because the final location must be supported by several different subreads. The strategy
extends easily to find exon junctions, by locating reads that contain sets of subreads mapping
to different exons of the same gene. It scales up efficiently for longer reads.

Subread is a general-purpose read aligner. It can be used to align reads generated from
both genomic DNA sequencing and RNA sequencing technologies. It been successfully used
in a number of high-profile studies [2, 3, 4, 5, 6]. Subjunc is specifically designed to detect
exon-exon junctions and to perform full alignments for RNA-seq reads. Note that Subread

performs local alignments for RNA-seq reads, whereas Subjunc performs global alignments
for RNA-seq reads. Both Subread and Subjunc detect insertions, deletions, fusions and these
genomic events are reported in the read mapping results. Subjunc also reports all the splice
sites discovered from the exon-spanning reads. It re-aligns all the reads using the compiled list
of splice sites in its last step of read alignment, and it can detect splice sites in any location
of the reads.

The Subindel program carries out local read assembly to discover long insertions and
deletions. Read mapping should be performed before running this program.
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The featureCounts program is designed to assign mapped reads or fragments (paired-end
data) to genomic features such as genes, exons and promoters. It is a light-weight read counting
program suitable for count both gDNA-seq and RNA-seq reads for genomic features[7]. The
Subread-featureCounts-limma/voom pipeline has been found to be one of the best-performing
pipelines for the analyses of RNA-seq data by the SEquencing Quality Control (SEQC) study,
the third stage of the well-known MicroArray Quality Control (MAQC) project [8].

Also included in this software suite is a very efficient SNP caller – ExactSNP. ExactSNP
measures local background noise for each candidate SNP and then uses that information to
accurately call SNPs.

These software programs support a variety of sequencing platforms including Illumina
GA/HiSeq, ABI SOLiD, Life Science 454, Helicos Heliscope and Ion Torrent. They are released
in two packages – SourceForge Subread package and Bioconductor Rsubread package.
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Chapter 2

Preliminaries

2.1 Citation

If you use Subread or Subjunc aligners, please cite:

Liao Y, Smyth GK and Shi W. The Subread aligner: fast, accurate and scalable
read mapping by seed-and-vote. Nucleic Acids Research, 41(10):e108, 2013
http://www.ncbi.nlm.nih.gov/pubmed/23558742

If you use featureCounts, please cite:

Liao Y, Smyth GK and Shi W. featureCounts: an efficient general-purpose program
for assigning sequence reads to genomic features. Bioinformatics, 2013 Nov 30.
[Epub ahead of print]
http://www.ncbi.nlm.nih.gov/pubmed/24227677

2.2 Download and installation

2.2.1 SourceForge Subread package

Installation from a binary distribution

This is the easiest way to install the Subread package onto your computer. Download a
Subread binary distribution that suits your oprating system, from the SourceForge website
http://subread.sourceforge.net. The operating systems currently being supported in-
clude multiple variants of Linux (Debian, Ubuntu, Fedora and Cent OS) and Mac OS X. Both
64-bit and 32-bit machines are supported. The executables can be found in the ‘bin’ diretory
of the binary package.

To install Subread package for other operating systems such as FreeBSD and Solaris, you
will have to install them for the source.
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Installation from the source package

Download Subread source package to your working directory from SourceForge
http://subread.sourceforge.net, and type the following command to uncompress it:

tar zxvf subread-1.x.x.tar.gz

Enter src directory of the package and issue the following command to install it on a Linux
operating system:

make -f Makefile.Linux

To install it on a Mac OS X operating system, issue the following command:

make -f Makefile.MacOS

To install it on a FreeBSD operating system, issue the following command:

make -f Makefile.FreeBSD

To install it on Oracle Solaris or OpenSolaris computer operating systems, issue the fol-
lowing command:

make -f Makefile.SunOS

A new directory called bin will be created under the home directory of the software package,
and the executables generated from the compilation are saved to that directory. To enable
easy access to these executables, you may copy them to a system directory such as /usr/bin

or add the path to them to your search path (your search path is usually specified in the
environment variable ‘PATH’).

2.2.2 Bioconductor Rsubread package

You have to get R installed on my computer to install this package. Lauch an R session and
issue the following command to install it:

source("http://bioconductor.org/biocLite.R")

biocLite("Rsubread")

Alternatively, you may download the Rsubread source package directly from http://

bioconductor.org/packages/release/bioc/html/Rsubread.html and install it to your
R from the source.
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2.3 How to get help

Bioconductor mailing list (http://bioconductor.org/) and SeqAnswer forum (http://www.
seqanswers.com) are the best places to get help and to report bugs. Alternatively, you may
contact Wei Shi (shi at wehi dot edu dot au) directly.
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Chapter 3

The seed-and-vote mapping paradigm

3.1 Seed-and-vote

We have developed a new read mapping paradigm called “seed-and-vote” for efficient, accurate
and scalable read mapping [1]. The seed-and-vote strategy uses a number of overlapping seeds
from each read, called subreads. Instead of trying to pick the best seed, the strategy allows
all the seeds to vote on the optimal location for the read. The algorithm then uses more
conventional alignment algorithms to fill in detailed mismatch and indel information between
the subreads that make up the winning voting block. The following figure illustrates the
proposed seed-and-vote mapping approach with an toy example.

Two aligners have been developed under the seed-and-vote paradigm, including Subread

and Subjunc. Subread is a general-purpose read aligner, which can be used to map both
genomic DNA-seq and RNA-seq read data. Its running time is determined by the number of
subreads extracted from each read, not by the read length. Thus it has an excellent maping
scalability, ie. its running time has only very modest increase with the increase of read length.
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Subread uses the largest mappable region in the read to determine its mapping location,
therefore it automatically determines whether a global alignment or a local alignment should
be found for the read. For the exon-spanning reads in a RNA-seq dataset, Subread performs
local alignments for them to find the target regions in the reference genome that have the
largest overlap with them. Note that Subread does not perform global alignments for the
exon-spanning reads and it soft clips those read bases which could not be mapped. However,
the Subread mapping result is sufficient for carrying out the gene-level expression analysis
using RNA-seq data, because the mapped read bases can be reliably used to assign reads,
including both exonic reads and exon-spanning reads, to genes.

To get the full alignments for exon-spanning RNA-seq reads, the Subjunc aligner can be
used. Subjunc is designd to discover exon-exon junctions from using RNA-seq data, but it
performs full alignments for all the reads at the same time. The Subjunc mapping results
should be used for detecting genomic variations in RNA-seq data, allele-specific expression
analysis and exon-level gene expression analysis. The Section 3.3 describes how exon-exon
junctions are discovered and how exon-spanning reads are aligned using the seed-and-vote
paradigm.

3.2 Indel detection

3.2.1 Detection of short indels

The seed-and-vote paradigm is very powerful in detecting indels (insertions and deletions).
The figure below shows how we use the subreads to confidently detect short indels. When
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there is an indel existing in a read, mapping locations of subreads extracted after the indel will
be shifted to the left (insertion) or to the right (deletion), relative to the mapping locations
of subreads at the left side of the indel. Therefore, indels in the reads can be readily detected
by examining the difference in mapping locations of the extracted subreads. Moreover, the
number of bases by which the mapping location of subreads are shifted gives the precise length
of the indel. Since no mismatches are allowed in the mapping of the subreads, the indels can
be detected with a very high accuracy.

3.2.2 Detection of long indels

Detection of long indels is conducted by performing local read assembly. When the specified
indel length (‘-I’ option in SourceForge C or ‘indels’ paradigm in Rsubread) is greater than
16, the Subread and Subjunc will automatically start the read assembly procedure to identify
indels of up to 200bp long. Subindel outputs the assembled contig sequences that contain the
detected long insertions and/or deletions and also the CIGAR info for the indels.

3.3 Detection of canonical exon-exon junctions

The seed-and-vote paradigm is also very useful in detecting exon-exon junctions, because the
short subreads extracted across the entire read can be used to detect short exons in a sensitive
and accurate way. The figure below shows the schematic of detecting exon-exon junctions and
mapping RNA-seq reads by Subjunc, which uses this paradigm.

The first scan detects all possible exon-exon junctions using the mapping locations of
the subreads extracted from each read. Matched donor (‘GT’) and receptor (‘AG’) sites are
required for calling junctions. Exons as short as 16bp can be detected in this step. The second
scan verifies the putative exon-exon junctions discovered from the first scan by performing
re-alignments for the junction reads. The output from Subjunc includes the list of verified
junctions and also the mapping results for all the reads. Orientation of splicing sites is
indicated by ‘XA’ tag in section of optional fields in mapping output.
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3.4 Fusion detection

Subjunc can detect genomic fusion events such as chimera in both RNA sequencing and ge-
nomic DNA sequencing data. It performs fusion detection in a manner similar to what it does
for exon-exon junction detection, but it allows the same read to be splitted across different
chromosomes. It also allows a read to be splitted across different strands on the same chromo-
some. It does not require donor/receptor sites when calling fusions. Non-canonical exon-exon
junctions, which have donor/receptor sites other than GT/AG, may also be reported when
using subjunc to detect fusions.

If a read is found to (i) map to two or more chromosomes, or (ii) map to different strands of
the same chromosome or (iii) to span a regions wider than 227 bases, Subjunc will use optional
fields in the SAM/BAM output file to report the secondary alignments of the read. The
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primary alignment of the read is saved in the main fields of the same record. The following tags
are used for secondary alignments in the optional fields: CC(chromosome name), CP(mapping
position), CG(CIGAR string) and CT(strand).

3.5 Read re-alignments

Both Subread and Subjunc aligners re-align the reads after identifying indels, fusions and exon-
exon junctions (subjunc only) from the data. They make use of the flanking window approach
to identify indels, fusions and exon junctions. This is a highly accurate approach since it
requires the identified indels, fusions or exon junctions to be flanked by perfectly matched
subreads (16mers) at both sides. These discovered indels, fusions and exon junctions are then
used to re-align the reads. Indels, fusions and exon junctions that are located very close to
read ends can also be found during the re-alignment. We will remove those indels, fusions
and junctions if they were found not to be supported by any read after read re-alignment.
Numbers of reads supporting these genomic events will be reported.

3.6 Recommended alignment setting

It is recommended to turn on -u option (reporting uniquely mapped reads only) and also -H

option (breaking ties using Hamming distance), when running Subread and Subjunc aligners.
This should give the most accurate mapping results with little or no cost to the mapping
percentage. This is the default setting used in align and subjunc functions in Rsubread
package (unique=TRUE and tieBreakHamming=TRUE).
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Chapter 4

Mapping reads generated by genomic
DNA sequencing technologies

4.1 A quick start for using SourceForge Subread package

An index must be built for the reference first and then the read mapping can be performed.

Step 1: Build an index

Build a base-space index (default). You can provide a list of FASTA files or a single FASTA
file including all the reference sequences.

subread-buildindex -o my index chr1.fa chr2.fa ...

Step 2: Align reads

Map single-end reads using 5 threads:
subread-align -T 5 -i my index --gzFASTQinput --BAMoutput

-r reads.txt.gz -o subread results.bam

Map reads included in a gzipped FASTQ file and save mapping results to a BAM file:
subread-align -T 5 -i my index -r reads.txt.gz -o subread results.sam

Detect indels of up to 16bp:
subread-align -I 16 -i my index -r reads.txt -o subread results.sam

Report up to three best mapping locations:
subread-align -B 3 -i my index -r reads.txt -o subread results.sam

Report uniquely mapped reads only:
subread-align -u -i my index -r reads.txt -o subread results.sam
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Map paired-end reads:
subread-align -d 50 -D 600 -i my index -r reads1.txt -R reads2.txt

-o subread results.sam

4.2 A quick start for using Bioconductor Rsubread pack-

age

An index must be built for the reference first and then the read mapping can be performed.

Step 1: Building an index

To build the index, you must provide a single FASTA file (eg. “genome.fa”) which includes
all the reference sequences.

library(Rsubread)

buildindex(basename="my_index",reference="genome.fa")

Step 2: Aligning the reads

Map single-end reads using 5 threads:

align(index="my_index",readfile1="reads.txt.gz",output_file="rsubread.bam",nthreads=5)

Detect indels of up to 16bp:

align(index="my_index",readfile1="reads.txt.gz",output_file="rsubread.bam",indels=16)

Report up to three best mapping locations:

align(index="my_index",readfile1="reads.txt.gz",output_file="rsubread.bam",nBestLocations=3)

Report uniquely mapped reads only:

align(index="my_index",readfile1="reads.txt.gz",output_file="rsubread.bam",unique=TRUE)

Map paired-end reads:

align(index="my_index",readfile1="reads1.txt.gz",readfile2="reads2.txt.gz",

output_file="rsubread.bam",minFragLength=50,maxFragLength=600)
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4.3 Index building

The subread-buildindex (buildindex function in Rsubread) program builds an base-space or
color-space index using the reference sequences. The reference sequences should be in FASTA
format (the header line for each chromosomal sequence starts with “>”).

This program extracts all the 16 mer sequences from the reference genome at a 2bp in-
terval and then uses them to build a hash table. Keys in the hash table are unique 16 mers
and values are their chromosomal locations. Table 1 describes the arguments used by the
subread-buildindex program.

Table 1: Arguments used by the subread-buildindex program (buildindex function in
Rsubread). Arguments in parenthesis in the first column are used by buildindex.

Arguments Description
chr1.fa, chr2.fa, ...
(reference)

Give names of chromosome files. Note that in Rsubread, only a sin-
gle FASTA file including all reference sequences should be provided.

-B
(indexSplit=FALSE)

Create one block of index. The built index will not be split into mul-
tiple pieces. This makes the largest amount of memory be requested
when running alignments, but it enables the maximum mapping
speed to be achieved. This option overrides -M when it is provided
as well.

-c
(colorspace)

Build a color-space index.

-f < int >
(TH subread)

Specify the threshold for removing uninformative subreads (highly
repetitive 16mers). Subreads will be excluded from the index if
they occur more than threshold number of times in the reference
genome. Default value is 24.

-F
(gappedIndex=FALSE)

Build a full index for the reference genome. 16bp mers (subreads)
will be extracted from every position of the reference genome. Un-
der default setting (‘-F’ is not specified), subreads are extracted in
every three bases from the genome.

-M < int >
(memory)

Specify the Size of requested memory(RAM) in megabytes, 8000MB
by default. With the default value, the index built for a mammalian
genome (eg. human or mouse genome) will be saved into one block,
enabling the fastest mapping speed to be achieved. The amount of
memory used is ∼ 7600MB for mouse or human genome (other
species have a much smaller memory footprint), when performing
read mapping. Using less memory will increase read mapping time.

-o < basename >
(basename)

Specify the base name of the index to be created.

-v Output version of the program.
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4.4 Read mapping

The subread-align program (align in Rsubread) extracts a number of subreads from each
read and then uses these subreads to vote for the mapping location of the read. It uses the
the “seed-and-vote” paradigm for read mapping. subread-align program automatically de-
termines if a read should be globally aligned or locally aligned, making it particularly poweful
for mapping RNA-seq reads. Table 2 describes the arguments used by the subread-align

program (and also the subjunc program). These arguments are used by the read mapping
programs included in both SourceForge Subread package and Bioconductor Rsubread pack-
age, although argument names are different in these two packages (arguments names used by
Bioconductor Rsubread are included in parenthesis).
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Table 2: Arguments used by the subread-align/subjunc programs included in the Source-
Forge Subread package. Arguments in parenthesis in the first column are the equivalent
arguments used in Bioconductor Rsubread package. Arguments used by subread-align

only are marked with ‘∗’ and arguments used by subjunc only are marked with ‘∗∗’.

Arguments Description
-b
(color2base=TRUE)

Output base-space reads instead of color-space reads in mapping
output for color space data (eg. LifTech SOLiD data). Note that
the mapping itself will still be performed at color-space.

-B < int >
(nBestLocations)

Specify the maximal number of equally-best mapping locations al-
lowed to be reported for each read. 1 by default. Allowed values are
between 1 to 16 (inclusive). ‘NH’ tag is used to indicate how many
alignments are reported for the read and ‘HI’ tag is used for num-
bering the alignments reported for the same read, in the output.
Note that -u option takes precedence over -B.

-d < int >
(minFragLength)

Specify the minimum fragment/template length, 50 by default.
Note that if the two reads from the same pair do not satisfy the
fragment length criteria, they will be mapped individually as if they
were single-end reads.

-D < int >
(maxFragLength)

Specify the maximum fragment/template length, 600 by default.

∗ -E < int >
(DP GapExtPenalty)

Specify the penalty for extending the gap when performing the
Smith-Waterman dynamic programming. 0 by defaut.

∗ -G < int >
(DP GapOpenPenalty)

Specify the penalty for opening a gap when applying the Smith-
Waterman dynamic programming to detecting indels. -2 by defaut.

-H
(tieBreakHamming
=TRUE)

Use Hamming distance to break ties when more than one best map-
ping location is found.

-i < index >
(index)

Specify the base name of the index.

-I < int >
(indels)

Specify the number of INDEL bases allowed in the mapping. 5 by
default. Indels of up to 200bp long can be detected.

-m < int >
(TH1)

Specify the consensus threshold, which is the minimal number of
consensus subreads required for reporting a hit. The consensus
subreads are those subreads which vote for the same location in the
reference genome for the read. If pair-end read data are provided,
at least one of the two reads from the same pair must satisfy this
criteria. 3 by default.

-M < int >
(maxMismatches)

Specify the maximum number of mis-matched bases allowed in the
alignment. 3 by default. Mis-matches found in soft-clipped bases
are not counted.
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-n < int >
(nsubreads)

Specify the number of subreads extracted from each read, 10 by
default.

-o < output >
(output file)

Give the name of output file. Default output format in SourceForge
Subread is SAM, and default output format in Bioconductor Rsub-
read is BAM. All reads are included in mapping output, including
both mapped and unmapped reads, and they are in the same order
as in the input file.

-p < int >
(TH2)

Specify the minimum number of consensus subreads both reads
from the same pair must have. This argument is only applicable
for paired-end read data. The value of this argument should not be
greater than that of ‘-m’ option, so as to rescue those read pairs in
which one read has a high mapping quality but the other does not.
1 by default.

-P < 3 : 6 >
(phredOffset)

Specify the format of Phred scores used in the input data, ’3’ for
phred+33 and ’6’ for phred+64. ’3’ by default. For align function
in Rsubread, the possible values are ‘33’ (for phred+33) and ‘64’
(for phred+64). ‘33’ by default.

-Q
(tieBreakQS=TRUE)

Use mapping quality scores to break ties when more than one best
mapping location is found.

-r < input >
(readfile1)

Give the name of input file(s) (multiple files are allowed to be pro-
vided to align and subjunc functions in Rsubread). For paired-
end read data, this gives the first read file and the other read file
should be provided via the -R option. Supported input formats in-
clude FASTQ/FASTA, gzipped FASTQ/FASTA, SAM and BAM.
Default input format in SourceForge Subread is FASTQ/FASTA
and default input format in Bioconductor Rsubread is gzipped
FASTQ/FASTA.

-R < input >
(readfile2)

Provide name of the second read file from paired-end data. The
program will switch to paired-end read mapping mode if this file is
provided. (multiple files are allowed to be provided to align and
subjunc functions in Rsubread).

-S < ff : fr : rf >
(PE orientation)

Specify the orientation of the two reads from the same pair. It has
three possible values including ‘fr’, ‘ff’ and ‘’rf. Letter ‘f’ denotes
the forward strand and letter ‘r’ the reverse strand. ‘fr’ by default
(ie. the first read in the pair is on the forward strand and the second
read on the reverse strand).

-T < int >
(nthreads)

Specify the number of threads/CPUs used for mapping. 1 by de-
fault.

-u
(unique=TRUE)

Output uniquely mapped reads only. Reads that were found to
have more than one best mapping location will not be reported.

∗ -X < int >
(DP MismatchPenalty)

Specify the penalty for mismatches when performing the Smith-
Waterman dynamic programming. 0 by defaut.
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∗ -Y < int >
(DP MatchScore)

Specify the score for the matched base when performing the Smith-
Waterman dynamic programming. 2 by defaut.

∗∗−−allJunctions
(reportAllJunctions
=TRUE)

This option should only be used with subjunc for the mapping of
RNA-seq data. If specified, the subjunc will output non-canonical
exon-exon junctions and fusions (eg. chimeras), in addition to the
canonical exon-exon junctions. Chimeric reads are reported in the
same format as that in ‘−−dnaseq’ option.

−−BAMinput
(input format="BAM")

Specify that the input read data are in BAM format.

−−BAMoutput
(output format="BAM")

Specify that mapping results are saved into a BAM format file.

∗∗−−dnaseq
(DNAseq=TRUE)

Specify that the input read data are genomic DNA sequencing data.
This option should only be used with subjunc. When specified,
subjunc will perform read alignments and also detect fusion events
such as chimeras. When a read is mapped to more than one chro-
mosome, its secondary alignments will be saved to the following
optional fields along with the main fields of the same record in
the SAM/BAM output: CC(Chr), CP(Position), CG(CIGAR) and
CT(strand).

−−gzFASTQinput
(input format=

"gzFASTQ")

Specify that the input read data are in gzipped FASTQ or gzipped
FASTA format.

∗−−reportFusions
(reportFusions=TRUE)

This option should only be used with subread-align for the map-
ping of genomic DNA-seq data. If specified, subread-align will
report discovered fusion events such as chimeras. Fusions are re-
ported in the same format as that used in ‘−−dnaseq’ option.

−−rg < string >
(readGroup)

Add a < tag : value > to the read group (RG) header in the
mapping output.

−−rg-id < string >
(readGroupID)

Specify the read group ID. If specified, the read group ID will be
added to the read group header field and also to each read in the
mapping output.

−−SAMinput
(input format="SAM")

Specify that the input read data are in SAM format.

−−trim5 < int >
(nTrim5)

Trim off < int > number of bases from 5’ end of each read. 0 by
default.

−−trim3 < int >
(nTrim3)

Trim off < int > number of bases from 3’ end of each read. 0 by
default.

-v Output version of the program.
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4.5 Mapping quality scores

Both Subread and Subjunc aligners output a mapping quality score (MQS) for each mapped
read, computed as

MQS =


(
∑

i∈bm(1 − pi) −
∑

i∈bmm
(1 − pi)) × 60/L if uniquely mapped

[MQS is reset to 0 if less than 0]

0 if mapped to > 1 best location

where L is the read length, pi is the base-calling p-value for the ith base in the read, bm is
the set of locations of matched bases, and bmm is the set of locations of mismatched bases.

Base-calling p values can be readily computed from the base quality scores. Read bases
of high sequencing quality have low base-calling p values. Read bases that were found to be
insertions are treated as matched bases in the MQS calculation. The MQS is a read-length
normalized value and it is in the range [0, 60).
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Chapter 5

Mapping reads generated by RNA
sequencing technologies

5.1 A quick start for using SourceForge Subread package

An index must be built for the reference first and then the read mapping and/or junction
detection can be carried out.

Step 1: Building an index

The following command can be used to build a base-space index. You can provide a list of
FASTA files or a single FASTA file including all the reference sequences.

subread-buildindex -o my index chr1.fa chr2.fa ...

For more details about index building, see Section 4.3.

Step 2: Aligning the reads

Subread

For the purpose of differential expression analysis (ie. discovering differentially expressed
genes), we recommend you to use the Subread aligner. Subread carries out local alignments
for RNA-seq reads. The commands used by Subread to align RNA-seq reads are the same as
those used to align gDNA-seq reads. Below is an example of using Subread to map single-end
RNA-seq reads.

subread-align -i my index -r rnaseq-reads.txt -o subread results.sam

Another RNA-seq aligner included in this package is the Subjunc aligner. Subjunc not only
performs read alignments but also detects exon-exon junctions. The main difference between
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Subread and Subjunc is that Subread does not attempt to detect exon-exon junctions in the
RNA-seq reads. For the alignments of the exon-spanning reads, Subread just uses the largest
mappable regions in the reads to find their mapping locations. This makes Subread more
computationally efficient. The largest mappable regions can then be used to reliably assign
the reads to their target genes by using a read summarization program (eg. featureCounts, see
Section 6.2), and differential expression analysis can be readily performed based on the read
counts yielded from read summarization. Therefore, Subread is sufficient for read mapping
if the purpose of the RNA-seq analysis is to perform a differential expression analysis. Also,
Subread could report more mapped reads than Subjunc. For example, the exon-spanning reads
that are not aligned by Subjunc due to the lack of GT/AG splicing signals (this is the only
donor/receptor site accepted by Subjunc) could be aligned by Subread, as long as they have a
good match with the target region.

Subjunc

For other purposes of the RNA-seq data anlayses such as exon-exon junction detection
and genomic mutation detection, in which reads need to be fully aligned (especially the exon-
spanning reads), Subjunc aligner should be used. Below is an example command of using
Subjunc to perform global alignments for paired-end RNA-seq reads. Note that there are two
files included in the output: one containing the discovered exon-exon junctions (BED format)
and the other containing the mapping results for reads (SAM or BAM format).

subjunc -i my index -r rnaseq-reads1.txt -R rnaseq-reads2.txt -o subjunc result

5.2 A quick start for using Bioconductor Rsubread pack-

age

An index must be built for the reference first and then the read mapping can be performed.

Step 1: Building an index

To build the index, you must provide a single FASTA file (eg. “genome.fa”) which includes
all the reference sequences.

library(Rsubread)

buildindex(basename="my_index",reference="genome.fa")

Step 2: Aligning the reads

Please refer to Section 5.1 for difference between Subread and Subjunc in mapping RNA-
seq data. Below is an example for mapping a single-end RNA-seq dataset using Subread.
Useful information about align function can be found in its help page (type ?align in your
R prompt).

22



align(index="my_index",readfile1="rnaseq-reads.txt.gz",output_file="subread_results.bam")

Below is an example for mapping a single-end RNA-seq dataset using Subjunc. Useful
information about subjunc function can be found in its help page (type ?subjunc in your R
prompt).

subjunc(index="my_index",readfile1="rnaseq-reads.txt.gz",output_file="subjunc_results.bam")

5.3 Local read alignment

The Subread and Subjunc can both be used to map RNA-seq reads to the reference genome.
If the goal of the RNA-seq data is to perform expression analysis, eg. finding genes expressing
differentially between different conditions, then Subread is recommended. Subread performs
fast local alignments for reads and reports the mapping locations that have the largest overlap
with the reads. These reads can then be assigned to genes for expression analysis. For this
type of analysis, global alignments for the exon-spanning reads are not required because local
aligments are sufficient to get reads to be accurately assigned to genes.

However, for other types of RNA-seq data analyses such as exon-exon junction discovery,
genomic mutation detection and allele-specific gene expression analysis, global alignments are
required. The next section describes the Subjunc aligner, which performs global aligments for
RNA-seq reads.

5.4 Global read alignment

Subjunc aligns each exon-spanning read by firstly using a large number of subreads extracted
from the read to identify multiple target regions matching the selected subreads, and then
using the splicing signals (donor and receptor sites) to precisely determine the mapping loca-
tions of the read bases. It also includes a verification step to compare the quality of mapping
reads as exon-spanning reads with the quality of mapping reads as exonic reads to finally
decide how to best map the reads. Reads may be re-aligned if required.

Output of Subjunc aligner includes a list of discovered exon-exon junction locations and
also the complete alignment results for the reads. Table 2 describes the arguments used by
the Subjunc program.

5.5 Mapping microRNA sequencing reads (miRNA-seq)

To use Subread aligner to map miRNA-seq reads, a full index must be built for the reference
genome before read mapping can be carried out. For example, the following command builds
a full index for mouse reference genome mm10 :

subread-buildindex -F -B -f 72 -o mm10 full index mm10.fa
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The full index includes 16bp mers extracted from every genomic location in the genome.
Note that if -F is not specified, subread-buildindex builds a gapped index which includes
16bp mers extracted every three bases in the reference genome, ie. there is a 2bp gap between
each pair of neighbouring 16bp mers.

After the full index was built, read alignment can be performed. Reads do not need to be
trimmed before feeding them to Subread aligner since Subread soft clips sequences in the reads
that can not be properly mapped. The parameters used for mapping miRNA-seq reads need
to be carefully designed due to the very short length of miRNA sequences (∼22bp). The total
number of subreads (16bp mers) extracted from each read should be the read length minus
15, which is the maximum number of subreads that can be possibly extracted from a read.
The reason why we need to extract the maximum number of subreads is to achieve a high
sensitivity in detecting the short miRNA sequences.

The threshold for the number of consensus subreads required for reporting a hit should be
within the range of 2 to 7 consensus subreads inclusive. The larger the number of consensus
subreads required, the more stringent the mapping will be. Using a threshold of 2 consensus
subreads allows the detection of miRNA sequences of as short as 17bp, but the mapping error
rate could be relatively high. With this threshold, there will be at least 17 perfectly matched
bases present in each reported alignment. If a threshold of 4 consensus subreads was used,
length of miRNA sequences that can be detected is 19 bp or longer. With this threshold,
there will be at least 19 perfectly matched bases present in each reported alignment. When a
threshold of 7 consensus subreads was used, only miRNA sequences of 22bp or longer can be
detected (at least 22 perfectly matched bases will be present in each reported alignment).

We found that there was a significant decrease in the number of mapped reads when the
requried number of consensus subreads increased from 4 to 5 when we tried to align a mouse
miRNA-seq dataset, suggesting that there are a lot of miRNA sequences that are only 19bp
long. We therefore used a threshold of 4 consensus subreads to map this dataset. However,
what we observed might not be the case for other datasets that were generated from different
cell types and different species.

Below is an example of mapping 50bp long reads (adaptor sequences were included in the
reads in addition to the miRNA sequences), with at least 4 consensus subreads required in
the mapping:

subread-align -i mm10 full index -n 35 -m 4 -M 3 -T 10 -I 0 -P 3 -B 10

--BAMoutput -r miRNA reads.fastq -o result.sam

The ‘-B 10’ parameter instructs Subread aligner to report up to 10 best mapping locations
(equally best) in the mapping results. The multiple locations reported for the reads could
be useful for investigating their true origin, but they might need to be filtered out when
assigning mapped reads to known miRNA genes to ensure a high-quality quantification of
miRNA genes. The miRBase database (http://www.mirbase.org/) is a useful resource that
includes annotations for miRNA genes in many species. The featureCounts program can be
readily used for summarizing reads to miRNA genes.
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Chapter 6

Read summarization

6.1 Introduction

Sequencing reads often need to be assigned to genomic features of interest after they are
mapped to the reference genome. This process is often called read summarization or read
quantification. Read summarization is required by a number of downstream analyses such as
gene expression analysis and histone modification analysis. The output of read summarization
is a count table, in which the number of reads assigned to each feature in each library is
recorded.

A particular challenge to the read summarization is how to deal with those reads that
overlap more than one feature (eg. an exon) or meta-feature (eg. a gene). Care must be
taken to ensure that such reads are not over-counted or under-counted. Here we describe
the featureCounts program, an efficient and accurate read quantifier. featureCounts has the
following features:

• It carries out precise and accurate read assignments by taking care of indels, junctions
and fusions in the reads.

• It takes less than 4 minutes to summarize 20 million pairs of reads to 26k RefSeq genes
using one thread, and uses <20MB of memory (you can run it on a Mac laptop).

• It supports multi-threaded running, making it extremely fast for summarizing large
datasets.

• It supports GTF/SAF format annotation and SAM/BAM read data.

• It supports strand-specific read summarization.

• It can perform read summarization at both feature level (eg. exon level) and meta-
feature level (eg. gene level).

• It allows users to specify whether reads overlapping with more than one feature should
be counted or not.
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• It gives users full control on the summarization of paired-end reads, including allowing
them to check if both ends are mapped and/or if the fragment length falls within the
specified range.

• It can discriminate the features that were overlapped by both ends of the fragment from
the features that were overlapped by only one end of the same fragment to get more
accurate read assignments.

• It allows users to specify whether chimeric fragments should be counted.

• It automatically detects the read input format (SAM or BAM).

• It automatically re-order paired-end reads if reads belonging to the same pair are not
adjacent to each other in input read files.

6.2 featureCounts

6.2.1 Input data

The data input to featureCounts consists of (i) one or more files of aligned reads in either
SAM or BAM format and (ii) a list of genomic features in either Gene Transfer Format
(GTF) or General Feature Format (GFF) or Simplified Annotation Format (SAF). The read
input format (SAM or BAM) is automatically detected and so does not need to be specified
by the user. For paired reads, featureCounts also automatically sorts reads by name if paired
reads are not in consecutive positions in the SAM or BAM file. Both the read alignment
and the feature annotation should correspond to the same reference genome, which is a set of
reference sequences representing chromosomes or contigs. For each read, the SAM file gives
the name of the reference chromosome or contig to which the read mapped, the start position
of the read on the chromosome or contig/scaffold, and the so-called CIGAR string giving the
detailed alignment information including insertions and deletions and so on relative to the
start position.

The genomic features can be specified in either GTF/GFF or SAF format. The SAF format
is the simpler and includes only five required columns for each feature (see next section). In
either format, the feature identifiers are assumed to be unique, in accordance with commonly
used Gene Transfer Format (GTF) refinement of GFF.

featureCounts supports strand-specific read counting if strand-specific information is pro-
vided. Read mapping results usually include mapping quality scores for mapped reads. Users
can optionally specify a minimum mapping quality score that the assigned reads must satisfy.

6.2.2 Annotation format

The genomic features can be specified in either GTF/GFF or SAF format. A definition of the
GTF format can be found at UCSC website (http://genome.ucsc.edu/FAQ/FAQformat.
html#format4). The SAF format includes five required columns for each feature: feature

26



identifier, chromosome name, start position, end position and strand. These five columns
provide the minimal sufficient information for read quantification purposes. Extra annotation
data are allowed to be added from the sixth column.

A SAF-format annotation file should be a tab-delimited text file. It should also include a
header line. An example of a SAF annotation is shown as below:

GeneID Chr Start End Strand

497097 chr1 3204563 3207049 -

497097 chr1 3411783 3411982 -

497097 chr1 3660633 3661579 -

100503874 chr1 3637390 3640590 -

100503874 chr1 3648928 3648985 -

100038431 chr1 3670236 3671869 -

...

GeneID column includes gene identifiers that can be numbers or character strings. Chro-
mosomal names included in the Chr column must match the chromosomal names of reference
sequences to which the reads were aligned.

6.2.3 Single and paired-end reads

Reads may be paired or unpaired. If paired reads are used, then each pair of reads defines
a DNA or RNA fragment bookended by the two reads. In this case, featureCounts can be
instructed to count fragments rather than reads. featureCounts automatically sorts reads by
name if paired reads are not in consecutive positions in the SAM or BAM file. Users do not
need sort their paired reads before providing them to featureCounts.

6.2.4 Features and meta-features

featureCounts is a general-purpose read summarization function, which assigns mapped reads
(RNA-seq reads or genomic DNA-seq reads) to genomic features or meta-features. Each
feature is an interval (range of positions) on one of the reference sequences. We define a meta-
feature to be a set of features representing a biological construct of interest. For example,
features often correspond to exons and meta-features to genes. Features sharing the same
feature identifier in the GTF or SAF annotation are taken to belong to the same meta-feature.
featureCounts can summarize reads at either the feature or meta-feature levels.

We recommend to use unique gene identifiers, such as NCBI Entrez gene identifiers, to
cluster features into meta-features. Gene names are not recommended to use for this purpose
because different genes may have the same names. Unique gene identifiers were often included
in many publicly available GTF annotations which can be readily used for summarization.
The Bioconductor Rsubread package also includes NCBI RefSeq annotations for human and
mice. Entrez gene identifiers are used in these annotations.
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6.2.5 Overlap of reads with features

featureCounts preforms precise read assignment by comparing mapping location of every base
in the read or fragment with the genomic region spanned by each feature. It takes account of
any gaps (insertions, deletions, exon-exon junctions or fusions) that are found in the read. It
calls a hit if any overlap (1bp or more) is found between the read or fragment and a feature.
A hit is called for a meta-feature if the read or fragment overlaps any component feature of
the meta-feature.

6.2.6 Multiple overlaps

A multi-overlap read or fragment is one that overlaps more than one feature, or more than
one meta-feature when summarizing at the meta-feature level. featureCounts provides users
with the option to either exclude multi-overlap reads or to count them for each feature that
is overlapped. The decision whether or not to counting these reads is often determined by the
experiment type. We recommend that reads or fragments overlapping more than one gene
are not counted for RNA-seq experiments, because any single fragment must originate from
only one of the target genes but the identity of the true target gene cannot be confidently
determined. On the other hand, we recommend that multi-overlap reads or fragments are
counted for most ChIP-seq experiments because epigenetic modifications inferred from these
reads may regulate the biological functions of all their overlapping genes.

Note that, when counting at the meta-feature level, reads that overlap multiple features
of the same meta-feature are always counted exactly once for that meta-feature, provided
there is no overlap with any other meta-feature. For example, an exon-spanning read will be
counted only once for the corresponding gene even if it overlaps with more than one exon.

6.2.7 In-built annotations

In-built gene annotations for genomes hg19, mm10 and mm9 are included in both Bioconduc-
tor Rsubread package and SourceForge Subread package. These annotations were downloaded
from NCBI RefSeq database and then adapted by merging overlapping exons from the same
gene to form a set of disjoint exons for each gene. Genes with the same Entrez gene identifiers
were also merged into one gene.

Each row in the annotation represents an exon of a gene. There are five columns in
the annotation data including Entrez gene identifier (GeneID), chromosomal name (Chr),
chromosomal start position(Start), chromosomal end position (End) and strand (Strand).

In Rsubread, users can access these annotations via the getInBuiltAnnotation function. In
Subread, these annotations are stored in directory ‘annotation’ under home directory of the
package.

6.2.8 Program output

Output of featureCounts program in SourceForge Subread package is saved into a tab-delimited
file, which includes annotation columns (‘Geneid’, ‘Chr’, ‘Start’, ‘End’, ‘Strand’ and ‘Length’)
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and data columns (read counts for each gene in each library). Annotation column ‘Length’
contains total number of non-overlapping bases of each feature or meta-feature. When for
example summarizing RNA-seq reads to genes, this column will give total number of non-
overlapping bases included in all exons belonging to the same gene, for each gene.

When performing summarization at meta-feature level, annotation columns including
‘Chr’, ‘Start’, ‘End’, ‘Strand’ and ‘Length’ give the annotation information for every fea-
ture included each meta-features. Therefore, each of these columns may include more than
one value (semi-colon separated).

Output of featureCounts program in SourceForge Subread package also includes stat info of
summarization results, which is saved to a tab-delimited file as well (a separate file). This file
gives the total number of reads being successfully assigned and numbers of reads that were
not assigned due to various reasons such as assignment ambiguity, multi-mapping, secondary
alignment, no hits (no features), unmapped, mapping quality, fragment length, and chimera.

All these output were also provided by the featureCounts function included in Bioconductor
Rsubread package, except that read summarization results are saved into an R ‘List’ object.
For more details, see the help page for featureCounts function in Rsubread.

6.2.9 Program usage

Table 3 describes the parameters used by the featureCounts program.
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Table 3: arguments used by the featureCounts program included in the SourceForge Sub-
read package. Arguments included in parenthesis are the equivalent parameters used by
featureCounts function in Bioconductor Rsubread package.
Arguments Description
input files
(files)

Give the names of input read files that include the read map-
ping results. The program automatically detects the file for-
mat (SAM or BAM). Multiple files can be provided at the
same time.

-a < input >
(annot.ext, annot.inbuilt)

Give the name of an annotation file.

-A
(chrAliases)

Give the name of a file that contains aliases of chromosome
names. The file should be a comma delimited text file that
includes two columns. The first column gives the chromosome
names used in the annotation and the second column gives the
chromosome names used by reads. This file should not contain
header lines. Names included in this file are case sensitive.

-B
(requireBothEndsMapped)

If specified, only fragments that have both ends successfully
aligned will be considered for summarization. This option
should be used together with -p (or isPairedEnd in Rsubread
featureCounts).

-C
(countChimericFragments)

If specified, the chimeric fragments (those fragments that have
their two ends aligned to different chromosomes) will NOT
be counted. This option should be used together with -p (or
isPairedEnd in Rsubread featureCounts).

-d < int >
(minFragLength)

Minimum fragment/template length, 50 by default. This op-
tion must be used together with -p and -P.

-D < int >
(maxFragLength)

Maximum fragment/template length, 600 by default. This
option must be used together with -p and -P.

-f
(useMetaFeatures)

If specified, read summarization will be performed at feature
level (eg. exon level). Otherwise, it is performed at meta-
feature level (eg. gene level).

-F
(isGTFAnnotationFile)

Specify the format of the annotation file. Acceptable formats
include ‘GTF’ and ‘SAF’ (see Section 6.2.2 for details). The
C version of featureCounts program uses a GTF format an-
notation by default, but the R version uses a SAF format
annotation by default. The R version also includes in-built
annotations.

-g < input >
(GTF.attrType)

Specify the attribute type used to group features (eg. exons)
into meta-features (eg. genes) when GTF annotation is pro-
vided. ‘gene id’ by default. This attribute type is usually the
gene identifier. This argument is useful for the meta-feature
level summarization.
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-M
(countMultiMappingReads)

If specified, multi-mapping reads/fragments will be counted.
A multi-mapping read will be counted up to N times if it has
N reported mapping locations. The program uses the ‘NH’
tag to find multi-mapping reads.

-o < input > Give the name of the output file. The output file contains
the number of reads assigned to each meta-feature (or each
feature if -f is specified). Note that the featureCounts function
in Rsubread does not use this parameter. It returns a list

object including read summarization results and other data.
-O
(allowMultiOverlap)

If specified, reads (or fragments if -p is specified) will be al-
lowed to be assigned to more than one matched meta-feature
(or feature if -f is specified). Reads/fragments overlapping
with more than one meta-feature/feature will be counted more
than once. Note that when performing meta-feature level
summarization, a read (or fragment) will still be counted once
if it overlaps with multiple features belonging to the same
meta-feature but does not overlap with other meta-features.

-p
(isPairedEnd)

If specified, fragments (or templates) will be counted instead
of reads. This option is only applicable for paired-end reads.

-P
(checkFragLength)

If specified, the fragment length will be checked when assign-
ing fragments to meta-features or features. This option must
be used together with -p. The fragment length thresholds
should be specified using -d and -D options.

-Q < int >
(minMQS)

The minimum mapping quality score a read must satisfy in
order to be counted. For paired-end reads, at least one end
should satisfy this criteria. 0 by default.

-R Output read assignment results for each read (or fragment
if paired end). They are saved to a tab-delimited file that
contains four columns including read name, status(assigned
or the reason if not assigned), name of target feature/meta-
feature and number of hits if the read/fragment is counted
multiple times. Name of the file is the input file name added
with a suffix ‘.featureCounts’.

-s < int >
(isStrandSpecific)

Indicate if strand-specific read counting should be performed.
It has three possible values: 0 (unstranded), 1 (stranded) and
2 (reversely stranded). 0 by default. For paired-end reads,
strand of the first read is taken as the strand of the whole
fragment and FLAG field of the current read is used to tell if
it is the first read in the fragment.

-t < input >
(GTF.featureType)

Specify the feature type. Only rows which have the matched
feature type in the provided GTF annotation file will be in-
cluded for read counting. ‘exon’ by default.
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-T < int >
(nthreads)

Number of the threads. 1 by default.

-v Output version of the program.
−−countSplitAlignmentsOnly
(countSplitAlignmentsOnly)

If specified, only split alignments (CIGAR strings containing
letter ‘N’) will be counted. All the other alignments will be
ignored. An example of split alignments is the exon-spanning
reads in RNA-seq data. If exon-spanning reads need to be
assigned to all their overlapping exons, ‘-f’ and ‘-O’ options
should be provided as well.

−−ignoreDup
(ignoreDup)

If specified, reads that were marked as duplicates will be ig-
nored. Bit Ox400 in FLAG field of SAM/BAM file is used
for identifying duplicate reads. In paired end data, the entire
read pair will be ignored if at least one end is found to be a
duplicate read.

−−primary
(countPrimaryAlignmentsOnly)

If specified, only primary alignments will be counted. Primary
and secondary alignments are identified using bit 0x100 in
the Flag field of SAM/BAM files. All primary alignments
in a dataset will be counted no matter they are from multi-
mapping reads or not (ie. ‘-M’ is ignored).

−−minReadOverlap
< int >
(minReadOverlap)

Specify the minimum number of overlapped bases required to
assign a read to a feature. 1 by default. Negative values are
permitted, indicating a gap being allowed between a read and
a feature.

−−read2pos < int >
(read2pos)

The read is reduced to its 5’ most base or 3’ most base. Read
summarization is then performed based on the single base
position to which the read is reduced. By default, no read
reduction will be performed.

−−readExtension5 < int >
(readExtension5)

Reads are extended upstream by < int > bases from their 5’
end. 0 by default.

−−readExtension3 < int >
(readExtension3)

Reads are extended downstream by < int > bases from their
3’ end. 0 by default.
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6.3 A quick start for featureCounts in SourceForge Sub-
read

You need to provide read mapping results (in either SAM or BAM format) and an annotation
file for the read summarization. The example commands below assume your annotation file
is in GTF format.

Summarize SAM format single-end reads using 5 threads:

featureCounts -T 5 -a annotation.gtf -t exon -g gene id

-o counts.txt mapping results SE.sam

Summarize BAM format single-end read data:

featureCounts -a annotation.gtf -t exon -g gene id

-o counts.txt mapping results SE.bam

Summarize multiple libraries at the same time:

featureCounts -a annotation.gtf -t exon -g gene id

-o counts.txt mapping results1.bam mapping results2.bam

Summarize paired-end reads and count fragments (instead of reads):

featureCounts -p -a annotation.gtf -t exon -g gene id

-o counts.txt mapping results PE.bam

Count fragments satisfying the fragment length criteria, eg. [50bp, 600bp]:

featureCounts -p -P -d 50 -D 600 -a annotation.gtf -t exon -g gene id

-o counts.txt mapping results PE.bam

Count fragments which have both ends successfully aligned without considering the fragment
length constraint:

featureCounts -p -B -a annotation.gtf -t exon -g gene id

-o counts.txt mapping results PE.bam

Exclude chimeric fragments from the fragment counting:

featureCounts -p -C -a annotation.gtf -t exon -g gene id

-o counts.txt mapping results PE.bam
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6.4 A quick start for featureCounts in Bioconductor Rsub-
read

You need to provide read mapping results (in either SAM or BAM format) and an annotation
file for the read summarization. The example commands below assume your annotation file
is in GTF format.

Load Rsubread library from you R session:

library(Rsubread)

Summarize single-end reads using built-in RefSeq annotation for mouse genome mm9:

featureCounts(files="mapping_results_SE.sam",annot.inbuilt="mm9")

Summarize single-end reads using a user-provided GTF annotation file:

featureCounts(files="mapping_results_SE.sam",annot.ext="annotation.gtf",

isGTFAnnotationFile=TRUE,GTF.featureType="exon",GTF.attrType="gene_id")

Summarize single-end reads using 5 threads:

featureCounts(files="mapping_results_SE.sam",nthreads=5)

Summarize BAM format single-end read data:

featureCounts(files="mapping_results_SE.bam")

Summarize multiple libraries at the same time:

featureCounts(files=c("mapping_results1.bam","mapping_results2.bam"))

Summarize paired-end reads and counting fragments (instead of reads):

featureCounts(files="mapping_results_PE.bam",isPairedEnd=TRUE)

Count fragments satisfying the fragment length criteria, eg. [50bp, 600bp]:

featureCounts(files="mapping_results_PE.bam",isPairedEnd=TRUE,checkFragLength=TRUE,

minFragLength=50,maxFragLength=600)

Count fragments which have both ends successfully aligned without considering the fragment
length constraint:

featureCounts(files="mapping_results_PE.bam",isPairedEnd=TRUE,requireBothEndsMapped=TRUE)

Exclude chimeric fragments from fragment counting:

featureCounts(files="mapping_results_PE.bam",isPairedEnd=TRUE,countChimericFragments=FALSE)
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Chapter 7

SNP calling

7.1 Algorithm

SNPs(Single Nucleotide Polymorphisms) are the mutations of single nucleotides in the genome.
It has been reported that many diseases were initiated and/or driven by such mutations.
Therefore, successful detection of SNPs is very useful in designing better diagnosis and treat-
ments for a variety of diseases such as cancer. SNP detection also is an important subject of
many population studies.

Next-gen sequencing technologies provide an unprecedented opportunity to identify SNPs
at the highest resolution. However, it is extremely computing-intensive to analyze the data
generated from these technologies for the purpose of SNP discovery because of the sheer
volume of the data and the large number of chromosomal locations to be considered. To
discover SNPs, reads need to be mapped to the reference genome first and then all the read
data mapped to a particular site will be used for SNP calling for that site. Discovery of
SNPs is often confounded by many sources of errors. Mapping errors and sequencing errors
are often the major sources of errors causing incorrect SNP calling. Incorrect alignments of
indels, exon-exon junctions and fusions in the reads can also result in wrong placement of
blocks of continuous read bases, likely giving rise to consecutive incorrectly reported SNPs.

We have developed a highly accurate and efficient SNP caller, called exactSNP [9]. exact-
SNP calls SNPs for individual samples, without requiring control samples to be provided. It
tests the statistical significance of SNPs by comparing SNP signals to their background noises.
It has been found to be an order of magnitude faster than existing SNP callers.

7.2 exactSNP

Below is the command for running exactSNP program. The complete list of parameters used
by exactSNP can be found in Table 4.

exactSNP [options] -i input -g reference genome -o output
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Table 4: arguments used by the exactSNP program included in the SourceForge Sub-
read package. Arguments included in parenthesis are the equivalent parameters used by
exactSNP function in Bioconductor Rsubread package.
Arguments Description
-a < file >
(SNPAnnotationFile)

Specify name of a VCF-format file that includes annotated
SNPs. Such annotation files can be downloaded from public
databases such as the dbSNP database. Incorporating known
SNPs into SNP calling has been found to be helpful. However
note that the annotated SNPs may or may not be called for
the sample being analyzed.

-b
(isBAM)

Indicate the input file provided via −i is in BAM format.

-f < float >
(minAllelicFraction)

Specify the minimum fraction of mis-matched bases a SNP-
containing location must have. Its value must between 0 and
1. 0 by default.

-g < file >
(refGenomeFile)

Specify name of the file including all reference sequences.
Only one single FASTA format file should be provided.

-i < file > [−b if BAM ]
(readF ile)

Specify name of an input file including read mapping results.
The format of input file can be SAM or BAM (-b needs to be
specified if a BAM file is provided).

-n < int >
(minAllelicBases)

Specify the minimum number of mis-matched bases a SNP-
containing location must have. 1 by default.

-o < file >
(outputFile)

Specify name of the output file. This program outputs a VCF
format file that includes discovered SNPs.

-Q < int >
(qvalueCutoff)

Specify the q-value cutoff for SNP calling at sequencing depth
of 50X. 12 by default. The corresponding p-value cutoff is
10−Q. Note that this program automatically adjusts the q-
value cutoff according to the sequencing depth at each chro-
mosomal location.

-r < int >
(minReads)

Specify the minimum number of mapped reads a SNP-
containing location must have (ie. the minimum coverage).
1 by default.

-s < int >
(minBaseQuality)

Specify the cutoff for base calling quality scores (Phred scores)
read bases must satisfy to be used for SNP calling. 13 by
default. Read bases that have Phred scores lower than the
cutoff value will be excluded from the analysis.

-t < int >
(nTrimmedBases)

Specify the number of bases trimmed off from each end of the
read. 3 by default.

-T < int >
(nthreads)

Specify the number of threads. 1 by default.

-v Output version of the program.
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-x < int >
(maxReads)

Specify the maximum number of mapped reads a SNP-
containing location could have. 3000 by default. Any location
having more than the threshold number of reads will not be
considered for SNP calling. This option is useful for removing
PCR artefacts.
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Chapter 8

Case studies

8.1 A Bioconductor R pipeline for analyzing RNA-seq

data

Here we illustrate how to use two Bioconductor packages - Rsubread and limma - to perform a
complete RNA-seq analysis, including Subread read mapping, featureCounts read summariza-
tion, voom normalization and limma differential expresssion analysis.

Data and software. The RNA-seq data used in this case study include four libraries:
A 1, A 2, B 1 and B 2. Sample A is Universal Human Reference RNA (UHRR) and sample
B is Human Brain Reference RNA (HBRR). A 1 and A 2 are two replicates of sample A
(undergoing separate sample preparation), and B 1 and B 2 are two replicates of sample B.
In this case study, A 1 and A 2 are treated as biological replicates although they are more
like technical replicates. B 1 and B 2 are treated as biological replicates as well.

Note that these libraries only included reads originating from human chromosome 1 (ac-
cording to Subread aligner). Reads were generated by the MAQC/SEQC Consortium. Data
used in this case study can be downloaded from
http://bioinf.wehi.edu.au/RNAseqCaseStudy/data.tar.gz (283MB). Both read data and
reference sequence for chromosome 1 of human genome (GRCh37) were included in the data.

After downloading the data, you can uncompress it and save it to your current working
directory. Launch R and load Rsubread, limma and edgeR libraries by issuing the following
commands at your R prompt. Version of your R should be 3.0.2 or later. Rsubread version
should be 1.12.1 or later and limma version should be 3.18.0 or later. Note that this case study
only runs on Linux/Unix and Mac OS X.

library(Rsubread)

library(limma)

library(edgeR)

To install/update Rsubread and limma packages, issue the following commands at your R
prompt:
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source("http://bioconductor.org/biocLite.R")

biocLite(pkgs=c("Rsubread","limma"))

Index building. Build an index for human chromosome 1. This will take ∼3 minutes. Index
files with basename ‘chr1’ will be generated in your current working directory.

buildindex(basename="chr1",reference="hg19_chr1.fa")

Alignment. Perform read alignment for all four libraries and report uniquely mapped reads
only. This will take ∼4 minutes. BAM files containing the mapping results will be generated
in your current working directory.

targets <- readTargets()

align(index="chr1",readfile1=targets$InputFile,input_format="gzFASTQ",output_format="BAM",

output_file=targets$OutputFile,tieBreakHamming=TRUE,unique=TRUE,indels=5)

Read summarization. Summarize mapped reads to NCBI RefSeq genes. This will only
take a few seconds. Note that the featureCounts function contains built-in RefSeq annotations
for human and mouse genes. featureCounts returns an R ‘List’ object, which includes raw read
count for each gene in each library and also annotation information such as gene identifiers
and gene lengths.

fc <- featureCounts(files=targets$OutputFile,annot.inbuilt="hg19")

fc$counts[1:5,]

A_1.bam A_2.bam B_1.bam B_2.bam

653635 642 522 591 596

100422834 1 0 0 0

645520 5 3 0 0

79501 0 0 0 0

729737 82 72 30 25

fc$annotation[1:5,c("GeneID","Length")]

GeneID Length

1 653635 1769

2 100422834 138

3 645520 1130

4 79501 918

5 729737 3402

Create a DGEList object.

x <- DGEList(counts=fc$counts, genes=fc$annotation)

Calculate RPKM (reads per kilobases of exon per million reads mapped) values for genes:

x_rpkm <- rpkm(x,x$genes$Length,prior.count=0)

x_rpkm[1:5,]

A_1.bam A_2.bam B_1.bam B_2.bam

653635 939 905.0 709 736
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100422834 19 0.0 0 0

645520 11 8.1 0 0

79501 0 0.0 0 0

729737 62 64.9 19 16

Filtering. Filter out those genes which fail to achieve a 0.5 RPKM in at least two libraries.

isexpr <- rowSums(x_rpkm >= 0.5) >= 2

x <- x[isexpr,]

Design matrix. Create a design matrix:

celltype <- factor(targets$CellType)

design <- model.matrix(~0+celltype)

colnames(design) <- levels(celltype)

Normalization. Perform voom normalization:

y <- voom(x,design,plot=TRUE)

The figure below shows the mean-variance relationship estimated by voom.

Sample clustering. Multi-dimensional scaling (MDS) plot shows that sample A libraries
are clearly separated from sample B libraries.

plotMDS(y,xlim=c(-2.5,2.5))
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Linear model fitting and differential expression analysis. Fit linear models to genes
and assess differential expression using eBayes moderated t statistic. Here we compare sample
A vs sample B.

fit <- lmFit(y,design)

contr <- makeContrasts(AvsB=A-B,levels=design)

fit.contr <- eBayes(contrasts.fit(fit,contr))

dt <- decideTests(fit.contr)

summary(dt)

AvsB

-1 556

0 523

1 979

List top 10 differentially expressed genes:

options(digits=3)

topTable(fit.contr)

logFC AveExpr t P.Value adj.P.Val B

2752 -2.39 12.9 -91.4 9.07e-21 9.34e-18 38.2

100131754 -1.63 16.0 -93.4 6.67e-21 9.34e-18 36.9

22883 -2.24 12.5 -70.2 3.57e-19 2.45e-16 34.5

6135 2.23 12.1 67.7 5.90e-19 2.62e-16 34.0

4904 2.99 11.5 66.4 7.63e-19 2.62e-16 33.6

2023 2.72 13.5 66.5 7.55e-19 2.62e-16 33.5
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6202 2.40 12.1 64.6 1.13e-18 3.33e-16 33.3

23154 -3.73 11.4 -57.7 5.49e-18 1.41e-15 31.5

6125 2.01 11.8 50.2 3.77e-17 8.61e-15 29.8

8682 -2.59 11.7 -49.0 5.18e-17 1.07e-14 29.5
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