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1 Statistical relative protein quantification for LC-MS, SRM
and DIA

MSstats is an open-source R-based package for statistical relative quantification of peptides
and proteins in mass spectrometry-based proteomics experiments.

Applicability

MSstats 2.0 is applicable to multiple types of sample preparation, including label-free work-
flows, workflows that use stable isotope labeled reference proteins and peptides, and workflows
that use fractionation. It is applicable to global Liquid Chromatography coupled with Mass
Spectrometry (LC-MS), targeted Selected Reaction Monitoring (SRM) and Data-Independent
Acquisition (DIA or SWATH-MS). It is applicable to experiments that make arbitrary complex
comparisons of experimental conditions or times.

MSstats 2.0 is currently not applicable to experiments that compare multiple metabolically
labeled endogenous samples within a same run. It is not applicable to experiments with iTRAQ
labeling. These experiments will be supported in the future.

Statistical functionalities

MSstats 2.0 performs three analysis steps. The first step, data processing and visualization,
transforms and normalizes the intensities of the peaks, and generates workflow-specific and
customizable numeric summaries for data visualization and quality control.

The second step, statistical modeling and inference, automatically detects the experimental
design (e.g. group comparison or time course, presence of labeled reference peptides or pro-
teins) from the data. It then reflects the experimental design, the type of spectral acquisition
strategy, and the scope of conclusions (e.g. restricted to the subjects, or expanded to the
underlying populations), and fits an appropriate linear mixed model by means of lm and lmer

functionalities in R. The model is used to detect differentially abundant proteins or peptides,
or to summarize the protein or peptide abundance in a single biological replicate or condition
(that can be used, e.g. as input to clustering or classification).

The third step, statistical experimental design, views the dataset being analyzed as a pi-
lot study, utilizes its variance components, and calculates the minimal number of replicates
necessary to achieve a pre-specified statistical power.

Interoperability with existing computational tools

MSstats takes as input data in a tabular CVS format, which can be produced by any spec-
tral processing tool such as SuperHirn, MaxQuant, Progenesis, MultiQuant, OpenMS or
OpenSWATH.

For statistics experts, MSstats 2.0 satisfies the interoperability requirements of Bioconduc-
tor, and takes as input data in the MSnSet format (Gatto u. Lilley, 2012). The command
line-based workflow is partitioned into a series of independent steps, that facilitate the de-
velopment and testing of alternative statistical approaches. MSstats 2.0 complies with the
maintenance and documentation requirements of Bioconductor.
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Finally, MSstats 2.0 is available as an external tool within Skyline (MacLean u. a., 2010).
The external tool support within Skyline manages MSstats installation, point-and-click ex-
ecution, parameter collection in Windows forms and output display. Skyline manages the
annotations of the experimental design, and the processing of raw data. It outputs a custom
report, that is fed as a single stream input into MSstats. This design buffers proteomics users
from the details of the R implementation, while enabling rigorous statistical modeling.

Availability

MSstats 2.0 is available under the Artistic-2.0 license at msstats.org. MSstats as an external
tool is available at http://proteome.gs.washington.edu/software/Skyline/tools.html.
MSstats 2.0 is currently also under evaluation by Bioconductor (http://www.bioconductor.
org).

Changes from MSstats 1.0 and SRMstats

For special cases of some experimental workflows, the underlying statistical methodology was
previously described, and implemented in R-based packages MSstats 1.0 and SRMstats (Chang
u. a., 2012; Clough u. a., 2012; Surinova u. a., 2013).

MSstats 2.0 supersedes MSstats 1.0 and SRMstats, in that it implements all the analysis
steps that are available in these packages. In addition, it extends the methodology and the
implementation, as follows.

• Unlike MSstats 1.0 (limited to label-free shotgun LC-MS experiments) and SRMstats
(limited to SRM experiments), MSstats 2.0 integrates the statistical analysis steps across
two sample preparation workflows (label-free, and using labeled reference proteins or
peptides), and three spectral acquisition strategies (global LC-MS, targeted SRM and
data-Independent DIA or SWATH-MS). The integration enables a greater flexibility of
statistical modeling for each dataset.

• MSstats includes new statistical capabilities:

– Data processing: quantification of between-run interferences, custom imputation of
missing values by low-intensity signals, custom removal of spectral features.

– Data visualization: more flexible plots of the protein profiles using ggplot2 function-
alities in R, in particular displaying pre-specified proteins, customizing axis range,
label and angle.

– Fitting linear mixed effects models: fit appropriate linear models for specialized
circumstances (e.g. proteins with a single replicate in a condition, proteins with
a single feature, proteins with various patterns of missing intensities in groups or
runs). For label-free experiments, fit appropriate models for experiments with and
without technical replicates. Model the unequal variance between features using
iterative weight least squares.

– Diagnostics of the quality of model fit: residual plots and normal quantile-quantile
plots across features of a protein, and separately for each feature of a protein to
detect deviations from the model assumptions such as unequal variance.
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– Calculation of the sample size: support of multiple modeling options in the anal-
ysis of the future experiment, such as expanded or restricted scope of biological
replicates, and experiments with or without systematic interferences.

– Summarization of protein abundance in a subject or in a condition on a relative
scale: support of label-free experiments and experiments with labeled reference
proteins or peptides. Support of multiple output formats (long format and data
matrix).

• MSstats 2.0 facilitates the interoperability with existing computational tools. In addition
to taking as input a table in a CSV format, it can now be used as an external tool
with Skyline by researchers who are unfamiliar with R. It also supports input in the
MSnSet format, and partitions the analysis into a series of separate well-defined steps for
interoperability with Bioconductor.
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Figure 1: Overview of workflow in MSstats

To get started with this package in R, first load the package and then visit the help section
of MSstats-package first by the following code.

> library(MSstats)
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> ?MSstats

2 Allowable data formats

2.1 SRM with stable isotope labeled reference peptides

(1) 10-column format

The preferred structure of data for use in MSstats is “long” format with 10 columns
such as the report from other software for identifying peaks. The purpose of MSstats
is for statistical analysis after peak identification and quantitation. Therefore, input
for MSstats would be output of other software(such as Skyline, MaxQuant, mProphet,
openSWATH and so on) for reading raw files such as mzXML, wiff files, or other types
of files and identifying peaks. That software generates the report as .csv file. The raw
data is required to contain variable of ProteinName, PeptideSequence, PrecursorCharge,
FragmentIon, ProductCharge, IsotopeLabelType, Condition, BioReplicate, Run, Inten-
sity. The variable names should be fixed but are not case-sensitive. Using MSstats report
format in Skyline, this required input data will be automatically generated.

(a) ProteinName: This column needs information about Protein ID. Statistical analysis
for each unique labeling in this column will be done. If you want peptide-level
analysis, you can use peptide ID in this column.

(b) PeptideSequence, PrecursorCharge, FragmentIon, ProductCharge: The com-
bination of these 4 columns will be used as feature information. If the information
of one or more columns is not available for the original raw data, please retain the
column variables and type in fixed value (especially LC-MS data, See below LC-MS
example input.). For example, the original raw data does not contain the informa-
tion of ProductCharge, we retain the column ProductCharge and type in 0 for all
transitions in RawData.

(c) IsotopeLabelType: This column need to say whether this measurement is based
on the endogenous peptides (use ’L’) or reference(labeled synthetic) peptides (use
’H’).

(d) Condition: For case-control experiments, this should include case(disease) or con-
trol information. For time-course experiments, this should have time points (T1,T2,...)
for each measurement. If you have combination of case-control and time-course
experiments, this should also combination of these two, such as Disease T1, Dis-
ease T2, Control T1,and Control T2.

(e) BioReplicate: This should label with unique patient ID (i.e., same patients should
label with the same ID).

MSstats does not require that technical replicates be specified in the data. They
should be labeled the same as the corresponding biological replicate. MSstats de-
tects the presence of technical replicates and accounts for them in the model-based
analysis.

(f) Run: This means MS experiment measuremnts. If the same individual(patient)
repetitively measured in the same Condition, BioReplicate values are the same,

6



but Run values are different based on repetition. If all the transitions from one
sample is not measured in a single MS run, but split into multiple MS runs due to
the limited transitions per run, please also specify this information.

(g) Intensity: This is required to be original signal without any log transformation
and can be specified as the peak of height or the peak of area under curve. Any
other quantitative representative of abundance can be used instead.

An example of a dataset in SRM is shown in Figure 2.

Figure 2: Example dataset from SRM experiment (as a .CSV file) in “long” format. Each row
corresponds to a single intensity. (See section 3 in details.)

(2) How to assign Condition, BioReplicate, Run columns from design of experi-
ment

Condition, BioReplicate, Run columns are based on your design of experiments. Con-
dition means Disease groups, different time points or the combination of groups and
time points. BioReplicate needs sample or patient ID. Run means MS measurement
run.

(a) Case-control experiment
Let’s assume that there are two groups, disease and control, and each has 2 individ-
uals (biological replicates), which are total 4 individual. Also we repeat to measure
each individual twice as technical replicates. Then the possible values in these 3
columns are in Table 1.

Condition BioReplicate Run

Disease sample1 1
Disease sample1 2
Disease sample2 3
Disease sample2 4
Control sample3 5
Control sample3 6
Control sample4 7
Control sample4 8

Table 1: Possible assignment for design of experiment information in case-control
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If there is no technical replicate, BioReplicate and Run will be the same. In
case-control, BioReplicate is nested in Condition and Run is the combination of
biological replicates and technical replicates.

(b) Time-course experiment
In time-cour experiment, the same individual is repetitively measured across con-
ditions (time points). Let’s assume that there are four individuals (biological repli-
cates). We measure each individual at two time points, time1 and time2, repetively.
Then the values in these 3 columns are one of rows in Table 2.

Condition BioReplicate Run

Time1 sample1 1
Time2 sample1 2
Time1 sample2 3
Time2 sample2 4
Time1 sample3 5
Time2 sample3 6
Time1 sample4 7
Time2 sample4 8

Table 2: Possible assignment for design of experiment information in time-course

If there is no technical replicate, Run column is the combination of Condition and
BioReplicate. Then if there are technical replicates, Run column is the combination
of Condition, BioReplicate, and technical replicates.

(3) MSnSet format

MSstats also allows data to be in the format of MSnSet, suggested general format on the
proteomics in MSstats package. A MSnSet contains several components, of which the
most commonly accessed are the assayData, phenoData, and the featureData compo-
nents. The assayData is a matrix of intensities, where each row corresponds to the unit
of analysis, a peptide feature; the columns correspond to sample ids. The phenoData
contains columns that describe the biological samples, conditions in the experiment. The
featureData contains columns describing the peptide features, such as the name or id of
the underlying protein and information of features.

For data stored as an expression set, group labels information are required. If more than
one variable is listed in group argument, a concatenated variable is created based on the
variables. The remaining information (peptide feature ids, biological replicate ids, and
abundance) can be extracted from the rows and columns of featureData and phenoData
or the users can assign them based on their design of experiments.

2.2 Label-free LC-MS

(1) 10-column format

For label-free LC-MS, the required input is 10-column format, which is the same as for
SRM in section 2.1 (1). Only difference between expeirments in input format of MSstats
is how to assign feature information. Feature information will consist of 4 columns,

8



PeptideSequence, PrecursorCharge, FragmentIon, ProductCharge. If any value of
4 columns is different, it will make different feature ID. The datasets from LC-MS ex-
periment do not have multiple fragments per peptide. Therefore PrecursorCharge,

FragmentIon, ProductCharge columns might not be available. You can retain the col-
umn variables with any fixed value (such as NA or 0). In example data set, peptide
feature ID is used in FragmentIon column to distinguish feature.( Figure 3)

Figure 3: Example dataset from LC-MS shortgun experiment.(See section 4 in details.)

(2) How to assign Condition, BioReplicate, Run columns from design of experi-
ment

For label-free LC-MS, it is the same as for SRM in section 2.1 (2).

(3) MSnSet format

If there are all required information in MSnSet, it is the same as for SRM in section 2.1
(3).

2.3 Label-free DIA

(1) 10-column format

For label-free DIA, the required input is 10-column format, which is the same as for SRM
in section 2.1 (1). The values of required columns for DIA can be extracted from output
of other software after identifing and quantifying peaks, such as openSWATH. Each row
in required input for MSstats corresponds to single intensity value. Only difference
between expeirments in input format of MSstats is how to assign feature information.
For example, openSWATH provides the information about 4 columns, PeptideSequence,
PrecursorCharge, FragmentIon, ProductCharge. In this case, the format of input is
the same as SRM experiment. If some variables are not available or you want to use
feature ID itself, use feature ID values in FragmentIon or ProductCharge.

In example data set, feature ID (or transition ID) is used in ProductCharge column to
distinguish feature.( Figure 4)

(2) How to assign Condition, BioReplicate, Run columns from design of experi-
ment

For label-free DIA, it is the same as for SRM in section 2.1 (2).
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Figure 4: Example dataset from DIA experiment.(See section 5 in details.)

(3) MSnSet format

If there are all required information in MSnSet, it is the same as for SRM in section 2.1
(3).

3 Example workflow with label-based SRM: time-course inves-
tigation of S. Cerevisiae

3.1 Experimental design

The example dataset is from a label-based SRM experiment of a time course yeast study. This
is a partial data set obtained from a published study (Picotti u. a., 2009). The experiment
targeted 45 proteins in the glycolysis/gluconeogenesis/TCA cycle/glyoxylate cycle network,
which spans the range of protein abundance from less than 128 to 10E6 copies per cell. Three
biological replicates were analyzed at ten time points (T1-T10), while yeasts transited through
exponential growth in a glucose-rich medium (T1-T4), diauxic shift (T5-T6), post-diauxic
phase (T7-T9), and stationary phase (T10). Prior to trypsinization, the samples were mixed
with an equal amount of proteins from the same N15-labeled yeast sample, which was used as a
reference. Each sample was profiled in a single mass spectrometry run, where each protein was
represented by up to two peptides and each peptide by up to three transitions. The goal of this
study is to detect significantly change in protein abundance across time points. Transcriptional
activity under the same experimental conditions has been previously investigated by (DeRisi et.
al., 1997). Genes coding for 29 of the proteins are differentially expressed between conditions
similar to those represented by T7 and T1 and could be treated as external sources to validate
the proteomics analysis. In this exampled data set, two of the targeted proteins are selected
and validated with gene expression study: Protein IDHC (gene name IDP2) is differentially
expressed in time point 1 and time point 7, whereas, Protein PMG2 (gene name GPM2) is
not. The protein names are based on Swiss Prot Name. This dataset is stored in the package
in a data structure RawData.

To know about example dataset, RawData, visit the help section of RawData first by the
following code.

> ?RawData

10



3.2 Reading the data

Labeled reference peptide SRM data from two proteins identified in yeast study is stored in
”long” format as a data.frame labeled RawData in MSstats ; the data can be accessed once the
package has been installed and loaded in R.

> head(RawData)

ProteinName PeptideSequence PrecursorCharge FragmentIon ProductCharge

243 IDHC ATDVIVPEEGELR 2 y7 NA

244 IDHC ATDVIVPEEGELR 2 y7 NA

245 IDHC ATDVIVPEEGELR 2 y8 NA

246 IDHC ATDVIVPEEGELR 2 y8 NA

247 IDHC ATDVIVPEEGELR 2 y9 NA

248 IDHC ATDVIVPEEGELR 2 y9 NA

IsotopeLabelType Condition BioReplicate Run Intensity

243 H 1 ReplA 1 84361.08350

244 L 1 ReplA 1 215.13526

245 H 1 ReplA 1 29778.10188

246 L 1 ReplA 1 98.02134

247 H 1 ReplA 1 17921.29255

248 L 1 ReplA 1 60.47029

3.3 Pre-processing data and quality control of MS runs

(1) Data processing steps and options

All data need to pre-processing prior to statistical analysis. Possible steps may include:

• logarithm transformation with base 2 (default) or 10 of the intensities

• normalization to remove systematic bias between MS run after logarithm transfor-
mation. For label-based experiments, constant normalization is performed based on
reference signals across runs among all proteins. For label-free experiments, con-
stant normalization based on endogenous signals across runs among all proteins is
performed. Therefore users need to be careful for label-free experiments. In this
case, normalization with standard protein or any other normalization has to be
done prior to use of the package. If normalization=FALSE, no normalization is
performed.

• calculation of between-run-interference score (based on the correlation between
mean of peptide by run and intensity). It detects interference for further statis-
tical model.

After pre-processing data, the summary of experimental design will be showed. When a
transition is missing completely in a condition or a MS run, a warning message is sent
to the console notifying the user of the missing transitions. The quantitative data after
data pre-processing and quality control of MS runs not only contain the same variable
from the raw data, but with addition variables for statistical model fitting and group
comparison. For examples, Variable ABUNDANCE represents the final measurement,
which could be normalized or not depending on the options you specified in dataPro-

cess. Default option in dataProcess is with log2 transformation and normalization.
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To get started with this function, visit the help section of dataProcess first by the fol-
lowing code.

> ?dataProcess

> QuantData<-dataProcess(RawData)

Summary of Features :

count

# of Protein 2

# of Peptides/Protein 2-2

# of Transitions/Peptide 3-3

Summary of Samples :

1 2 3 4 5 6 7 8 9 10

# of MS runs 3 3 3 3 3 3 3 3 3 3

# of Biological Replicates 3 3 3 3 3 3 3 3 3 3

# of Technical Replicates 0 0 0 0 0 0 0 0 0 0

> head(QuantData)

PROTEIN PEPTIDE TRANSITION FEATURE LABEL

1 IDHC ATDVIVPEEGELR_2 y7_NA ATDVIVPEEGELR_2_y7_NA H

3 IDHC ATDVIVPEEGELR_2 y8_NA ATDVIVPEEGELR_2_y8_NA H

5 IDHC ATDVIVPEEGELR_2 y9_NA ATDVIVPEEGELR_2_y9_NA H

7 IDHC DQTNDQVTVDSATATLK_2 y10_NA DQTNDQVTVDSATATLK_2_y10_NA H

9 IDHC DQTNDQVTVDSATATLK_2 y11_NA DQTNDQVTVDSATATLK_2_y11_NA H

11 IDHC DQTNDQVTVDSATATLK_2 y8_NA DQTNDQVTVDSATATLK_2_y8_NA H

GROUP_ORIGINAL SUBJECT_ORIGINAL RUN GROUP SUBJECT SUBJECT_NESTED INTENSITY

1 1 ReplA 1 0 0 0.0 84361.083

3 1 ReplA 1 0 0 0.0 29778.102

5 1 ReplA 1 0 0 0.0 17921.293

7 1 ReplA 1 0 0 0.0 4481.229

9 1 ReplA 1 0 0 0.0 1871.042

11 1 ReplA 1 0 0 0.0 2640.060

ABUNDANCE SuggestToFilter

1 15.84764 0

3 14.34531 0

5 13.61273 0

7 11.61303 0

9 10.35297 0

11 10.84970 0

(2) Visualization for explanatory data analysis

To illustrate the quantitative data after data-preprocessing and quality control of MS
runs, dataProcessPlots takes the quantitative data from function (dataProcess) as input
and can generates three types of figures.

• Profile Plot ( Figure 6): identify the potential sources of variation of each protein.
X-axis is run. Y-axis is log-intensities of transitions. Reference/endogenous signals
are in the left/right panel. Line colors indicate peptides and line types indicate
transitions.
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• QC Plot ( Figure 5) : illustrate the systematic bias between MS runs. After nor-
malization, the reference signals for all proteins should be stable across MS runs.
X-axis is run. Y-axis is log-intensities of transition. Reference/endogenous signals
are in the left/right panel. The pdf file contains (1) QC plot for all proteins and (2)
QC plots for each protein separately.

• Condition Plot ( Figure 7): illustrate the systematic difference between conditions.
X-axis is condition. Y-axis is log ratio of endogenous over reference. For label-free,
Y-axis is log intensity of endogenous. If scale is TRUE, the levels of conditions is
scaled according to its actual values at x-axis. Red points indicate the mean of log
ratio for each condition. If interval is ”SE”, blue error bars indicate the confidence
interval with 0.95 significant level for each condition. If interval is ”SD”, blue error
bars indicate the standard deviation for each condition.The interval is not related
with model-based analysis.

There are several options such as size of label, axis, file and so on. For example,
which.Protein can be assigned as protein list to draw plots. and address is the name
of folder that will store pdf file for plots. If address=FALSE, plot will be just showed
in window.

To get started with this function and information about detailed options, visit the help
section of dataProcessPlots first by the following code.

> ?dataProcessPlots

(a) Quality control plot

> dataProcessPlots(data=QuantData,type="QCPlot")
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Figure 5: All protein together in QCplots before(left panel) and after(right panel) normalization
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(b) Profile plot

> dataProcessPlots(data=QuantData,type="ProfilePlot")
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Figure 6: Profile plots for Protein IDHC and PMG2 after normalization. Quantitative profiles of
reference and endogenous transitions in label-based SRM experiments. X-axis: run. Y-axis: log-
intensities of transitions. Line types indicate transitions, and colors indicate peptides.

(c) Condition plot

> dataProcessPlots(data=QuantData,type="ConditionPlot")
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Figure 7: Condition plots for Protein IDHC and PMG2. Illustrate the systematic difference between
conditions. X-axis is condition. Y-axis is log ratio of endogenous over reference. Red points indicate
the mean of log ratio for each condition. Blue error bars indicate the confidence interval with 0.95
significant level for each condition.

3.4 Model-based inference

3.4.1 Setting up a linear mixed effects model

A statistical model has the capability to formally characterize the sources of variation of all
measurements that pertain to a protein, and to distinguish the systematic patterns of differen-
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tial abundance from noise. A statistical model describes the relationship between a response
variable and a set of variables that have been observed along with the response. In proteomic
experiments, categorical variables, whose values are denoted by labels, may include peptide
features, conditions under which replicates are observed, e.g., disease state, treatment, or time,
and biological replicates.

MSstats tests for significant changes in protein abundance across conditions based on a
family of linear mixed-effects models in LC-MS, SRM, DIA experiment. Experimental design
of case-control study (patients are not repeatedly measured) or time course study (patients are
repeatedly measured) is automatically determined based on proper statistical model. Other
choices of model specification include :

1. labeling technique : TRUE(default) represent the labeled reference peptide study. FALSE
represent label-free study.

2. scope of inference for biological replicates(variable SUBJECT) or technical replicates(variable
RUN): restricted scope, which limited conclusion from the model to observed biological
unites or technical units, or expanded scope, which expands conclusion from the model
to the population of biological units or technical units. The underlying model fitting
functions are lm and lmer for fixed-effects models and mixed-effects models, respectively.

3. interference: TRUE(default) means data contain interference transitions and need ad-
ditional model interaction to address the interference. FALSE means data contain no
interference transitions and no need additional model interaction to address the interfer-
ence.

4. unequal variance between features: If the unequal variation of error for different peptide
features is detected, then a possible solution is to account for the unequal error variation
by means of a procedure called iteratively re-weighted least squares. featureVar=TRUE
performs an iterative fitting procedure, in which features are weighted inversely propor-
tionally to the variation in their intensities, so that feature with large variation are given
less importance in the estimation of parameters in the model.

5. In general, we recommend to keep interaction(interference=TRUE) and to use con-
stant variance among features(featureVar=FALSE) for SRM experiment.

To get started with this function, visit the help section of groupComparison first by the
following code.

> ?groupComparison

Also comparison of interest can be assigned as contrast.matrix. Based on the levels of
conditions, specify 1 or -1 to the conditions of interests and 0 otherwise. The levels of conditions
are sorted alphabetically. Command levels(QuantData$GROUP_ORIGINAL) can illustrate the
actual order of the levels of conditions. When a feature is missing completely in a condition or
a MS run, a warning message is sent to the console notifying the user of the missing feature.
Additional filtering or imputing process is required before model fitting.

For example, we attempt to compare differential abundance between time 1 and 7 in a
set of targeted proteins. In statistical terms, we test H0 : L = µ T7 − µ T1 = 0 against the
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alternative Ha : L = µ T7 − µ T1 6= 0, where µ T1 is the mean abundance of the protein in the
time 1. In this label-based SRM experiment, we recommend the fitted model with expanded
scope of technical replication (i.e. labeled=TRUE, scopeOfTechReplication=”expanded”
as default). Finally, the groupComparison function is used to simultaneously estimate the log
fold change L and the corresponding standard error of the estimate, and to test H0.

> levels(QuantData$GROUP_ORIGINAL)

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"

> comparison<-matrix(c(-1,0,0,0,0,0,1,0,0,0),nrow=1)

> row.names(comparison)<-"T7-T1"

> testResultOneComparison<-groupComparison(contrast.matrix=comparison, data=QuantData)

> testResultOneComparison$ComparisonResult

Protein Label log2FC SE Tvalue DF pvalue adj.pvalue

1 IDHC T7-T1 6.0227708 0.1438273 41.875017 100 0.0000000 0.0000000

2 PMG2 T7-T1 0.3044393 0.2242354 1.357678 100 0.1776219 0.1776219

The testing result contains variable of Protein, Comparison(Label), log2 fold change(logFC),
standard error (SE), T values (Tvalue), degree of freedom (DF), raw p-values (pvalue), adjusted
p-values based on Benjamini and Hochberg method to collect multiple testing issue and further
control false discovery rate (adj.pvalue). The positive logFC values indicates up-regulated and
the negative log FC values indicates down-regulated in time 7. The small adjusted p-value
means that the regulation is statistically significant.

Also multiple companions between groups are possible. This is a testing result of multiple
comparisons of QuantData based on the intensity-based linear model with expanded scope. The
comparison is time 1 vs time 3 (T3-T1), time 1 vs time 7 (T7-T1), time 1 vs time 9 (T9-T1).
This result dataset is stored in the package in a data structure testResultMultiComparisons.

> comparison1<-matrix(c(-1,0,1,0,0,0,0,0,0,0),nrow=1)

> comparison2<-matrix(c(-1,0,0,0,0,0,1,0,0,0),nrow=1)

> comparison3<-matrix(c(-1,0,0,0,0,0,0,0,1,0),nrow=1)

> comparison<-rbind(comparison1,comparison2, comparison3)

> row.names(comparison)<-c("T3-T1","T7-T1","T9-T1")

> testResultMultiComparisons<-groupComparison(contrast.matrix=comparison,data=QuantData)

> testResultMultiComparisons$ComparisonResult

Protein Label log2FC SE Tvalue DF pvalue adj.pvalue

1 IDHC T3-T1 0.10522216 0.1438273 0.7315868 100 0.4661317 0.4661317

4 PMG2 T3-T1 -0.18306329 0.2242354 -0.8163891 100 0.4162182 0.4661317

2 IDHC T7-T1 6.02277078 0.1438273 41.8750167 100 0.0000000 0.0000000

5 PMG2 T7-T1 0.30443931 0.2242354 1.3576776 100 0.1776219 0.1776219

3 IDHC T9-T1 6.12041618 0.1438273 42.5539239 100 0.0000000 0.0000000

6 PMG2 T9-T1 0.07184233 0.2242354 0.3203881 100 0.7493427 0.7493427

3.4.2 Verifying the assumption of the model

Results based on statistical models are accurate as long as the assumptions of the model are
met. The model assumes that the measurement errors are normally distributed with mean

16



0 and constant variance σ2Error. The assumption of a constant variance can be checked by
examining the residuals from the model, i.e., the deviations of the predicted intensities from
the actual intensities. If a plot of residuals against predicted values shows a random scatter,
then the assumption is appropriate. Residual plots can be produced for all proteins in the
dataset by using the modelBasedQCPlots function with type="ResidualPlots" in MSstats .
Option, which.Protein can be assigned as protein list to draw plots and address is the name
of folder that will store pdf file for plots. If address=FALSE, plot will be just showed in
window.

To check whether the errors are well approximated by a normal distribution, the model-

BasedQCPlots function with type="QQPlots" in MSstats can be used. This function produces
a normal quantile-quantile plot for each protein. If points fall approximately along a straight
line, then the assumption is appropriate for that protein. Only large deviations from the line
are problematic.

The input of this function is ”ModelQC” in the testing results from function (groupCom-
parison). The example result is testResultMultiComparisons

To get started with this function, visit the help section of modelBasedQCPlots first by the
following code.

> ?modelBasedQCPlots

> modelBasedQCPlots(data=testResultMultiComparisons$ModelQC, type="ResidualPlots",

+ which.Protein="PMG2", address=FALSE)

> modelBasedQCPlots(data=testResultMultiComparisons$ModelQC,type="QQPlots",

+ which.Protein="PMG2", address=FALSE)

In practice, it is common for the variation of error to be unequal for different peptide
features. If this is diagnosed from the residual plots, then a possible solution is to account
for the unequal error variation by means of a procedure called iteratively re-weighted least
squares. This procedure is implemented in MSstats by means of the featureVar argument
in groupComparison. featureVar = TRUE performs an iterative fitting procedure, in which
features are weighted inversely proportional to the variation in their intensities, so that features
with large variation are given less importance in the estimation of parameters in the model.

3.4.3 Testing for protein-level differential abundance between conditions

To summarize the results of fold changes and adjusted p-values for differentially abundant
proteins, groupComparisonPlots takes testing results from function (groupComparison) as
input : (1) volcano plot (specify ”VolcanoPlot” in option type) for each comparison separately;
(2) heatmap (specify ”Heatmap” in option type) for multiple comparisons ; (3) comparison plot
(specify ”ComparisonPlot” in option type) for multiple comparisons per protein.

To get started with this function, visit the help section of groupComparisonPlots first by
the following code.

> ?groupComparisonPlots

• Volcano plot : illustrate actual log-fold changes and adjusted p-values for each comparison
separately with all proteins. The x-axis is the log fold change. The base of logarithm
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Figure 8: (a) Residual plot (upper left panel) and (b) normal quantile-quantile plot (upper right panel)
for Protein PMG2. The unequal variance between feature is detected for Protein PMG2. The pattern
in the qqplot is due to deviations from the assumption of constant variance, and not necessarily from
the assumption of Normality. (c) and (d) The normal quantile-quantile plot per feature (bottom panel)
illustrates that. It shows that (1) since the slope of the Q-Q plot is related to the variance of the
distribution of the errors, the different slopes of the lines offer another indication of unequal variance,
(2) the assumptions of Normality of each separate feature is more plausible. The features with lower
intensities have a larger variance, and are more likely to deviate from the Normality assumption.

transformation is the same as specified in ”logTrans” from dataProcess. The y-axis is the
negative log2 adjusted p-values. The horizontal dashed line represents the FDR cutoff.
The points below the FDR cutoff line are non-significantly abundant proteins (colored
in black). The points above the FDR cutoff line are significantly abundant proteins
(colored in red/blue for up-/down-regulated). If fold change cutoff is specified (FCcutoff
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= specific value), the points above the FDR cutoff line but within the FC cutoff line are
non-significantly abundant proteins (colored in black).

• Heatmap : illustrate up-/down-regulated proteins for multiple comparisons with all pro-
teins. Each column represents each comparison of interest. Each row represents each
protein. Color red/blue represents proteins in that specific comparison are significantly
up-regulated/down-regulated proteins with FDR cutoff and/or FC cutoff. The color
scheme shows the evidences of significance. The darker color it is, the stronger evidence
of significance it has. Color gold represents proteins are not significantly different in
abundance.

• Comparison plot : illustrate log-fold change and its variation of multiple comparisons for
single protein. X-axis is comparison of interest. Y-axis is the log fold change. The red
points are the estimated log fold change from the model. The blue error bars are the
confidence interval with 0.95 significant level for log fold change. This interval is only
based on the standard error, which is estimated from the model.

The input of this function is ”ComparisonResult” in the testing results from function
(groupComparison). The example result is testResultMultiComparisons based on the test-
ing results of comparison of time1 and time 7.

(1) Volcano plot

> head(testResultMultiComparisons$ComparisonResult)

Protein Label log2FC SE Tvalue DF pvalue adj.pvalue

1 IDHC T3-T1 0.10522216 0.1438273 0.7315868 100 0.4661317 0.4661317

4 PMG2 T3-T1 -0.18306329 0.2242354 -0.8163891 100 0.4162182 0.4661317

2 IDHC T7-T1 6.02277078 0.1438273 41.8750167 100 0.0000000 0.0000000

5 PMG2 T7-T1 0.30443931 0.2242354 1.3576776 100 0.1776219 0.1776219

3 IDHC T9-T1 6.12041618 0.1438273 42.5539239 100 0.0000000 0.0000000

6 PMG2 T9-T1 0.07184233 0.2242354 0.3203881 100 0.7493427 0.7493427

1. Default : sig=0.05 / No FCcutoff / No ylimUp / with Protein name

> groupComparisonPlots(data=testResultMultiComparisons$ComparisonResult,

+ type="VolcanoPlot",which.Comparison=c("T7-T1"), address=FALSE)

2. FCcutoff=70 / ylimUp=100 / without Protein name
Note : FCcutoff=70 is due to demonstration purpose.

> groupComparisonPlots(data=testResultMultiComparisons$ComparisonResult,

+ type="VolcanoPlot",FCcutoff=70, ylimUp=100,

+ ProteinName=FALSE, which.Comparison=c("T7-T1"), address=FALSE)
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Figure 9: Volcano plot of a single comparison. The x-axis is the log fold change of two conditions. The
y-axis is the negative log2 adjusted p-values. The dashed line represents the FDR cutoff of 0.05(default
setup sig=0.05). The points below the cutoff line are the non-significantly abundant proteins (colored
in black). Left volcano plot is the result for default option. Right volcano plot is the result for setting
up FCcutoff=70 and upper limit of y-axis is 100 without protein names. The setup of FCcutoff=70 is
for demonstrate purpose onlythat protein IDHC is not significant after applying fold change cutoff.
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Figure 10: Volcano plots of a single comparison for 45 proteins from the example time courses yeast
study with all 45 proteins. Left volcano plot is the result for default option. Right volcano plot is the
result for setting up FCcutoff=1.5 and upper limit of y-axis is 60 without protein names.
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(2) Heatmap

1. Default : sig=0.05 / No FCcutoff

> groupComparisonPlots(data=testResultMultiComparisons$ComparisonResult,

+ type="Heatmap",address=FALSE)

2. FCcutoff=70

> groupComparisonPlots(data=testResultMultiComparisons$ComparisonResult,

+ type="Heatmap",FCcutoff=70,address=FALSE)

Figure 11: Heatmap of multiple comparisons. The column represents different comparisons. The row
represents each protein. Color red/blue represents proteins in that specific comparison are significantly
up-regulated/down-regulated proteins based on adjusted p-values with the FDR cutoff (specified in
the option sig) and/or with the fold change cutoff (specified in the option FCcutoff). Color gold
represents proteins are not significantly different in abundance. The color scheme shows the evidences
of significance. The darker color it is, the stronger evidence of significance it has. The color key shows
the cutoff of adjusted p-value for color scheme. Left Heatmap is applied with FDR cutoff is 0.05 and
no fold change cutoff. Right Heatmap is applied with both FDR cutoff is 0.05 and FC cutoff is 70.
Note that specifying the FC cutoff = 70 is for demonstration purpose, so that protein IDHC becomes
insignificant after both FDR and fold change cutoff.

21



T
3−

T
1

T
5−

T
1

T
7−

T
1

ALDH6
ENO2
G6PI
PDC1
ADH1
PDC6
PGK
PMG3
PDC5
HXKB
K6PF2
KPYK1
ALF
PMG1
DHSD
ADH4
PMG2
KPYK2
ADH2
CISY2
F16P
MASY
ACEA
IDHC
ODPA
DHSA
MDHC
SUCB
ACH1
ACON
SDH3
K6PF1
IDH1
FUMH
SUCA
ODPB
ODO2
ODO1
MDHM
IDH2
HXKG
HXKA
ENO1
CISY1
DHSB

T
3−

T
1

T
5−

T
1

T
7−

T
1

ADH1
K6PF2
PDC5
HXKB
ADH4
PMG3
PMG2
PMG1
PGK
PDC6
PDC1
ODPA
KPYK2
KPYK1
K6PF1
G6PI
DHSD
ALDH6
ALF
ENO2
ADH2
MASY
IDHC
F16P
ACEA
CISY2
ODPB
HXKG
DHSB
ENO1
SUCB
SUCA
SDH3
ODO2
ODO1
MDHM
MDHC
IDH2
IDH1
HXKA
FUMH
DHSA
CISY1
ACH1
ACON

Figure 12: Heatmap of multiple comparisons for the 45 proteins from the example time courses yeast
study with all 45 proteins, which is the same result of Figure 10. Left heatmp is the result for default
option using FDR cutoff=0.05 only. Right heatmap is the result under both FDR cutoff=0.05 and
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(3) Comparison plot
> groupComparisonPlots(data=testResultMultiComparisons$ComparisonResult,

+ type="ComparisonPlot")
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Figure 13: Comparison plots for multiple comparisons. The x-axis is the comparisons which the user
designed. The y-axis is the log fold change for each comparison. The red points mean the estimated
log fold change. The blue error bars mean the confidence interval with 0.95 significant level for log
fold change. The horizontal line at log fold change=0 (the log fold change of one comparison is located
around this line) means that there is no significant difference for this comparison.
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3.5 Sample size calculation for a future experiment

To calculate sample size for future experiments, the function fits the model and uses variance
components. The underlying model fitting with intensity-based linear model with technical
MS run replication. Input in the example is QuantData. Estimated sample size is rounded to
0 decimal. Four options of the calculation:

1. number of biological replicates per condition

2. number of peptides per protein

3. number of transitions per peptide

4. power is a pre-specified statistical power which defined as the probability of detecting a
true fold change. Users should input the average of power that is expected. Otherwise,
the function calculate the power for this category,

It can only obtain either one of the categories of the sample size calculation (numSample,
numPep, numTran) or power calculation at the same time. Other three values are need to be
inputed.

To get started with this function, visit the help section of designSampleSize first by the
following code.

> ?designSampleSize

desiredFC, the range of a desired fold change which includes the lower and upper values
of the desired fold change, and FDR, a pre-specified false discovery ratio (FDR) to control the
overall false positive, are required. Two options for fitting model are possible, choice of scope
of biological replication and choice of interference data. For scope of biological replication,
”restricted”(default) represents restricted scope of biological replication to the selected individ-
uals. ”expanded” represents expanded scope of biological replication to the whole population.
For interference, TRUE(default) means data contain interference transitions and need addi-
tional model interaction to address the interference. FALSE means data contain no interference
transitions and no need additional model interaction to address the interference.

3.5.1 Minimal number of biological replicates per condition

> designSampleSize(data=QuantData,numSample=TRUE,numPep=3,numTran=4,power=0.8,

+ desiredFC=c(1.25,1.75),FDR=0.05)

desiredFC numSample numPep numTran FDR power CV

1 1.250 15 3 4 0.05 0.8 0.004

2 1.275 12 3 4 0.05 0.8 0.005

3 1.300 11 3 4 0.05 0.8 0.006

4 1.325 9 3 4 0.05 0.8 0.007

5 1.350 8 3 4 0.05 0.8 0.007

6 1.375 7 3 4 0.05 0.8 0.008

7 1.400 6 3 4 0.05 0.8 0.009

8 1.425 6 3 4 0.05 0.8 0.009

9 1.450 5 3 4 0.05 0.8 0.011

10 1.475 5 3 4 0.05 0.8 0.011
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11 1.500 4 3 4 0.05 0.8 0.013

12 1.525 4 3 4 0.05 0.8 0.013

13 1.550 4 3 4 0.05 0.8 0.013

14 1.575 4 3 4 0.05 0.8 0.013

15 1.600 3 3 4 0.05 0.8 0.017

16 1.625 3 3 4 0.05 0.8 0.016

17 1.650 3 3 4 0.05 0.8 0.016

18 1.675 3 3 4 0.05 0.8 0.016

19 1.700 3 3 4 0.05 0.8 0.016

20 1.725 2 3 4 0.05 0.8 0.023

21 1.750 2 3 4 0.05 0.8 0.023

3.5.2 Power calculation

> designSampleSize(data=QuantData,numSample=2,numPep=3,numTran=4,power=TRUE,

+ desiredFC=c(1.25,1.75),FDR=0.05)

desiredFC numSample numPep numTran FDR power

1 1.250 2 3 4 0.05 0.01

2 1.275 2 3 4 0.05 0.01

3 1.300 2 3 4 0.05 0.01

4 1.325 2 3 4 0.05 0.01

5 1.350 2 3 4 0.05 0.01

6 1.375 2 3 4 0.05 0.02

7 1.400 2 3 4 0.05 0.03

8 1.425 2 3 4 0.05 0.05

9 1.450 2 3 4 0.05 0.08

10 1.475 2 3 4 0.05 0.12

11 1.500 2 3 4 0.05 0.16

12 1.525 2 3 4 0.05 0.21

13 1.550 2 3 4 0.05 0.26

14 1.575 2 3 4 0.05 0.32

15 1.600 2 3 4 0.05 0.38

16 1.625 2 3 4 0.05 0.43

17 1.650 2 3 4 0.05 0.49

18 1.675 2 3 4 0.05 0.54

19 1.700 2 3 4 0.05 0.59

20 1.725 2 3 4 0.05 0.64

21 1.750 2 3 4 0.05 0.69

3.5.3 Visualization for sample size calculation

To illustrate the relationship of desired fold change and the calculated minimal number sample
size which are (1) number of biological replicates per condition, (2) number of peptides per
protein, (3) number of transitions per peptide, and (4) power. The input is the result from
function (designSampleSize).

To get started with this function, visit the help section of designSampleSizePlots first by
the following code.

> ?designSampleSizePlots

> # Minimal number of biological replicates per condition

> result.sample<-designSampleSize(data=QuantData,numSample=TRUE,numPep=3,numTran=4,power=0.8,
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+ desiredFC=c(1.25,1.75),FDR=0.05)

> designSampleSizePlots(data=result.sample)
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> # Power

> result.power<-designSampleSize(data=QuantData,numSample=2,numPep=3,numTran=4,power=TRUE,

+ desiredFC=c(1.25,1.75),FDR=0.05)

> designSampleSizePlots(data=result.power)
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3.6 Quantification of protein abundance in individual samples or in condi-
tions

Downstream analysis, e.g., clustering or classification of individual samples based on protein
profiles, sometimes requires a single value of a protein in each biological replicate. That is, it
is sometimes of interest to have a table where columns are biological replicates and rows are
proteins. A summarization step is needed to express the measurements from multiple features
into a single value per protein per biological replicate. As in testing for differential abundance,
this can be done by using model-based quantities.
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In MSstats , the quantification function can be used to produce the estimates of protein
abundance for all biological replicates in the study or for all groups. For sample quantifi-
cation, the label of each biological sample is a combination of the corresponding group and
the sample ID. The same model with groupComparison will be used. However, if there is
only one transition in a certain protein, the estimate of variation is NA. Therefore, the result
may be unreliable. The quantification for light is the endogenous transition quantification.The
quantification for reference (heavy) is the average among all reference intensities. The quan-
tification of ratio between endogenous and reference intensity would be the quantification of
light minus the reference quantification. Two formats of output are supported. ”long” for long
format which has the columns named Protein, Condition, LonIntensities (and BioReplicate if
sample quantification). ”matrix” for data matrix format which has the rows for Protein and
the columns, which are Groups(or Conditions) for group quantification or the combinations of
BioReplicate and Condition (labeled by ”BioReplicate” ”Condition”) for sample quantification.
Default is ”matrix”.

The input of this function is the quantitative data from function (dataProcess). The ex-
ample data is QuantData.

To get started with this function, visit the help section of quantification first by the following
code.

> ?quantification

Consider quantitative data (i.e. QuantData) from a yeast study with ten time points of
interests, three biological replicates, and no technical replicates which is a time-course ex-
periment. Sample quantification shows model-based estimation of protein abundance in each
biological replicate within each time point. Group quantification shows model-based estimation
of protein abundance in each time point.

> # (1): Sample quantification

> subQuant<-quantification(QuantData)

> head(subQuant)

ReplA_1 ReplA_2 ReplA_3 ReplA_4 ReplA_5 ReplA_6 ReplA_7 ReplA_8

IDHC 6.482258 7.144148 6.753797 6.891645 7.51246 9.955367 12.76964 12.94651

PMG2 10.392707 9.959031 10.078554 10.520689 10.27148 9.909567 10.39021 10.14813

ReplA_9 ReplA_10 ReplB_1 ReplB_2 ReplB_3 ReplB_4 ReplB_5 ReplB_6

IDHC 12.81644 12.94724 6.959746 6.84807 6.586199 6.86521 7.096384 9.86911

PMG2 10.49330 10.26594 10.400018 10.72289 10.514320 10.23663 10.388234 10.38962

ReplB_7 ReplB_8 ReplB_9 ReplB_10 ReplC_1 ReplC_2 ReplC_3

IDHC 12.77337 12.95800 12.88595 12.95984 6.916612 7.065317 7.154622

PMG2 10.55574 10.03953 10.28494 10.13845 10.433715 10.598824 10.034071

ReplC_4 ReplC_5 ReplC_6 ReplC_7 ReplC_8 ReplC_9 ReplC_10

IDHC 7.411565 6.554255 9.884292 12.74810 12.96304 12.82765 12.90613

PMG2 10.779834 10.287874 10.334494 11.15592 10.11160 10.21011 10.17977

Ref

IDHC 12.884638

PMG2 9.107043

> # (2): Group quantification

> groupQuant<-quantification(QuantData, type="Group")

> head(groupQuant)
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1 2 3 4 5 6 7

IDHC 6.786205 7.019178 6.83154 7.05614 7.054366 9.902923 12.76371

PMG2 10.408813 10.426913 10.20898 10.51238 10.315861 10.211228 10.70063

8 9 10 Ref

IDHC 12.95585 12.84335 12.93774 12.884638

PMG2 10.09976 10.32945 10.19472 9.107043
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4 Example workflow with label-free LC-MS: controlled spike-in
experiment

The workflow is the same as SRM experiment except some options for analysis and inference.
The summary of result is shown below. See details from user tutorial in msstats.org

4.1 Experimental design

Mueller u. a. (2007), has previously described the experiment with the sample with 6 standard
Proteins, (horse myoglobin, bovine carbonic anhydrase, horse Cytochrome c, chicken lysozyme,
yeast alcohol dehydrogenase, rabbit aldolase A) Each protein was represented by 7-21 peptides
and each peptide was represented by 1-5 transition. Using latin square design of experiment
frame, each sample has different dilution for each protein. Each of the LC-MS runs is analyzed
in 3 technical replicate. There are total 18 injection runs. The data set is available in website
(http://prottools.ethz.ch/muellelu/web/Latin_Square_Data.php) and in msstats.org.

4.2 Pre-processing data and quality control of MS runs

The default normalization method for label-free MS experiment in MSstats is the constant
normalization with all endogenous intensities along all proteins. However, if there are small
number of features in each run, compared with SRM and DIA experiments, we can not keep
the assumption that the distribution of intensities across run is the same. The alternative
could be normalization using internal standard peptide. See details in section 3.3.
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Figure 14: Profile plot for one spiked protein, Alcohol dehydrogenase-Yeast. The profiles show some
non-parallel patterns (i.e. interferences). Features with low signals have missing values.
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4.3 Model-based inference

LC-MS experiments are often subject to random interferences, and contain missing values. To
express the fact that the interferences are non-systematic, we recommend to remove interaction
(interference=FALSE). To express the fact that the variances are unequal between the
features, we recommend to use feature-specific variance (featureVar=TRUE). Also there are
three options to handle missing values, (1) remove interaction which means to assume features
demonstrate no interference across runs, (2) impute with average minimum intensity across
runs, (3) remove features that completely miss in some conditions.

4.3.1 Setting up a linear mixed effects model

First, we assign the comparison of interest. Next,we fit a model that specifies systematic
interferences and constant variance. Since this is a label-free experiment, use labeled=FALSE.
See section 3.4.1 for details regarding specifying scope of conclusions.

4.3.2 Verifying the assumption of the model

Also, in this case the protein has many missing peaks (complete missing in some conditions).The
groupComparison function automatically detects this pattern of missing values, and uses the
model without interaction. See in section 3.4.2 for other possible options.
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Figure 15: Residual plot for one spiked protein, Alcohol dehydrogenase-Yeast. The profiles shows a
larger variance for features with a lower intensity.

4.4 Testing for protein-level differential abundance between conditions

Heatmap summarizes all results of comparison, that MSstats detects difference between groups.
See details about other types of plot in section 3.5.
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Figure 16: Heatmap of significance testing results of 4 spiked proteins across 6 conditions.

4.5 Sample size calculation for a future experiment

Same as in SRM experiments. See details in section 3.5.

4.6 Quantification of protein abundance in individual samples or in condi-
tions

Same as in SRM experiments. See details in section 3.6.
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5 Example workflow with label-free DIA: a group comparison
study of S.Pyogenes

The workflow is the same as SRM experiment except some options for analysis and inference.
The summary of result is shown below. See details from user tutorial in msstats.org

5.1 Experimental design

The example dataset is from a label-free DIA experiment of S.pyogenes study. For demonstra-
tion purposes, this partial data set consists of two proteins only. Two biological conditions are
Strep0 and Strep10 (S. Pyogenes with 0% and 10% of human plasma added). Two biological
replicates from each condition were profile with a SWATH-MS-enabled AB SCIEX TripleTOF
5600 System. The identification and quantification of spectral peaks was assisted by a spec-
tral library, and was performed using OpenSWATH software http://proteomics.ethz.ch/

openswath.html.

5.2 Pre-processing data and quality control of MS runs

The default normalization method for label-free MS experiment in MSstats is the constant
normalization with all endogenous intensities along all proteins. In case of DIA, there are
enough number of intensities in each run. Therefore, quantile normalization is also suitable
because the assumption for same distribution of intensities for endogenous transition across all
MS runs is reasonable. See details in section 4.3.
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Figure 17: Profile plots for two example proteins, Probable RNA helicase exp9 and FabG in DIA
experiment. The proteins have a large number of features. The profiles show some non-parallel patterns
(i.e. interferences).
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5.3 Model-based inference

DIA experiments are often subject to random interferences, and unequal variance between
features. To express the fact that the interferences are non-systematic, we recommend to
remove interaction (interference=FALSE). To express the fact that the variances are unequal
between the features, we recommend to use feature-specific variance (featureVar=TRUE).

5.3.1 Setting up a linear mixed effects model

First, we assign the comparison of interest. Next,we fit a model that specifies systematic
interferences and constant variance. Since this is a label-free experiment, use labeled=FALSE.
See section 3.4.1 for details regarding specifying scope of conclusions.

5.3.2 Verifying the assumption of the model

The unequal variance between features is detected from Residual plot and normal quantile-
quantile plots.( Figure 18) Therefore to consider the unequal variance is recommended as below.
See in section 3.4.2 for other possible options.
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Figure 18: (a) Residual plot (left panel) for FabG protein using the model under the assumption
constant variance across features. (b) normal quantile-quantile plot (right panel) shows the pattern in
the qqplot that is due to deviations from the assumption of constant variance, and not necessarily from
the assumption of Normality.

5.3.3 Testing for protein-level differential abundance between conditions

Based on detection about interference in Figure 17 and unequal variance in Figure 18, we
consider them using option featureVar=TRUE,interference=FALSE as below.

See in section 3.4.3 for other options and visualizations.
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5.4 Sample size calculation for a future experiment

Same as in SRM experiments. See details in section 3.5.

5.5 Quantification of protein abundance in individual samples or in condi-
tions

Same as in SRM experiments. See details in section 3.6.
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