
flowFP: Fingerprinting for Flow Cytometry

H. Holyst and W. Rogers

April 16, 2015

Abstract

Background A new software package called flowFP for the analysis of flow cytometry data
is introduced. The package, which is tightly integrated with other Bioconductor software
for analysis of flow cytometry, provides tools to transform raw flow cytometry data into a
form suitable for direct input into conventional statistical analysis and empirical modeling
software tools. The approach of flowFP is to generate a description of the multivariate
probability distribution function of flow cytometry data in the form of a “fingerprint”. As
such, it is independent of a presumptive functional form for the distribution, in contrast
with model-based methods such as Gaussian Mixture Modeling. flowFP is computationally
efficient, and able to handle extremely large flow cytometry data sets of arbitrary dimen-
sionality. Algorithms and software implementation of the package are described.

Methods flowFP implements several S4 classes and methods, and rests upon the flowCore
foundation classes for flow cytometry data.

Results Use of the software is exemplified with applications to data quality control and
to the automated classification of Acute Myeloid Leukemia.

keywords Flow cytometry, fingerprinting, high throughtput, software

1 Introduction

Flow cytometry (FC) produces multi-dimensional biological information at the level of the
cellular compartment, and over very large numbers of cells. As such it is ideally suited for
a wide variety of investigations for which cellular context and large sample observations are
important. In recent years the technology of FC has undergone appreciable development (Chat-
topadhyay et al., 2008; J. P., 2002) with the introduction of digital signal processing electronics
(Murthi et al., 2005), multiple lasers, increasing numbers of fluorescence detectors, and robotic
automation, both in sample preparation (Kelliher et al., 2005) and in instrumental data collec-
tion (Gates et al., 2009). The recent development of new reagents (Chattopadhyay et al., 2006)
that enable increasing assay complexity has also been rapid and accelerating. Given the scope
and pace of these developments, the bottleneck in many FC experiments has shifted from the
wet laboratory to the computer laboratory; that is to say, data analysis(Chattopadhyay et al.,
2008).

FC data are typically analyzed using graphically-driven approaches. Subsets of cells (events)
are delineated usually in one- or two-dimensional histograms or “dotplots” in a procedure

1

termed “gating”. The gating process is often applied in a sequential fashion, with the numbers
of events inside successive gates falling monotonically from step to step. Subsets determined
via gating are typically then quantified with respect to their expression patterns in the dimen-
sions of multiparameter space not utilized for gating, often by simply counting proportions of
the subsets that are positive or negative for each of the markers of interest for that subset.
Several commercially available software packages have been extensively optimized to support
this kind of visually-guided analysis workflow, for example, FlowJo (Treestar Inc, Ashland,
OR), WinList (Verity Software House, Topsham, ME) and FCSExpress (De Novo Software,
Los Angeles, CA).

Despite near-universality of this data analysis approach within the flow cytometry commu-
nity, the procedure has three main drawbacks. First, the choice of gates is often subjective, par-
ticularly in the not-unusual situation where the gating distribution is broad and smooth. This
leads to an inherent lack of reproducibility from sample-to-sample, or even for the re-analysis
of the same sample, as well as presenting audit trail difficulties that compromise verifiability
of results. Second, because gates are specified by manually drawing regions on a graph using
a computer mouse, the process is very labor-intensive and time-consuming, and in most cases
takes many times longer than the actual acquisition of the data. Finally, because gating and
analytical regions are determined by the data analyst based on his or her experience, there
may be interesting and informative features that exist within the full, un-gated multivariate
distribution of events but that nevertheless escape detection in this analysis paradigm.

flowFP is designed to address these limitations in conventional approaches to the analysis of
FC data. The broad aim of flowFP is to directly transform raw FC list-mode data into a form
suitable for direct input to other statistical analysis and empirical modeling tools. Thus, it is
useful to think of flowFP as an intermediate step between the acquisition of high- throughput
FC data on the one hand, and empirical modeling, machine learning, and knowledge discovery
on the other.

2 Algorithm Description

flowFP implements and integrates ideas put forth in (Roederer et al., 2001) and (Rogers et al.,
2008). FlowFP utilizes the Probability Binning (PB) algorithm (Roederer et al., 2001) to sub-
divide multivariate space into hyper-rectangular regions that contain nearly equal numbers of
events. Regions (bins) are determined by (a) finding the parameter whose variance is highest,
(b) dividing the population at the median of this parameter which results in two bins, each
with half of the events, and (c) repeating this process for each subset in turn. Thus, at the
first level of binning the population is divided into two bins. At the second level, each of the
two “parent” bins is divided into two “daughter” bins, and so forth. The final number of bins
n is determined by the number of levels l of recursive subdivision, such that n = 2l.

This binning procedure is typically carried out for a collection of samples (instances), called
a “training set”. The result of this process is in essence a description of the subdivision of a
multiparametric space into sub-regions, and is thus termed a “model” of the space (not to be

2

confused with modeling approaches that fit data to a parameterized model or set of models).
The model is then applied to another set of samples (which may or may not include instances
from the training set). This operation results in a feature vector of event counts in each bin
of the model for each instance in the set. These feature vectors are, in the context of a spe-
cific model, a unique description of the multivariate probability distribution function for each
instance in the set of samples, and thus are aptly referred to as “fingerprints”.

Although flowFP generates bins using the PB algorithm, the way it utilizes the resulting
fingerprints is similar to the methods described in (Rogers et al., 2008). Each element of a
fingerprint represents the number of events in a particular sub-region of the model. Although
it may not be known a priori which of these regions are informative with respect to an exper-
imental question, it is possible to determine this by using appropriate statistical tests, along
with corrections for multiple comparisons, to ascertain which regions (if any) are differentially
populated in two or more groups of samples. If we regard the number of events in a bin as
one of n features describing an instance, then the statistical determination of informative sub-
regions is clearly seen to be a feature selection procedure.

Fingerprint features are useful in two distinct modes. First, all or a selected subset of fea-
tures can be used in clustering or classification approaches to predict the class of an instance
based on its similarity to groups of instances. Second, the events within selected, highly infor-
mative bins can be visualized within their broader multivariate context in order to interpret
the output of the modeling process. This step is crucial in that it provides a means to develop
new hypotheses for FC-derived biomarkers within the context of existing reagent panels.

3 Fingerprint Representation

FlowFP is one of a growing number of Bioconductor packages integrated within the frame-
work provided by flowCore and is thus able to interoperate with other flowCore-compliant tools
as well as with the full range of downstream statistical analysis and machine learning tools
available in R. This integration enables flexible creation of powerful high-throughput analysis
procedures for large FC data sets.

FlowFP uses the S4 object-oriented facility of R. Computationally intensive parts are writ-
ten in the C programming language for efficiency. FlowFP is built around a set of three S4
classes, each with a constructor of the same name as the class name. In addition there are
a number of methods for accessing, manipulating and visualizing the data in each of the classes.

3.1 The flowFPModel Class

flowFPModel is the fundamental class for the flowFP package. The flowFPModel constructor
takes a collection of one or more list-mode instances which are represented in the flowCore
framework as a flowFrame (for a single instance) or a flowSet (for a collection of instances),
respectively (henceforth we shall refer to flowFrames and flowSets, the original list-mode data

3

being implied). In addition to the required argument, flowFPModel has optional arguments
that allow control over the number of levels of recursive subdivision and the set of parameters
to be considered in the binning process. By default all parameters in the input flowSet are
considered, but if this argument is provided, any parameters not listed are ignored. The con-
structor emits an object of type flowFPModel , which encapsulates a complete representation
of the binning process that is used later to construct fingerprints.

To see how this works, let’s build a flowFPModel for a small data set. fs1 is a flowSet
comprised of 7 flowFrames, one for each tube in a sample. The tubes are stained with different
antibody conjugates, but CD45-ECD is common to all of the tubes in order to support gating
of the entire panel from one of the tubes using CD45 vs. SSC.

> data(fs1)

> fs1

A flowSet with 7 experiments.

column names:

FS Lin SS Log FL1 Log FL2 Log FL3 Log FL4 Log FL5 Log

One of the tubes (the first one) looks like this:

> fs1[[1]]

flowFrame object 'FI05_000942_001.LMD'
with 30000 cells and 7 observables:

name desc range minRange maxRange

$P1 FS Lin FS Lin 1024 0.0000 1023

$P2 SS Log SS Log 1024 0.1024 1023

$P3 FL1 Log IgG1-FITC 1024 0.0000 1023

$P4 FL2 Log IgG1-PE 1024 0.0000 1023

$P5 FL3 Log CD45-ECD 1024 0.0000 1023

$P6 FL4 Log IgG1-PC5 1024 0.0000 1023

$P7 FL5 Log IgG1-PC7 1024 0.0000 1023

166 keywords are stored in the 'description' slot

Let’s construct a model, using SSC (parameter 2) and CD45 (parameter 5). We will specify
the number of recursions to be 7, resulting in 27 = 128 bins in the model:

> mod <- flowFPModel(fs1, name="CD45/SS Model", parameters=c(2,5), nRecursions=7)

> show(mod)

A flowFPModel:

Name = CD45/SS Model

4

nRecursions (max) = 7 (7)

Dequantize = TRUE

Parameters Considered:

SS Log, FL3 Log

Parameters Used:

SS Log, FL3 Log

Training Set:

FI05_000942_001.LMD

FI05_000942_002.LMD

FI05_000942_003.LMD

FI05_000942_004.LMD

FI05_000942_005.LMD

FI05_000942_006.LMD

FI05_000942_007.LMD

> plot(mod)

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

Model

SS Log

F
L3

 L
og

Usage and argument descriptions for flowFPModel are as follows:

5

Usage:

flowFPModel(obj, name="Default Model", parameters=NULL, nRecursions="auto",

dequantize=TRUE, sampleSize=NULL, verbose=FALSE)

obj Training data for model, either a flowFrame or flowSet .
parameters A vector of parameters to be considered during model construction. You

may provide these as a vector of parameter indices (as shown above)
or as a character vector. For example, parameters = c(”SS Log”, ”FL3
Log”) would yield the same result as shown in the example.

nRecursions Number of times the FCS training data will be sub divided. Each re-
cursion doubles the number of bins, so that nbins = 2nRecursions. A
warning will be generated if the number of expected events in each bin
is < 1. (e.g. if your training set had 1000 events, and you specified
nRecursions = 10.)

dequantize If TRUE, all of the event values in the training set will be made unique by
adding a tiny value (proportional to the ordinal position of each event)
to the data.

sampleSize Used to specify the per-flowFrame sample size of the data to use in model
generation. If NULL, all of the data in x is used. Setting this to a smaller
number will speed up processing, at the cost of accuracy.

name A descriptive name assigned to the model.
verbose If TRUE, prints out information as it constructs the model. Useful for

debugging.

3.2 The flowFP Class

The flowFP constructor takes a flowFrame or a flowSet as its only required argument, and an
optional flowFPModel . If no flowFPModel is supplied, flowFP computes a model (by calling
flowFPModel internally). Regardless the source of the model, flowFP applies the model to
each of the instances in its input. The resulting flowFP object extends the flowFPModel class
and contains two additional important slots to store a matrix of counts and a list of tags. The
counts matrix has dimensions m× n, where m is the number of instances in the input flowSet
(or one if a flowFrame is provided), and n is the number of features in the model. The tags
slot is a list of m vectors, each of which has e elements, where e is the number of events in
the corresponding frame in the input flowSet . The value for each element of the tag vector
represents the bin number into which the corresponding event fell during the fingerprinting
procedure. This is useful for visualization or gating based on fingerprints, as will be illustrated
below.

A set of fingerprints is obtained by applying the model to a flowSet . In this case we will
apply the model derived from fs1 to the same flowSet :

> fp <- flowFP (fs1, mod)

> show(fp)

6

A flowFP containing 7 instances with 128 features.

[1] "FI05_000942_001.LMD" "FI05_000942_002.LMD" "FI05_000942_003.LMD"

[4] "FI05_000942_004.LMD" "FI05_000942_005.LMD" "FI05_000942_006.LMD"

[7] "FI05_000942_007.LMD"

Extends A flowFPModel:

Name = CD45/SS Model

nRecursions (max) = 7 (7)

Dequantize = TRUE

Parameters Considered:

SS Log, FL3 Log

Parameters Used:

SS Log, FL3 Log

Training Set:

FI05_000942_001.LMD

FI05_000942_002.LMD

FI05_000942_003.LMD

FI05_000942_004.LMD

FI05_000942_005.LMD

FI05_000942_006.LMD

FI05_000942_007.LMD

> plot (fp, type="stack")

7

Fingerprints

15
0

30
0

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●
● ●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

● ● ●
●

●

●

●
●

● ● ●

● ●

●

●

●
●

●

●
●

●

● ●

●

●
● ●

●

●
●

● ●

●

●

● ● ●

●

●

●
●

●
●

● ●

●

●

● ● ●
●

●
●

● ●
●

●

●

●
●

●
●

●
●

●
● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
● ●

●

●
●

●

●

● ●

●

●

●

●

●

FI05_000942_001.LMD
15

0
30

0

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
● ●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●
●

●
●

●

●

●

●
●

●
●

●
●

●
● ●

●

● ●

●
● ● ●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

FI05_000942_002.LMD

15
0

30
0

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●
●

●

●
● ● ●

●
● ●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
● ●

●

● ●

●

●

●

●
●

●
●

●
● ● ●

●

●

●
●

●

● ●
●

● ●

● ●

●

●

● ●

●

●

●
●

● ●

●

● ●

●

●

● ● ●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●
●

● ●

●

●

●

●

● ●
●

●
● ●

●

●

● ●

●

●

●
●

●

●

FI05_000942_003.LMD

15
0

30
0

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

● ●

● ●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●
●

● ● ● ●

●
●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

FI05_000942_004.LMD

15
0

30
0

●

●

●

●
●

● ●

● ●
●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

● ● ●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

● ● ● ●
●

●

● ●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
● ●

●
●

●

● ● ●
●

●

●

●

●
●

●

●

● ●

●

FI05_000942_005.LMD

15
0

30
0

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
● ●

●

●
●

●

●

●

●

●

●
●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
● ●

●

●
●

●
●

● ●

●

● ● ●

●

●

●

● ●
●

●

●

●

●

●
●

●

● ●

●

● ●
●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

FI05_000942_006.LMD

15
0

30
0

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

● ●

●
● ●

● ●
●

● ●

●
●

●

●

●
●

● ●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

● ●

●

● ●

●

●

●

●

●

● ●

●

●

●

● ● ●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

FI05_000942_007.LMD

0 20 40 60 80 100 120

Usage and argument descriptions for flowFP are as follows:

Usage:

flowFP(obj, model=NULL, sampleClasses=NULL, verbose=FALSE, ...)

fcs A flowFrame or flowSet for which fingerprint(s) are desired.
model A model generated with the flowFPModel constructor, or NULL. If

NULL, a default model will be silently generated from all instances in x.
sampleClasses An optional character vector describing modeling classes. If supplied,

there must be exactly one element for each flowFrame in the flowSet in
x (see Details).

verbose If TRUE, prints out information as it constructs the fingerprint and
possibly the model. Useful for debugging.

. . . If model is NULL, additional arguments are passed on to the model
constructor. see flowFPModel for details.

8

3.3 The flowFPPlex Class

The flowFPPlex is a container object which facilitates combining, processing and visualizing
large collections of flowFP objects which are all derived from the same set of instances. The
flowFPPlex constructor takes a list of flowFP objects. The flowFPPlex manages the logical
association of a set of flowFP descriptions. In particular, it extends the counts matrices of
its members “horizontally” so as to create a unified representation of the entire collection of
fingerprints.

For example, let’s load data for another sample, similar to fs1. We will then use both
flowSets as model bases, and fingerprint fs1 with respect to both of them. Then we’ll load
both sets of fingerprints into a flowFPPlex and visualize the result:

> data(fs2)

> mod1 <- flowFPModel(fs1, name="CD45/SS Model vs fs1", parameters=c("SS Log", "FL3 Log"), nRecursions=7)

> mod2 <- flowFPModel(fs2, name="CD45/SS Model vs fs2", parameters=c("SS Log", "FL3 Log"), nRecursions=7)

> fp1_1 <- flowFP (fs1, mod1)

> fp1_2 <- flowFP (fs1, mod2)

> plex <- flowFPPlex(c(fp1_1, fp1_2))

> plot (plex, type='grid', vert_scale=10)

9

Fingerprints

FI05_000942_001.LMD FI05_000942_002.LMD FI05_000942_003.LMD FI05_000942_004.LMD

FI05_000942_005.LMD FI05_000942_006.LMD FI05_000942_007.LMD

In the figure, the light blue vertical lines show the division of the fingerprints resulting from
the two models. Notice that, as one might expect, when fingerprinting fs1 against a model
constructed from itself, the deviations from the norm are small, whereas when fingerprinting
fs1 against a model constructed from a different flowSet , the deviations in the fingerprint val-
ues are large.

We might also wish to use the flowFPPlex to facilitate exploration of the effect on finger-
prints due to variation of the number of levels of recursion.

> fp <- flowFP (fs1, param=c("SS Log", "FL3 Log"), nRecursions=8)

> plex <- flowFPPlex()

> for (levels in 8:5) {

+ nRecursions(fp) <- levels

+ plex <- append (plex, fp)

+ }

> plot (plex, type="tangle", transformation="norm")

10

0 100 200 300 400

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

Fingerprints

Feature Index

no
rm

al
iz

ed
 F

in
ge

rp
rin

t

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●●

●
●

●

●

●
●

●
●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

Notice that as the fingerprint resolution (determined by the number of recursions) is re-
duced from left to right, the number of features in each fingerprint falls, but the size of the
variations from the norm also falls. Evidently, the more local the modeling, the larger the
variations from instance to instance we can expect.

Also notice a couple of other features we illustrate in this example. First, we only computed
the model once, but we can change the effective number of recursions (and thus the resolution
of the fingerprints) to any integer less than that at which the model was computed, using the
accessor function nRecursions. Second, we can initialize an empty flowFPPlex , and then use
the function append to add flowFPs one at a time.

Usage and argument descriptions for flowFPPlex are as follows:

Usage:

flowFPPlex(fingerprints=NULL)

fingerprints List of flowFPs.

11

3.4 Generic functions

A number of other methods have been provided to facilitate interaction with and analysis of
fingerprinting results. Chief among these are visualization methods that aid in the understand-
ing and interpretation of fingerprinting results. They are provided as overloads to the generic
plot function. In addition, a few other accessor methods deserve special mention.

nRecursions(obj). This generic function returns the number of levels of recursive subdivi-
sion of its argument. FlowFP, flowFPPlex and flowFPModel all implement the method.
Furthermore, the flowFP class implements the “set” method. This enables the user to
compute a model at some fairly high resolution, and then to derive fingerprints at that
resolution or any lower resolution without re-computing the model. This is possible be-
cause fingerprinting is recursive, so that given any high-resolution model, all models of
lower resolution can be derived from it.

counts(obj). This generic function returns a matrix of the number of events per instance and
per bin. FlowFP and flowFPPlex classes implement this method, facilitating creation
of fingerprint matrices suitable for processing by downstream methods outside of the
flowFP package. The method has an optional argument “transformation” that can take
on values “raw” (returns the actual event counts for each bin), “normalize” (normalizes
by dividing raw counts by the expected number of events), or “log2norm” (like normalize
except that it further takes the log2 of the result).

sampleNames(obj) and sampleClasses(obj). These generic functions set or get sample
identifiers for objects of class flowFP or flowFPPlex. By default, for flowFPs, sample
names are derived from the flowSet. However they can be overridden by the set method,
providing flexibility to handle cases where the sample names in a flowSet are not appro-
priate. When adding fingerprints to a flowFPPlex, sample names, and if present sample
classes, are compared, and the join operation is not permitted unless names and classes
among all fingerprints in the flowFPPlex are identical.

parameters(obj). This generic function returns the light scatter and/or fluorescence param-
eters involved in binning, either for a flowFPModel or a flowFP. The function is able to
report both the parameters that were considered for binning as well as those that actually
participating (i.e. ones that were subdivided at during recursive subdivision).

tags(fp). This generic function returns the tags slot of a flowFP object. This is useful for
visualization and gating operations.

binBoundary(obj). This generic function reports a list of multivariate rectangles correspond-
ing to the limits of the bins. FlowFP and flowFPModel classes both implement this

12

method. This information is also useful for visualization and gating operations.

4 Fingerprinting for Gating Quality Control

As alluded to in Section 3.1, a common practice, especially in some clinical settings, is the
collection of data in several aliquots, each stained with different reagent cocktails in order to
see all of the markers of interest, but including in all of the tubes at least one common marker.
Using parameters common to all of the tubes (CD45 and SSC are frequently used for this pur-
pose (Borowitz et al., 1993)) subsets of cells can be delineated by drawing gates on one tube
and then applying the gates to all of the tubes. This saves time, but relies on the assumption
that the probability distribution is stationary over all of the tubes. If this assumption is not
valid, subsetting errors will occur, but may not be readily apparent without careful study of
the gating plots.

Using flowFP, in order to rapidly detect consistency of CD45 vs. SSC distributions without
the need to look at dotplots, we can fingerprint a collection of tubes and look for outliers.

> fp1 <- flowFP (fs1, parameters=c("SS Log", "FL3 Log"), name="self model: fs1", nRecursions=5)

> plot (fp1, type="qc", main="Gate QC for Sample fs1")

13

Gate QC for Sample fs1

method = sd

vertical scale factor = 3.0 0.0 1.0

FI05_000942_001.LMD

0.13

FI05_000942_002.LMD

0.11

FI05_000942_003.LMD

0.14

FI05_000942_004.LMD

0.12

FI05_000942_005.LMD

0.12

FI05_000942_006.LMD

0.09

FI05_000942_007.LMD

0.13

In this plot the fingerprints for each of the 7 tubes is shown in a grid. The color of the
grid square for a tube indicates the standard deviation of the normalized and log-transformed
fingerprint feature vector for that tube according to the color scale at the top of the figure.
The standard deviation value is printed in the grid square.

The following figure shows an example where the gate deviation is large. Note the fact that
tube 4 and especially tube 5 are the outliers. Also note how easy it is to spot this problem.

> fp2 <- flowFP (fs2, parameters=c("SS Log", "FL3 Log"), name="self model: fs2", nRecursions=5)

> plot (fp2, type="qc", main="Gate QC for Sample fs2")

14

Gate QC for Sample fs2

method = sd

vertical scale factor = 3.0 0.0 1.0

FI05_000599_001.LMD

0.31

FI05_000599_002.LMD

0.27

FI05_000599_003.LMD

0.29

FI05_000599_004.LMD

0.55

FI05_000599_005.LMD

0.95

FI05_000599_006.LMD

0.31

FI05_000599_007.LMD

0.35

> xyplot (`FL3 Log` ~ `SS Log` | Tube, data=fs2)

SS Log SS Log

F
L3

 L
og

 C
D

45
−

E
C

D

0

200

400

600

800

1000

1

0 200 400 600 8001000

2 3

0 200 400 600 8001000

4

0 200 400 600 8001000

5 6

0 200 400 600 8001000

0

200

400

600

800

1000

7

In the above flowViz plot it is certainly possible to spot the inconsistency, but it’s not so

15

easy as in the fingerprint-based QC picture. On the other hand . . .

> plot (fp2, fs2, hi=5, showbins=c(6,7,10,11), pch=20, cex=.3, transformation='norm')

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

Fingerprints

SS Log

F
L3

 L
og

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●● ●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

● ●●

●

●

● ●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●
● ●●

●

●

●

●
●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

● ●

●●

●

●

●

●
●

●

●

●
●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●

● ●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

● ●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●
●

●

●

●

●
●

● ●

●

● ●●
●

●

●

●

●●

●

●

●

●
●

●
●

●●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●●
●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●
●

●

●

●

●

●
●● ●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

0 5 10 15 20 25 30

0.
5

1.
5

2.
5

3.
5

Feature Index

no
rm

al
iz

ed
 F

in
ge

rp
rin

t

●

● ● ●

●

●

●

● ●

●

●

●

●

● ● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

16

In this figure we can follow the fingerprint bins containing excess events in Tube 5 by way
of the color map shown below the fingerprint. By comparing the bin indices 6, 7, 10 and 11
corresponding to green to blue-green colors, it’s easy now to localize the place where Tube 5
differs from the rest.

Quality control for individual multi-tube samples is tedious, but not crazily impossible.
96-well plate data will drive you nuts with the need to examine gating data for each well and
for many plates. Try this instead:

> data(plate)

> fp <- flowFP (plate, parameters=c("SSC-H","FL3-H","FL4-H"), nRecursions=5)

> plot (fp, type='plate')

1 2 3 4 5 6 7 8 9 10 11 12

A

B

C

D

E

F

G

H

Fingerprint Deviation Plot
method = sd
vertical scale factor = 3.0 0.0 1.0

0.57 0.59 0.39 0.44 0.39 0.36 0.41 0.37 0.42 0.44 0.51 0.94

1.21 1.43 1.94 0.57 0.31 0.45 0.20 0.34 0.32 0.53 0.45 0.30

0.58 0.47 0.40 0.47 0.51 0.41 0.37 0.31 0.31 0.28 0.35 1.36

0.53 0.40 0.33 0.53 0.28 0.34 0.34 0.39 0.53 0.34 0.35 0.48

0.49 0.50 0.45 0.39 0.37 0.41 0.40 0.44 0.41 0.48 0.38 0.39

0.48 1.18 0.57 0.55 0.75 0.49 0.43 0.39 0.46 0.53 0.53 0.39

0.54 0.58 0.37 0.42 0.46 0.57 0.60 0.33 0.44 0.54 0.40 0.89

0.48 0.53 0.36 0.39 0.31 0.50 0.49 0.54 0.48 0.43 0.35 0.41

This is a stimulation dataset, described in (Inokuma et al., 2007) (data were drastically
sampled down to 1000 events per well so that they could be included in the package for illus-
tration purposes). The original data are available at (Inokuma et al., 2008).

5 Limitations, Caveats and Comments

It is important to note that fingerprinting of FC data is not without limitations. First, we
note that fingerprinting approaches are sensitive to differences in multivariate probability dis-
tributions no matter their origin. Thus, instrumental, reagent or other systematic variations
may cause spurious signals as large, or larger than true biological effects. For this reason it

17

is important to measure and control for these effects(Chattopadhyay et al., 2008). In fact,
fingerprinting itself can be used to assess and to help control for systematic effects, as was
illustrated in Section 4.

Second, because fingerprinting is, in essence, the creation of a multivariate histogram, it
responds to factors that might artificially emphasize certain bins in preference to others. In
particular, events may pile up on either the zero or full- scale axis for one or more parameters.
This situation frequently results from values that would be negative due to compensation or
background subtraction (causing pile-up on the zero axis) or at the other end of the scale,
values that exceed the dynamic range of the signal detection apparatus causing pile-up at full
scale. At either end this results falsely in an apparent high density of events. Fingerprinting
bins are thus “attracted” to these locations, causing a distortion in the proper characterization
of the true multivariate probability distribution function.

Just as scaling and transformation of data are important for visualization of multi- param-
eter distributions(Parks et al., 2006; Tung et al., 2004; Novo and Wood, 2008), so they are
also important for fingerprinting. Data acquired using linear amplifiers such as exist in some
modern instruments, or data that have been “linearized” from instruments with logarithmic
amplifiers, tend to be heavily skewed to the left, since in most cases data distributions are
quasi-log-normally distributed. Bins determined from such data thus have extreme variations
in size. A good rule of thumb is to use a data transformation that produces the most spread-
out distribution, which also is often the transformation most effective for clear visualization of
the distribution.

A key limitation for fingerprinting approaches, including flowFP, relates to the number of
events available for analysis. Since the objective of probability binning is to find bins containing
equal numbers of events, it follows that once the number of bins is on the order of the number of
events in an instance, the expected number of events per bin will be of order unity. In this case
differences in bin counts will not be statistically significant. On the other hand, if the dimen-
sionality of the data set is high, the average number of times any parameter will be divided in
the binning process will be small. For example, in a dataset with 18 parameters, if we demand
at least, say, 10 events per bin for statistical accuracy, about 2.6×106 events would be required
in order that each parameter be divided on average into at least two bins. Thus, the spatial
resolution of binning is limited by the number of events collected, and as the number of pa-
rameters increases, the number of events needed to maintain resolution increases geometrically.

Finally, although flowFP is computationally fast, because of the way that flow cytometric
data are represented in R large datasets consume vast amounts of memory. If you need to
process 96-well data for example, you will probably either need a machine with lots of memory
(>4 GByte), or you will have to use some tricks, like sampling the data in order to reduce
memory footprint. Fortunately, memory is cheap and 64-bit operating systems are becoming
commonplace. For example, just reading in the data in (Inokuma et al., 2008) consumed 3.1
GB on a Linux 64-bit machine with 32 GB of memory. Fingerprinting required (briefly) an
additional 2.5 GB for a total of 5.6 GB. However the whole process (reading in the data, com-
puting the fingerprints, and displaying the result similar to the 96-well figure above) only took

18

about 1 minute.

With recent technological advances, FC is now capable of operating as a true high-throughput
technique. A key enabling requirement is the need to automate data analysis for speed, much
as automation in sample preparation and data acquisition have accelerated the rate of gen-
eration of data and thereby enabled high-throughput FC. This requirement inevitably drives
movement away from human-drawn, visually-based gating which is the single most significant
obstacle preventing a true high-throughput FC workflow. We hope you find flowFP a useful
tool in your toolbox to help you achieve this goal.

6 Acknowledgements

We wish to express our deep gratitude to Jonni Moore and all of the people of the University
of Pennsylvania Flow Cytometry Resource. We thank Florian Hahne, Nolwenn Le Meur and
Ryan Brinkman for advice and assistance in programming in R and integration with flowCore.
We are most especially grateful to Clarient, Inc. for generously making available data sets used
to illustrate the utility of flowFP.

19

References

M. J. Borowitz, K. L. Guenther, K. E. Shults, and G. T. Stelzer. Immunophenotyping of acute
leukemia by flow cytometric analysis. use of cd45 and right-angle light scatter to gate on
leukemic blasts in three-color analysis. Am J Clin Pathol, 100(5):534–40, Nov 1993.

P. K. Chattopadhyay, D. A. Price, T. F. Harper, M. R. Betts, J. Yu, E. Gostick, S. P. Perfetto,
P. Goepfert, R. A. Koup, S. C. De Rosa, M. P. Bruchez, and M. Roederer. Quantum dot
semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nat
Med, 12(8):972–7, Aug 2006.

P. K. Chattopadhyay, C. M. Hogerkorp, and M. Roederer. A chromatic explosion: the de-
velopment and future of multiparameter flow cytometry. Immunology, 125(4):441–9, Dec
2008.

I. V. Gates, Y. Zhang, C. Shambaugh, M. A. Bauman, C. Tan, and J. L. Bodmer. Quantitative
measurement of varicella zoster virus infection using semi-automated flow cytometry. Appl
Environ Microbiol, Feb 5 2009.

M. Inokuma, C. dela Rosa, C. Schmitt, P. Haaland, J. Siebert, D. Petry, M. Tang, M. A.
Suni, S. A. Ghanekar, D. Gladding, J. F. Dunne, V. C. Maino, M. L. Disis, and H. T.
Maecker. Functional t cell responses to tumor antigens in breast cancer patients have a
distinct phenotype and cytokine signature. J Immunol, 179(4):2627–33, Aug 15 2007.

M. Inokuma, C. dela Rosa, C. Schmitt, P. Haaland, J. Siebert, D. Petry, M. Tang, M. A. Suni,
S. A. Ghanekar, D. Gladding, J. F. Dunne, V. C. Maino, M. L. Disis, and H. T. Maecker,
2008.

McCoy Jr. J. P. Basic principles of flow cytometry. Hematol Oncol Clin North Am, 16(2):
229–43, Apr 2002.

A. S. Kelliher, D. W. Parent, D. C. Anderson, M. E. Dorn, J. L. Hahn, S. Eapen, and F. I.
Preffer. Novel use of the bd facs spa to automate custom monoclonal antibody panel prepa-
rations for immunophenotyping. Cytometry B Clin Cytom, 66(1):40–5, Jul 2005.

S. Murthi, S. Sankaranarayanan, B. Xia, G. M. Lambert, J. J. Rodriguez, and D. W. Galbraith.
Performance analysis of a dual-buffer architecture for digital flow cytometry. Cytometry A,
66(2):109–18, Aug 2005.

D. Novo and J. Wood. Flow cytometry histograms: transformations, resolution, and display.
Cytometry A, 73(8):685–92, Aug 2008.

D. R. Parks, M. Roederer, and W. A. Moore. A new ”logicle” display method avoids deceptive
effects of logarithmic scaling for low signals and compensated data. Cytometry A, 69(6):
541–51, Jun 2006.

M. Roederer, W. Moore, A. Treister, R. R. Hardy, and L. A. Herzenberg. Probability binning
comparison: a metric for quantitating multivariate distribution differences. Cytometry, 45
(1):47–55, Sep 1 2001.

20

W. T. Rogers, A. R. Moser, H. A. Holyst, A. Bantly, E. R. Mohler 3rd, G. Scangas, and J. S.
Moore. Cytometric fingerprinting: quantitative characterization of multivariate distribu-
tions. Cytometry A, 73(5):430–41, may 2008.

J. W. Tung, D. R. Parks, W. A. Moore, and L. A. Herzenberg. New approaches to fluorescence
compensation and visualization of facs data. Clin Immunol, 110(3):277–83, Mar 2004.

21

	Introduction
	Algorithm Description
	Fingerprint Representation
	The flowFPModel Class
	The flowFP Class
	The flowFPPlex Class
	Generic functions

	Fingerprinting for Gating Quality Control
	Limitations, Caveats and Comments
	Acknowledgements

