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Introduction and goals

Reliably resolving protein localisation is not a trivial task, and
requires (1) flexible, yet powerful data (and meta-data) structures,
with handling and transformation capabilities, (2) efficient
processing algorithms and (3) customisable data visualisation.

So far, several data analysis strategies for MS-based approaches
have been described in the literature, but no comparison has been
attempted due to their diverse and ill-documented nature.

pRoloc aims at filling this gap to provide researchers with a unified
framework for MS-based protein localisation, with particular focus
on gradient-based approaches (figure 1).

Figure 1: The pRoloc framework: flexible data and meta-data containers and multiple data analysis

and visualisation capabilities.

Material and methods

We have used 2 gradient-based data sets: (1) iTRAQ labelled data
from Dunkley et al. 2006 [1] (a LOPIT experiment) and (2)
label-free data from Foster et al. 2006 [2] (PCP experiment).

We have applied 6 different machine learning (ML) algorithms to
predict protein localisation: (1) k-nearest neighbour (knn), (2)
partial least square discriminant analysis (pls), (3) support vector
machine (svm), (4) articifial neural network (nnet), (5) naive bayes
(nb), (6) random forest (rf), and the χ2 method (chi2), published
as part of the PCP design.

Algorithmic performance was estimated using 5-fold stratified
cross-validation, which featured an additional cross-validation on
each training partition in order to optimise free parameters via a
grid search. This process was repeated 10 times and averaged
accuracies are reported.

χ2 significance is based on Bonferroni adjusted empirical p-values
(computed on 1000 fraction-permutated data). This procedure has
been repeated 10 times using different single marker proteins to
measure χ2 accuracy.

Missing data imputation in the Foster data was performed using a
nearest neighbour method.

Extending the test data sets

The ML algorithms were run using optimised parameters as
described above and proteins that were consistently assigned to
the same organelle by all algorithms were combined to extend
existing training data sets (see figure 3).
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Assessing algorithms on LOPIT data

Algorithms were evaluated using F1 scores, calculated as the
harmonic mean of the precision (a measure of exactness –
returned output is a relevant result) and recall (measure of
completeness – indicating how much was missed from the output):

F1 = 2 precision×recall
precision+recall

precision = tp
tp+fp

recall = tp
tp+fn

As illustrated on figure 2, the χ2 method shows lower accuracy
and higher variability, dependent on the initial choice of the
organelle marker. The other algorithms exhibit high generalisation
accuracies, indicating that the proteins in the test data set are
consistently correctly assigned by most of the basic ML algorithms.
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Figure 2: Assessment of the organelle prediction algorithms.
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Figure 3: Comparison of the original and extended test data sets.

Conclusions and perspectives

We have presented the pRoloc package, that allows (1) storage and
analysis of data from multiple technologies and experimental
designs and (2) application of a series of basic machine learning
algorithms. The implementation in R [3] gives users and
developers a great variety of powerful tools to be used in a
controlled and reproducible way.

We have demonstrated pRoloc’s flexibility and power to compare
different algorithms and visualise results.

The ability to perform and assess various data analysis procedure
in a reproducible way is an essential tool to address data quality,
process optimisation and algorithm accuracy.
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