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1 Summary

This vignette provides examples of how to use the package FEM to identify
interactome hotspots of differential promoter methylation and differential ex-
pression, where an inverse association between promoter methylation and gene
expression is assumed [1]. By “interactome hotspot” we mean a connected sub-
network of the protein interaction network (PIN) with an exceptionally large
average edge-weight density in relation to the rest of the network. The weight
edges are constructed from the statistics of association of DNA methylation and
gene expression with the phenotype of interest. Thus, the FEM algorithm can
be viewed as a functional supervised algorithm, which uses a network of relations
between genes (in our case a PPI network) to identify subnetworks where a sig-
nificant number of genes are associated with a phenotype of interest (POI). We
call these “hotspots” also Functional Epigenetic Modules (FEMs). The genome-
wide DNA methylation data could have been generated by any platform, but
the algorithm has only been tested on Illumina Infinium 27k and 450k data.
The FEM algorithm on Illumina 27k data was first presented in [2], with its ex-
tension to Illumina 450k data described in [1]. The module detection algorithm
used is the spin-glass algorithm of [3]. The PIN used in this vignette includes
only protein-protein interactions and derives from Pathway Commons [4], but
the user is allowed to specify his own network.
There are three main components to this vignette. These are:

� Application to simulated data.

� Real world example: application to Endometrial Cancer.

� Further details of the algorithm.

2 Application to simulated data

Since FEM is a BioC package, the user first needs to install both R and Biocon-
ductor. R is a free open source software project freely downloadable from the
CRAN website http://cran.r-project.org/. FEM has several package dependen-
cies, such as igraph, marray, corrplot. So these need to be installed first. For ex-
ample. to install igraph and corrplot, type install.packages(c(”igraph”,”corrplot”)).
Since marray is a bioconductor package, we can install it with
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source(”http://bioconductor.org/biocLite.R”);
biocLite(”marray”).
Load them with

> library("igraph");

> library("marray");

> library("corrplot")

You can check your version of iGraph by entering sessionInfo()$otherPkgs$igraph$Version.
It should be at least version 0.6.
To load the FEM package in your R session,

> library("FEM");

We demonstrate the functionality of FEM using a simulated toy dataset. To
load it into the session, use

> data(toydata)#load the toydata

In fact, toydata is a list and it has four elements.

> names(toydata)

[1] "statM" "statR" "adjacency" "annotation" "tennodes"

The first element is statM

> head(toydata$statM)#"head" function is used to show the first 10 rows of statM

t-value p-value

1 -0.065111202 4.740427e-01

2 0.001161095 4.995368e-01

3 0.195829329 4.223719e-01

4 3.934019816 4.176845e-05

5 -0.025401308 4.898674e-01

6 -0.089637422 4.642877e-01

statM is a matrix of t-statistics and p-values of differential methylation (one
row for each gene promoter) with rownames annotated with a geneID (here just
an index). There are 84 rows because the maximally connected component of
the 100-node random graph generated was of size 84. Most of the rows have
statistics which have been simulated to be close to zero (between -0.5 and 0.5),
meaning that for these there is no association between DNA methylation and
the phenotype of interest (POI). There are also ten randomly selected probes
whose t-statistics are randomly chosen to lie between 2 and 5, meaning that for
these promoters high methylation is associated positively with the POI.
Now lets’s check the 10 genes (here just the index) whose t-statistics is larger
than 2, meaning that for these 10 genes there is a significant positive association
between methylation and the phenotype of interest (POI).

> as.vector(which(toydata$statM[,1]>2))->tennodes;

> tennodes;

[1] 4 11 19 30 37 49 64 77 79 80
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The second member is statR

> head(toydata$statR)

t-value p-value

1 -0.09591858 0.461792617

2 -0.03296763 0.486850201

3 0.17791827 0.429393580

4 -2.57586127 0.004999538

5 -0.12861502 0.448831142

6 -0.03371232 0.486553276

statR is a matrix of t-statistics and p-values of differential mRNA expression
(same dimension as statM.m and ordered in same way) with rownames anno-
tated with the same index gene ID. The t-statistics of the previously selected
10 genes are set to lie between -2 and -5. Thus, this models the case of ten
promoters which are underexpressed due to hypermethylation.

The following command identifies the index positions of genes that are sig-
nificantly underexpressed. They agree with those that are hypermethylated:

> as.vector(which(toydata$statR[,1]< -2));

[1] 4 11 19 30 37 49 64 77 79 80

The third member is adjacency. This is an adjacency matrix with number of
rows and columns equal to rows of statR (or statM), ordered in same way and
with same gene identifier. The resulting graph is assumed to be connected,
and was constructed as the maximally connected subgraph of a 100-node ran-
dom graph (Erdos-Renyi graph). Specifically, the original random graph was
generated with erdos.renyi.game(100, 2/100) and then the solitary nodes were
removed, resulting in a connected network of 84 nodes/genes.

Since 10 of these nodes represent differentially methylated and differentially
expressed genes, in order to generate a module centred on them, we turned the
10 nodes into a clique, meaning that each of these ten nodes is connected to
each other. So they belong to a deliberately created module with high absolute
differential methylation and diffential expression t-statistics. They are indicated
in the following plot.

Plot this network from adjacency with the ten nodes marked as a group.

> plot.igraph(graph.adjacency(toydata$adjacency,mod="undirected"),

+ vertex.size=8,mark.groups=toydata$tennodes,mark.col="yellow")
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In this graph,
the ten genes are set as one group, they are connected to each other, their
DNA methylation t-statistics values lie between 2 and 5, meaning that for these
promoters high methylation is associated positively with the POI and their t-
statistics in statR are set to between -2 and -5. Thus, these 10 genes are under-
expressed due to hypermethylation. The fourth member of the list is annotation,
an annotation matrix:

> head(toydata$annotation)

EentrezID GeneSymbol

[1,] "1" "Gene1"

[2,] "2" "Gene2"

[3,] "3" "Gene3"

[4,] "4" "Gene4"

[5,] "5" "Gene5"

[6,] "6" "Gene6"

First column should contain the unique (entrez gene) identifiers as used in adj.m,
statM.m and statR.m. Second column should contain the corresponding unique
gene symbols. In this toy network case, we use just use integer indices as trivial
identifiers.

As mentioned before, FEM is use to detect interactome hotspots of differential
promoter methylation and differential expression, where an inverse association
between promoter methylation and gene expression is assumed. So let us test
whether FEM can detect the simulated module of ten nodes:
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We now use DoFEMbi() to find the community structures induced by these
phenotype changes in the toydata.

> DoFEM_test.o <- with(toydata,

+ DoFEMbi(statM,statR,adjacency,

+ nseeds=1,gamma=0.5,nMC=1000,

+ sizeR.v=c(1,100),minsizeOUT=10,

+ writeOUT=TRUE,

+ nameSTUDY="TEST",ew.v=NULL));

The other arguments are :

nseeds: number of seeds/modules to search for. This should be a number
such that P-values of significance after multiple testing is less than some rea-
sonable FDR threshold, i.e. < 0.3. Here we set it as one to save time.

gamma: tuning parameter of spin-glass algorithm. Default value generally
leads to modules in the desired size range (10-100).

nMC: number of Monte Carlo runs for establishing statistical significance of
modularity values under randomisation of the molecular profiles on the network.

You can also use ”sizeR.v” to set the desired size range for modules, ”minsize-
OUT” to set the minimum size of modules to report as interesting and ”write-
OUT” to indicate whether to write out tables in text format.

There are two result files. The colums are

� size: a vector of inferred module sizes for each of the ntop seeds.

� mod: a vector of associated modularities.

� pv: a vector of associated significance P-values (with resolution of nMC
runs).

� selmod: index positions of significant modules of size at least minsizeOUT
and smaller than the maximum specified in sizeR.v

� fem: a summary matrix of the selected modules.

� topmod: a list of summary matrices for each of the selected module

Let’s check the details of the output:

> DoFEM_test.o$fem

EntrezID(Seed) Symbol(Seed) Size Mod P

[1,] "11" "Gene11" "36" "4.40228923792317" "0"

Genes

[1,] "Gene11 Gene4 Gene5 Gene19 Gene30 Gene37 Gene49 Gene51 Gene64 Gene77 Gene79 Gene80 Gene2 Gene76 Gene28 Gene24 Gene74 Gene13 Gene22 Gene42 Gene16 Gene81 Gene15 Gene43 Gene82 Gene73 Gene14 Gene38 Gene72 Gene9 Gene7 Gene84 Gene83 Gene36 Gene31 Gene71"

We can see that we get one module with seed ”Gene11” (hence its module name
“Gene11”) and it has 36 members. With the following command, we can have a
look at the details of the first five genes in the ”Gene11” module:
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> head(DoFEM_test.o$topmod$Gene11,n=5L)

EntrezID Symbol stat(DNAm) P(DNAm)

11 "11" "Gene11" "3.98617629287764" "3.35733147288641e-05"

4 "4" "Gene4" "3.93401981610805" "4.17684458448805e-05"

5 "5" "Gene5" "-0.0254013077355921" "0.489867434011738"

19 "19" "Gene19" "3.49410701170564" "0.00023782515959272"

30 "30" "Gene30" "2.18818748369813" "0.0143279742210821"

stat(mRNA) P(mRNA) stat(Int)

11 "-3.05292705958709" "0.00113310507560836" "7.29480934183558"

4 "-2.57586126867682" "0.00499953781149238" "6.72562916567027"

5 "-0.128615015652031" "0.44883114211167" "0"

19 "-3.28854257101193" "0.00050353776488235" "7.05809017310707"

30 "-3.31781403906643" "0.000453624323520969" "5.78389382246553"

To indicate the ”Gene11” module in the whole network, use:

> mod.idx<-as.numeric(DoFEM_test.o$topmod$Gene11[,1])

> plot.igraph(graph.adjacency(toydata$adjacency,mod="undirected"),

+ vertex.size=8,mark.groups=mod.idx,mark.col="yellow")
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In order to check
the effectiveness of FEM in detecting the true module, we compute the sensi-
tivity, defined as the fraction of the truly associated genes that are captured by
the inferred module:

> sensitivity=length(intersect(tennodes,mod.idx))/length(tennodes);

> sensitivity

[1] 1
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Thus, we find that the sensitivity is 100%, meaning that FEM inferred a mod-
ule that contained all 10 genes that were truly differentially methylated and
expressed. Although, specificity is not 100%, this is to be expected since a
larger module can still exhibit a higher than random average weight density.

3 A real world example: application to Endome-
trial Cancer

To validate the FEM algorithm on real Illumina 450k data we collected and
analyzed 118 endometrial cancers and 17 normal endometrial samples, all with
matched RNA-Seq data from the TCGA study [5]. To assign DNA methylation
values to a given gene, in the case of Illumina 27k data, we assigned the probe
value closest to the transcription start site (TSS). In the case of Illumina 450k
data, we assigned to a gene, the average value of probes mapping to within 200bp
of the TSS. If no probes map to within 200bp of the TSS, we use the average of
probes mapping to the 1st exon of the gene. If such probes are also not present,
we use the average of probes mapping to within 1500bp of the TSS. Justification
for this procedure is provided in our Bioinformatics paper [1]. For each gene g
in the maximally connected subnetwork, we then derive a statistic of association
between its DNA methylation profile and the POI (here normal/cancer status),

denoted by t
(D)
g as well as between its mRNA expression profile and the same

POI, which we denote by t
(R)
g . These statistics have already been computed

beforehand using the limma package. We now load them in:

> data(realdata);

> attributes(realdata);

$names

[1] "statM" "statR" "adjacency" "annotation"

Since running DoFEMbi on large data sets can be lengthy (it takes 23 minutes
on a 4 3GHz CPU-core Dell Workstation with 16GB memory), we comment the
following line out:

> #fembi.o <- DoFEMbi(realdata$statM,realdata$statR,realdata$adjacency,

> #nseeds=100,gamma=0.5,nMC=1000,sizeR.v=c(1,100),minsizeOUT=10,

> #writeOUT=TRUE,nameSTUDY="TCGA-EC",ew.v=NULL);

To load in the results use:

> data(fembi.o)

The algorithm predicts a number of FEM modules. Use the folloing command
to display their size and elements.

> fembi.o$fem

The details of the modules can also be seen using:

> fembi.o$topmod
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In order to illustrate the modules graphically, the user can invoke the function
FemModShow, which will generate a pdf figure of the module in your working
directory and also return an graphNEL object which includes methylation and
expression color schemes. The graphNEL class is defined in the bioconductor
graph package, user can use igraph.from.graphNEL to convert it to the igraph
objects. For instance, the algorithm inferred a module centred around the gene
HAND2, which has been demonstrated to be causally implicated in the devel-
opment of endometrial cancer [2]. Thus, given its importance, we generate a
detailed network plot of this module:

> library("marray");

> library("corrplot");

> HAND2.mod<-fembi.o$topmod$HAND2;

> HAND2.graphNEL.o=FemModShow(fembi.o$topmod$HAND2,name="HAND2",fembi.o$ew,realdata$adjacency)

now the HAND2 module is as following;

HEY2
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GATA4

PPP2R5D

HEYL

HOXD13

HAND1

HAND2
NKD1

CENPB
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−1
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1
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2

t(DNAm)
Core

t(mRNA)
Border

Depicted is the functional epigenetic module centred around seed gene HAND2.
Edge widths are proportional to the average statistic of the genes making up the
edge. Node colours denote the differential DNA methylation statistics as indi-
cated. Border colors denote the differential expression statistics. Observe that
despite many nodes exhibiting differential methylation and differential expres-
sion, only HAND2, exhibits the expected anticorrelation with hypermethylation
(blue) leading to underexpression (green). See Jones et al [2] for the functional,
biological and clinical significance of HAND2 in endometrial cancer.

The user can generate all the modules’ graphs by
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> #for(m in 1:length(names(fembi.o$topmod))){FemModShow(fembi.o$topmod[[m]],

> #name=names(fembi.o$topmod)[m],fembi.o$ew,realdata$adjacency)}

In the above examples we provided the statistics and adjacency matrix input
objects. However, below we describe a function DoIntFEM450k which can gen-
erate the integrated statM, statR and adjacency matrices from the actual DNA
methylation, gene expression and original network adjacency matrices:
The input arguments are:

� dnaM.m: normalised DNA methylation 450k data matrix, with rownames
annotated to 450k probe IDs.

� phenoM.v: phenotype vector corresponding to dnaM.m. So if there are
two phenotypes, 1 and 2 say, the contrast is “2 minus 1”.

� exp.m: normalized gene expression data matrix with rownames annotated
to NCBI Entrez gene IDs. If the mapped Entrez gene IDs are not unique,
we use the average value of the same Entrez gene ID as the expresssion
value.

� phenoR.v: phenotype vector corresponding to exp.m

� adj.m: adjacency matrix of a network of relations (e.g. PPI network) with
rownames/colnames annotated to NCBI Entrez gene IDs.

Note: The PPI network can be derived from the Pathway Commons resource [4]
and follows the procedure described in [6]. The PIN used in previous papers
is available at http://sourceforge.net/projects/funepimod. The PPI network
consists of 8434 genes annotated to NCBI Entrez identifiers, and is sparse con-
taining 303600 documented interactions (edges). If the user wishes they can use
a different PPI network or generate statR using a different method.
The usage of DoIntFEM450k is

> #IntFEM450k.o=DoIntFEM450k(dnaM.m,phenoM.v,exp.m,phenoR.v,adj.m)

The output IntFEM450k.o has 5 members:

� statR: matrix of gene expression moderated t-statistics and P-values for
those genes in the integrated network

� statM: matrix of DNA methylation moderated t-statistics and P-values
for those genes in the integrated network

� adj: adjacency matrix of the maximally connected integrated network. At
present only maximally connected subnetwork is used.

� avexp: expression data matrix mapped to unique Entrez IDs

� avbeta: DNA methylation data matrix mapped to unique Entrez IDs
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4 EpiMod and ExpMod

It may be that we only wish to infer either differential methylation or differential
expression interactome hotspots. To this end, we provide specific functions, i.e.
DoIntEpi450K to do the integration at the DNA methylation level only. Indeed,
DoIntEpi450K is the same as DoIntFEM450k, except that we do not need the
exp.m, phenoR.v arguments. In this case, the edge weights in the interactome
network reflect the combined differential methylation statistics (absolute values)
of the genes making up the edge.

DoIntEpi450K input arguments:

� dnaM.m: normalised DNA methylation 450k data matrix, with rownames
annotated to 450k probe IDs.

� phenoM.v: phenotype vector corresponding to dnaM.m. So if there are
two phenotype, 1 and 2, the contrast is 2 minus 1.

� adj.m: adjacency matrix of a network of relations (e.g. PPI network) with
rownames/colnames annotated to NCBI Entrez gene IDs.

The output arguments:

� statM: matrix of DNA methylation moderated t-statistics and P-values
for those genes in the integrated network

� adj: adjacency matrix of the maximally connected integrated network. At
present only maximally connected subnetwork is used.

� annotation: The annotation data matrix with EntrezID and GeneSymbol

� avbeta: DNA methylation data matrix mapped to unique Entrez IDs

We also provide a special function, DoEpiMod, to process the statM, adj, anno-
tation matrix generated by DoIntEpi450K. The usage of DoEpiMod is same as
DoFEMbi except that the statR argument is not needed for DoIntEpi450K.

Once we have run DoEpiMod, we can use FemModShow to show the top mod-
ules. The usage and arguments of FemModShow for EpiMod is same as previous
decribed. You just need to add an argument ”mode” and set ”mode” = ”Epi” as
FemModShow has three modes, the default one being ”integration”, which is the
one to use with DoFEMbi. The ”Epi” mode means FemModShow will render
the Epi-modules generated by DoEpiMod.

The workflow applying DoIntEpi450k,DoEpiMod and FemModShow is:

> #IntEpi450k.o=DoIntEpi450k(dnaM.m,phenoM.v,adj.m)

> #EpiMod.o=DoEpiMod(IntEpi450k.o$statM,IntEpi450k.o$adjacency,

> # nseeds=100,gamma=0.5,nMC=1000,

> # sizeR.v=c(1,100),minsizeOUT=10,

> # writeOUT=TRUE,nameSTUDY="TCGA-EC",ew.v=NULL);)

> #

> #HAND2.mod<-EpiMod.o$topmod$HAND2; # if there is also HAND2 module

> #HAND2.mod.igraph.o=FemModShow(EpiMod.o$topmod$HAND2,name="HAND2",

> #EpiMod.o$ew,IntEpi450k.o$adjacency,mode="Epi")
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The DoIntEpi450k example data will be available later in an experimental pack-
age. In this case, application to the 450K methylation data of 118 endometrial
cancers and 17 normal endometrials from TCGA, results in a module, also cen-
tred around HAND2 :
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Depicted is the HAND2 Epi-module which contains many interacting members,
most of which are hypermethylated in cancer compared to normal tissue:

If we are interested in inferring differential mRNA expression hotspots, you
should run DoExpMod. As before, first you should run DoIntExp function to
integrate the gene expression matrix with the network adjacency matrix and
to compute the statistics of differential expression: The input arguments to
DoIntExp would be:

� exp.m: normalized gene expression data matrix with rownames annotated
to NCBI Entrez gene IDs. If the mapped Entrez gene IDs are not unique,
we use the average value of the same Entrez gene ID as the expresssion
value.

� phenoR.v: phenotype vector corresponding to exp.m. So if there are two
phenotype, 1 and 2, the contrast is 2 minus 1.

� adj.m: adjacency matrix of a network of relations (e.g. PPI network) with
rownames/colnames annotated to NCBI Entrez gene IDs.

The output arguments are:
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� statR: matrix of gene expression moderated t-statistics and P-values for
those genes in the integrated network

� adj: adjacency matrix of the maximally connected integrated network. At
present only maximally connected subnetwork is used.

� annotation: The annotation data matrix with EntrezID and GeneSymbol

� avexp: expression data matrix mapped to unique Entrez IDs

Subsequently, we can apply DoExpMod function to infer modules of differential
expression. The usage DoExpMod is same as DoFEMbi except that DoExpMod
doesn’t need the statM argument.
Finally, if you want to render the top differential expression modules, you run
FemModShow with the argument ”mode” set as ”Exp”.

The workflow applying DoIntExp, DoExpMod and FemModShow is:

> #IntExp.o=DoIntExp(dnaR.m,phenoR.v,adj.m)

> #ExpMod.o=DoEpiMod(IntExp.o$statM,IntExp.o$adjacency,

> # nseeds=100,gamma=0.5,nMC=1000,

> # sizeR.v=c(1,100),minsizeOUT=10,

> # writeOUT=TRUE,nameSTUDY="TCGA-EC",ew.v=NULL);)

> #

> #ExpMod1.mod<-ExpMod.o$topmod$ExpMod1; # if there is a ExpMod1 module

> #Exp1Mod1.mod.graphNEL.o=FemModShow(Exp1Mod1.o$topmod$ExpMod1,name="ExpMod1",

> #EpiMod.o$ew,IntExp.o$adjacency,mode="Exp")
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There is one ExpMod example, a ZWINT-Centered Interactome Hotspot. In
this case, application to the expression data of 118 endometrial cancers and 17
normal endometrials from TCGA, results in a module, centered around ZWINT,
which is a known component of the kinetochore complex required for the mitotic
spindle checkpoint and thus regulates the cell proliferation.

5 Integration with ”minfi” package

The functions DoIntFEM450k or DoIntEpi450k use the normalised DNA methy-
lation 450k data matrix with rownames annotated to 450k probe IDs. This
kind of normalized 450k data matrix can be generated from raw data by many
different tools. For instance, one could use minfi, an existing Bioconductor
package [7]. The simplified workflow would be something like:

> #library(minfi);

> #require(IlluminaHumanMethylation450kmanifest);

>

> #baseDIR <- getwd();# the base dir of the Rawdata

> #setwd(baseDIR);

> #targets <- read.450k.sheet(baseDIR);#read the csv file.

> #RGset <- read.450k.exp(baseDIR); #Reads an entire 450k experiment

> # using a sample sheet

> #MSet.raw <- preprocessRaw(RGset);#Converts the Red/Green channel for an Illumina

> # methylation array into methylation signal,

> # without using any normalization

> #beta.m <- getBeta(MSet.raw,type = "Illumina");# get normalized beta

> #pval.m <- detectionP(RGset,type ="m+u")

Before passing on the beta.m object to DoIntFEM450k or DoIntEpi450k, we rec-
ommend adjusting the data for the type-2 probe bias, using for instance BMIQ
[8]. BMIQ is freely available from either http://code.google.com/p/bmiq/, or
the ChAMP Bioconductor package [9].
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