
Package ‘edgeR’
April 9, 2015

Version 3.8.6

Date 2015/03/09

Title Empirical analysis of digital gene expression data in R

Author Yunshun Chen <yuchen@wehi.edu.au>, Davis Mc-
Carthy <dmccarthy@wehi.edu.au>, Aaron Lun <alun@wehi.edu.au>, Xi-
aobei Zhou <xiaobei.zhou@uzh.ch>, Mark Robinson <mark.robinson@imls.uzh.ch>, Gor-
don Smyth <smyth@wehi.edu.au>

Maintainer Yunshun Chen <yuchen@wehi.edu.au>, Aaron Lun <alun@wehi.edu.au>, Mark Robin-
son <mark.robinson@imls.uzh.ch>, Davis McCarthy <dmccarthy@wehi.edu.au>, Gor-
don Smyth <smyth@wehi.edu.au>

License GPL (>=2)

Depends R (>= 2.15.0), limma

Imports methods

Suggests MASS, statmod, splines, locfit, KernSmooth

URL http://bioinf.wehi.edu.au/edgeR

biocViews GeneExpression, Transcription, AlternativeSplicing,
Coverage, DifferentialExpression, DifferentialSplicing,
GeneSetEnrichment, Genetics, Bayesian, Clustering, Regression,
TimeCourse, SAGE, Sequencing, ChIPSeq, RNASeq, BatchEffect,
MultipleComparison, Normalization, QualityControl

Description Differential expression analysis of RNA-seq and digital gene expression profiles with bio-
logical replication. Uses empirical Bayes estimation and exact tests based on the negative bino-
mial distribution. Also useful for differential signal analysis with other types of genome-
scale count data.

R topics documented:
edgeR-package . 3
adjustedProfileLik . 4
as.data.frame . 6
as.matrix . 7
aveLogCPM . 7

1

http://bioinf.wehi.edu.au/edgeR

2 R topics documented:

binomTest . 9
calcNormFactors . 10
camera.DGEList . 12
commonCondLogLikDerDelta . 14
condLogLikDerSize . 15
cpm . 16
cutWithMinN . 17
decideTestsDGE . 18
DGEExact-class . 19
DGEGLM-class . 20
DGEList . 21
DGEList-class . 22
DGELRT-class . 23
dglmStdResid . 24
diffSpliceDGE . 27
dim . 29
dimnames . 30
dispBinTrend . 31
dispCoxReid . 33
dispCoxReidInterpolateTagwise . 35
dispCoxReidSplineTrend . 37
edgeRUsersGuide . 38
equalizeLibSizes . 39
estimateCommonDisp . 41
estimateDisp . 42
estimateExonGenewiseDisp . 44
estimateGLMCommonDisp . 45
estimateGLMRobustDisp . 47
estimateGLMTagwiseDisp . 48
estimateGLMTrendedDisp . 50
estimateTagwiseDisp . 52
estimateTrendedDisp . 54
exactTest . 55
expandAsMatrix . 58
getCounts . 58
getPriorN . 59
glmFit . 61
glmQLFit . 64
goana.DGELRT . 66
gof . 68
goodTuring . 70
loessByCol . 71
maPlot . 72
maximizeInterpolant . 74
maximizeQuadratic . 75
meanvar . 76
mglm . 78
movingAverageByCol . 81

edgeR-package 3

nbinomDeviance . 82
normalizeChIPtoInput . 83
plotBCV . 84
plotExonUsage . 85
plotMDS.DGEList . 86
plotQLDisp . 88
plotSmear . 90
plotSpliceDGE . 91
predFC . 92
processAmplicons . 94
q2qnbinom . 96
readDGE . 97
roast.DGEList . 99
spliceVariants . 100
splitIntoGroups . 102
subsetting . 103
sumTechReps . 104
systematicSubset . 105
thinCounts . 106
topSpliceDGE . 107
topTags . 108
treatDGE . 109
validDGEList . 111
weightedCondLogLikDerDelta . 112
WLEB . 113
zscoreNBinom . 114

Index 116

edgeR-package Empirical analysis of digital gene expression data in R

Description

edgeR is a package for the analysis of digital gene expression data arising from RNA sequencing
technologies such as SAGE, CAGE, Tag-seq or RNA-seq, with emphasis on testing for differential
expression.

Particular strengths of the package include the ability to estimate biological variation between repli-
cate libraries, and to conduct exact tests of significance which are suitable for small counts. The
package is able to make use of even minimal numbers of replicates.

An extensive User’s Guide is available, and can be opened by typing edgeRUsersGuide() at the R
prompt. Detailed help pages are also provided for each individual function.

The edgeR package implements original statistical methodology described in the publications be-
low.

4 adjustedProfileLik

Author(s)

Mark Robinson <mrobinson@wehi.edu.au>, Davis McCarthy <dmccarthy@wehi.edu.au>, Yun-
shun Chen <yuchen@wehi.edu.au>, Aaron Lun <alun@wehi.edu.au>, Gordon Smyth

References

Robinson MD and Smyth GK (2007). Moderated statistical tests for assessing differences in tag
abundance. Bioinformatics 23, 2881-2887

Robinson MD and Smyth GK (2008). Small-sample estimation of negative binomial dispersion,
with applications to SAGE data. Biostatistics, 9, 321-332

Robinson MD, McCarthy DJ and Smyth GK (2010). edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 26, 139-140

McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-
Seq experiments with respect to biological variation. Nucleic Acids Research 40, 4288-4297.

Lund, SP, Nettleton, D, McCarthy, DJ, Smyth, GK (2012). Detecting differential expression in
RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. Statistical Applica-
tions in Genetics and Molecular Biology. (Accepted 31 July 2012)

adjustedProfileLik Adjusted Profile Likelihood for the Negative Binomial Dispersion Pa-
rameter

Description

Compute adjusted profile-likelihoods for estimating the dispersion parameters of genewise negative
binomial glms.

Usage

adjustedProfileLik(dispersion, y, design, offset, weights=NULL, adjust=TRUE,
start=NULL, get.coef=FALSE)

Arguments

dispersion numeric scalar or vector of dispersions.
y numeric matrix of counts.
design numeric matrix giving the design matrix.
offset numeric matrix of same size as y giving offsets for the log-linear models. Can

be a scalor or a vector of length ncol(y), in which case it is expanded out to a
matrix.

weights optional numeric matrix giving observation weights.
adjust logical, if TRUE then Cox-Reid adjustment is made to the log-likelihood, if FALSE

then the log-likelihood is returned without adjustment.
start numeric matrix of starting values for the GLM coefficients, to be passed to

glmFit.
get.coef logical, specifying whether fitted GLM coefficients should be returned.

adjustedProfileLik 5

Details

For each row of data, compute the adjusted profile-likelihood for estimating the dispersion param-
eter of the negative binomial glm. The adjusted profile likelihood is described by McCarthy et al
(2012), and is based on the method of Cox and Reid (1987).

The adjusted profile likelihood is an approximate log-likelihood for the dispersion parameter, con-
ditional on the estimated values of the coefficients in the NB log-linear models. The conditional
likelihood approach is a technique for adjusting the likelihood function to allow for the fact that
nuisance parameters have to be estimated in order to evaluate the likelihood. When estimating the
dispersion, the nuisance parameters are the coefficients in the linear model.

This implementation calls the LAPACK library to perform the Cholesky decomposition during
adjustment estimation.

The purpose of start and get.coef is to allow hot-starting for multiple calls to adjustedProfileLik,
when only the dispersion is altered. Specifically, the returned GLM coefficients from one call with
get.coef==TRUE can be used as the start values for the next call.

Value

If get.coef==FALSE, a vector of adjusted profile log-likelihood values is returned containing one
element for each row of y.

Otherwise, a list is returned containing apl, the aforementioned vector of adjusted profile likeli-
hoods; and beta, a numeric matrix of fitted GLM coefficients.

Author(s)

Yunshun Chen, Gordon Smyth, Aaron Lun

References

Cox, DR, and Reid, N (1987). Parameter orthogonality and approximate conditional inference.
Journal of the Royal Statistical Society Series B 49, 1-39.

McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-
Seq experiments with respect to biological variation. Nucleic Acids Research 40, 4288-4297. http:
//nar.oxfordjournals.org/content/40/10/4288

See Also

glmFit

Examples

y <- matrix(rnbinom(1000, mu=10, size=2), ncol=4)
design <- matrix(1, 4, 1)
dispersion <- 0.5
apl <- adjustedProfileLik(dispersion, y, design, offset=0)
apl

http://nar.oxfordjournals.org/content/40/10/4288
http://nar.oxfordjournals.org/content/40/10/4288

6 as.data.frame

as.data.frame Turn a TopTags Object into a Dataframe

Description

Turn a TopTags object into a data.frame.

Usage

S3 method for class TopTags
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

Arguments

x an object of class TopTags

row.names NULL or a character vector giving the row names for the data frame. Missing
values are not allowed.

optional logical. If TRUE, setting row names and converting column names (to syntactic
names) is optional.

... additional arguments to be passed to or from methods.

Details

This method combines all the components of x which have a row for each tag (transcript) into a
data.frame.

Value

A data.frame.

Author(s)

Gordon Smyth

See Also

as.data.frame in the base package.

as.matrix 7

as.matrix Turn a DGEList Object into a Matrix

Description

Coerce a digital gene expression object into a numeric matrix by extracting the count values.

Usage

S3 method for class DGEList
as.matrix(x,...)

Arguments

x an object of class DGEList.

... additional arguments, not used for these methods.

Details

This method extracts the matrix of counts.

This involves loss of information, so the original data object is not recoverable.

Value

A numeric matrix.

Author(s)

Gordon Smyth

See Also

as.matrix in the base package or as.matrix.RGList in the limma package.

aveLogCPM Average Log Counts Per Million

Description

Compute average log2 counts-per-million for each row of counts.

8 aveLogCPM

Usage

S3 method for class DGEList
aveLogCPM(y, normalized.lib.sizes=TRUE, prior.count=2, dispersion=NULL, ...)
Default S3 method:
aveLogCPM(y, lib.size=NULL, offset=NULL, prior.count=2, dispersion=NULL,

weights=NULL, ...)

Arguments

y numeric matrix containing counts. Rows for tags and columns for libraries.

normalized.lib.sizes

logical, use normalized library sizes?

prior.count average value to be added to each count, to avoid infinite values on the log-scale.

dispersion numeric scalar or vector of negative-binomial dispersions. Defaults to 0.05.

lib.size numeric vector of library sizes. Defaults to colSums(y). Ignored if offset is
not NULL.

offset numeric matrix of offsets for the log-linear models.

weights optional numeric matrix of observation weights.

... other arguments are not currently used.

Details

This function uses mglmOneGroup to compute average counts-per-million (AveCPM) for each row
of counts, and returns log2(AveCPM). An average value of prior.count is added to the counts
before running mglmOneGroup.

This function is similar to

log2(rowMeans(cpm(y, ...))),

but with the refinement that larger library sizes are given more weight in the average. The two
versions will agree for large values of the dispersion.

Value

Numeric vector giving log2(AveCPM) for each row of y.

Author(s)

Gordon Smyth

See Also

See cpm for individual logCPM values, rather than tagwise averages.

The computations for aveLogCPM are done by mglmOneGroup.

binomTest 9

Examples

y <- matrix(c(0,100,30,40),2,2)
lib.size <- c(1000,10000)

With disp large, the function is equivalent to row-wise averages of individual cpms:
aveLogCPM(y, dispersion=1e4)
cpm(y, log=TRUE, prior.count=2)

With disp=0, the function is equivalent to pooling the counts before dividing by lib.size:
aveLogCPM(y,prior.count=0,dispersion=0)
cpms <- rowSums(y)/sum(lib.size)*1e6
log2(cpms)

binomTest Exact Binomial Tests for Comparing Two Digital Libraries

Description

Computes p-values for differential abundance for each tag between two digital libraries, condition-
ing on the total count for each tag. The counts in each group as a proportion of the whole are
assumed to follow a binomial distribution.

Usage

binomTest(y1, y2, n1=sum(y1), n2=sum(y2), p=n1/(n1+n2))

Arguments

y1 integer vector giving counts in first library. Non-integer values are rounded to
the nearest integer.

y2 integer vector giving counts in second library. Of same length as x. Non-integer
values are rounded to the nearest integer.

n1 total number of tags in first library. Non-integer values are rounded to the nearest
integer. Not required if p is supplied.

n2 total number of tags in second library. Non-integer values are rounded to the
nearest integer. Not required if p is supplied.

p expected proportion of y1 to the total under the null hypothesis.

Details

This function can be used to compare two libraries from SAGE, RNA-Seq, ChIP-Seq or other
sequencing technologies with respect to technical variation.

An exact two-sided binomial test is computed for each tag. This test is closely related to Fisher’s
exact test for 2x2 contingency tables but, unlike Fisher’s test, it conditions on the total number of
counts for each tag. The null hypothesis is that the expected counts are in the same proportions as
the library sizes, i.e., that the binomial probability for the first library is n1/(n1+n2).

10 calcNormFactors

The two-sided rejection region is chosen analogously to Fisher’s test. Specifically, the rejection
region consists of those values with smallest probabilities under the null hypothesis.

When the counts are reasonably large, the binomial test, Fisher’s test and Pearson’s chisquare all
give the same results. When the counts are smaller, the binomial test is usually to be preferred in
this context.

This function replaces the earlier sage.test functions in the statmod and sagenhaft packages. It
produces the same results as binom.test in the stats packge, but is much faster.

Value

Numeric vector of p-values.

Author(s)

Gordon Smyth

References

http://en.wikipedia.org/wiki/Binomial_test

http://en.wikipedia.org/wiki/Fisher’s_exact_test

http://en.wikipedia.org/wiki/Serial_analysis_of_gene_expression

http://en.wikipedia.org/wiki/RNA-Seq

See Also

sage.test (statmod package), binom.test (stats package)

Examples

binomTest(c(0,5,10),c(0,30,50),n1=10000,n2=15000)
Univariate equivalents:
binom.test(5,5+30,p=10000/(10000+15000))$p.value
binom.test(10,10+50,p=10000/(10000+15000))$p.value

calcNormFactors Calculate Normalization Factors to Align Columns of a Count Matrix

Description

Calculate normalization factors to scale the raw library sizes.

http://en.wikipedia.org/wiki/Binomial_test
http://en.wikipedia.org/wiki/Fisher's_exact_test
http://en.wikipedia.org/wiki/Serial_analysis_of_gene_expression

calcNormFactors 11

Usage

S3 method for class DGEList
calcNormFactors(object, method=c("TMM","RLE","upperquartile","none"),

refColumn=NULL, logratioTrim=.3, sumTrim=0.05, doWeighting=TRUE,
Acutoff=-1e10, p=0.75, ...)

Default S3 method:
calcNormFactors(object, lib.size=NULL, method=c("TMM","RLE",

"upperquartile","none"), refColumn=NULL, logratioTrim=.3,
sumTrim=0.05, doWeighting=TRUE, Acutoff=-1e10, p=0.75, ...)

Arguments

object either a matrix of raw (read) counts or a DGEList object

lib.size numeric vector of library sizes of the object.

method normalization method to be used

refColumn column to use as reference for method="TMM". Can be a column number or a
numeric vector of length nrow(object)).

logratioTrim amount of trim to use on log-ratios ("M" values) for method="TMM"

sumTrim amount of trim to use on the combined absolute levels ("A" values) for method="TMM"

doWeighting logical, whether to compute (asymptotic binomial precision) weights for method="TMM"

Acutoff cutoff on "A" values to use before trimming for method="TMM"

p percentile (between 0 and 1) of the counts that is aligned when method="upperquartile"

... further arguments that are not currently used.

Details

method="TMM" is the weighted trimmed mean of M-values (to the reference) proposed by Robinson
and Oshlack (2010), where the weights are from the delta method on Binomial data. If refColumn
is unspecified, the library whose upper quartile is closest to the mean upper quartile is used.

method="RLE" is the scaling factor method proposed by Anders and Huber (2010). We call it
"relative log expression", as median library is calculated from the geometric mean of all columns
and the median ratio of each sample to the median library is taken as the scale factor.

method="upperquartile" is the upper-quartile normalization method of Bullard et al (2010), in
which the scale factors are calculated from the 75% quantile of the counts for each library, after
removing transcripts which are zero in all libraries. This idea is generalized here to allow scaling
by any quantile of the distributions.

If method="none", then the normalization factors are set to 1.

For symmetry, normalization factors are adjusted to multiply to 1. The effective library size is then
the original library size multiplied by the scaling factor.

Note that rows that have zero counts for all columns are trimmed before normalization factors are
computed. Therefore rows with all zero counts do not affect the estimated factors.

12 camera.DGEList

Value

If object is a matrix, the output is a vector with length ncol(object) giving the relative normal-
ization factors. If object is a DGEList, then it is returned as output with the relative normalization
factors in object$samples$norm.factors.

Author(s)

Mark Robinson, Gordon Smyth

References

Anders, S, Huber, W (2010). Differential expression analysis for sequence count data Genome
Biology 11, R106.

Bullard JH, Purdom E, Hansen KD, Dudoit S. (2010) Evaluation of statistical methods for normal-
ization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11, 94.

Robinson MD, Oshlack A (2010). A scaling normalization method for differential expression anal-
ysis of RNA-seq data. Genome Biology 11, R25.

Examples

y <- matrix(rpois(1000, lambda=5), nrow=200)
calcNormFactors(y)

camera.DGEList Competitive Gene Set Test for Digital Gene Expression Data Account-
ing for Inter-gene Correlation

Description

Test whether a set of genes is highly ranked relative to other genes in terms of differential expres-
sion, accounting for inter-gene correlation.

Usage

S3 method for class DGEList
camera(y, index, design=NULL, contrast=ncol(design), ...)

Arguments

y a DGEList object containing dispersion estimates.
index an index vector or a list of index vectors. Can be any vector such that y[indices,]

selects the rows corresponding to the test set.
design the design matrix.
contrast the contrast of the linear model coefficients for which the test is required. Can

be an integer specifying a column of design, or else a numeric vector of same
length as the number of columns of design.

... other arguments are passed to camera.default.

camera.DGEList 13

Details

The camera gene set test was proposed by Wu and Smyth (2012) for microarray data. This function
makes the camera test available for digital gene expression data. The negative binomial count data is
converted to approximate normal deviates by computing mid-p quantile residuals (Dunn and Smyth,
1996; Routledge, 1994) under the null hypothesis that the contrast is zero. See camera for more
description of the test and for a complete list of possible arguments.

The design matrix defaults to the model.matrix(~y$samples$group).

Value

A data.frame. See camera for details.

Author(s)

Yunshun Chen, Gordon Smyth

References

Dunn, K. P., and Smyth, G. K. (1996). Randomized quantile residuals. J. Comput. Graph. Statist.,
5, 236-244. http://www.statsci.org/smyth/pubs/residual.html

Routledge, RD (1994). Practicing safe statistics with the mid-p. Canadian Journal of Statistics 22,
103-110.

Wu, D, and Smyth, GK (2012). Camera: a competitive gene set test accounting for inter-gene
correlation. Nucleic Acids Research 40, e133. http://nar.oxfordjournals.org/content/40/
17/e133

See Also

roast.DGEList, camera.

Examples

mu <- matrix(10, 100, 4)
group <- factor(c(0,0,1,1))
design <- model.matrix(~group)

First set of 10 genes that are genuinely differentially expressed
iset1 <- 1:10
mu[iset1,3:4] <- mu[iset1,3:4]+10

Second set of 10 genes are not DE
iset2 <- 11:20

Generate counts and create a DGEList object
y <- matrix(rnbinom(100*4, mu=mu, size=10),100,4)
y <- DGEList(counts=y, group=group)

Estimate dispersions
y <- estimateDisp(y, design)

http://www.statsci.org/smyth/pubs/residual.html
http://nar.oxfordjournals.org/content/40/17/e133
http://nar.oxfordjournals.org/content/40/17/e133

14 commonCondLogLikDerDelta

camera(y, iset1, design)
camera(y, iset2, design)

camera(y, list(set1=iset1,set2=iset2), design)

commonCondLogLikDerDelta

Conditional Log-Likelihoods in Terms of Delta

Description

Common conditional log-likelihood parameterized in terms of delta (phi / (phi+1))

Usage

commonCondLogLikDerDelta(y, delta, der = 0)

Arguments

y list with elements comprising the matrices of count data (or pseudocounts) for
the different groups

delta delta (phi / (phi+1)) parameter of negative binomial

der derivative, either 0 (the function), 1 (first derivative) or 2 (second derivative)

Details

The common conditional log-likelihood is constructed by summing over all of the individual tag
conditional log-likelihoods. The common conditional log-likelihood is taken as a function of the
dispersion parameter (phi), and here parameterized in terms of delta (phi / (phi+1)). The value
of delta that maximizes the common conditional log-likelihood is converted back to the phi scale,
and this value is the estimate of the common dispersion parameter used by all tags.

Value

numeric scalar of function/derivative evaluated at given delta

Author(s)

Davis McCarthy

See Also

estimateCommonDisp is the user-level function for estimating the common dispersion parameter.

condLogLikDerSize 15

Examples

counts<-matrix(rnbinom(20,size=1,mu=10),nrow=5)
d<-DGEList(counts=counts,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
y<-splitIntoGroups(d)
ll1<-commonCondLogLikDerDelta(y,delta=0.5,der=0)
ll2<-commonCondLogLikDerDelta(y,delta=0.5,der=1)

condLogLikDerSize Conditional Log-Likelihood of the Dispersion for a Single Group of
Replicate Libraries

Description

Derivatives of the negative-binomial log-likelihood with respect to the dispersion parameter for
each tag/transcript, conditional on the mean count, for a single group of replicate libraries of the
same size.

Usage

condLogLikDerSize(y, r, der=1L)
condLogLikDerDelta(y, delta, der=1L)

Arguments

y matrix of counts, all counts in each row having the same population mean

r numeric vector or scalar, size parameter of negative binomial distribution, equal
to 1/dispersion

delta numeric vector or scalar, delta parameter of negative binomial, equal to disper-
sion/(1+dispersion)

der integer specifying derivative required, either 0 (the function), 1 (first derivative)
or 2 (second derivative)

Details

The library sizes must be equalized before running this function. This function carries out the
actual mathematical computations for the conditional log-likelihood and its derivatives, calculating
the conditional log-likelihood for each tag/transcript. Derivatives are with respect to either the size
(r) or the delta parametrization (delta) of the dispersion.

Value

vector of row-wise derivatives with respect to r or delta

Author(s)

Mark Robinson, Davis McCarthy, Gordon Smyth

16 cpm

Examples

y <- matrix(rnbinom(10,size=1,mu=10),nrow=5)
condLogLikDerSize(y,r=1,der=1)
condLogLikDerDelta(y,delta=0.5,der=1)

cpm Counts per Million or Reads per Kilobase per Million

Description

Computes counts per million (CPM) or reads per kilobase per million (RPKM) values.

Usage

S3 method for class DGEList
cpm(x, normalized.lib.sizes=TRUE, log=FALSE, prior.count=0.25, ...)
Default S3 method:
cpm(x, lib.size=NULL, log=FALSE, prior.count=0.25, ...)
S3 method for class DGEList
rpkm(x, gene.length=NULL, normalized.lib.sizes=TRUE, log=FALSE, prior.count=0.25, ...)
Default S3 method:
rpkm(x, gene.length, lib.size=NULL, log=FALSE, prior.count=0.25, ...)

Arguments

x matrix of counts or a DGEList object
normalized.lib.sizes

logical, use normalized library sizes?
lib.size library size, defaults to colSums(x).
log logical, if TRUE then log2 values are returned.
prior.count average count to be added to each observation to avoid taking log of zero. Used

only if log=TRUE.
gene.length vector of length nrow(x) giving gene length in bases, or the name of the column

x$genes containing the gene lengths.
... other arguments are not currently used

Details

CPM or RPKM values are useful descriptive measures for the expression level of a gene or tran-
script. By default, the normalized library sizes are used in the computation for DGEList objects but
simple column sums for matrices.

If log-values are computed, then a small count, given by prior.count but scaled to be proportional
to the library size, is added to x to avoid taking the log of zero.

The rpkm method for DGEList objects will try to find the gene lengths in a column of x$genes
called Length or length. Failing that, it will look for any column name containing "length" in
any capitalization.

cutWithMinN 17

Value

numeric matrix of CPM or RPKM values.

Note

aveLogCPM(x), rowMeans(cpm(x,log=TRUE)) and log2(rowMeans(cpm(x)) all give slightly dif-
ferent results.

Author(s)

Davis McCarthy, Gordon Smyth

See Also

aveLogCPM

Examples

y <- matrix(rnbinom(20,size=1,mu=10),5,4)
cpm(y)

d <- DGEList(counts=y, lib.size=1001:1004)
cpm(d)
cpm(d,log=TRUE)

d$genes$Length <- c(1000,2000,500,1500,3000)
rpkm(d)

cutWithMinN Cut numeric vector into non-empty intervals

Description

Discretizes a numeric vector. Divides the range of x into intervals, so that each interval contains a
minimum number of values, and codes the values in x according to which interval they fall into.

Usage

cutWithMinN(x, intervals=2, min.n=1)

Arguments

x numeric vector.

intervals number of intervals required.

min.n minimum number of values in any interval. Must be greater than length(x)/intervals.

18 decideTestsDGE

Details

This function strikes a compromise between the base functions cut, which by default cuts a vector
into equal length intervals, and quantile, which is suited to finding equally populated intervals. It
finds a partition of the x values that is as close as possible to equal length intervals while keeping at
least min.n values in each interval.

Tied values of x are broken by random jittering, so the partition may vary slightly from run to run
if there are many tied values.

Value

A list with components:

group integer vector of same length as x indicating which interval each value belongs
to.

breaks numeric vector of length intervals+1 giving the left and right limits of each
interval.

Author(s)

Gordon Smyth

See Also

cut, quantile.

Examples

x <- c(1,2,3,4,5,6,7,100)
cutWithMinN(x,intervals=3,min.n=1)

decideTestsDGE Multiple Testing Across Genes and Contrasts

Description

Classify a series of related differential expression statistics as up, down or not significant. A number
of different multiple testing schemes are offered which adjust for multiple testing down the genes
as well as across contrasts for each gene.

Usage

decideTestsDGE(object, adjust.method="BH", p.value=0.05, lfc=0)

DGEExact-class 19

Arguments

object deDGElist object, output from exactTest, or DGELRT object, output from DGELRT,
from which p-values for differential expression and log-fold change values may
be extracted.

adjust.method character string specifying p-value adjustment method. Possible values are "none",
"BH", "fdr" (equivalent to "BH"), "BY" and "holm". See p.adjust for details.

p.value numeric value between 0 and 1 giving the desired size of the test

lfc numeric value giving the desired absolute minimum log-fold-change

Details

These functions implement multiple testing procedures for determining whether each log-fold change
in a matrix of log-fold changes should be considered significantly different from zero.

Value

An object of class TestResults (see TestResults). This is essentially a numeric matrix with
elements -1, 0 or 1 depending on whether each DE p-value is classified as significant with negative
log-fold change, not significant or significant with positive log-fold change, respectively.

Author(s)

Davis McCarthy, Gordon Smyth

See Also

Adapted from decideTests in the limma package.

DGEExact-class differential expression of Digital Gene Expression data - class

Description

A list-based S4 class for for storing results of a differential expression analysis for DGE data.

List Components

For objects of this class, rows correspond to genomic features and columns to statistics associated
with the differential expression analysis. The genomic features are called genes, but in reality might
correspond to transcripts, tags, exons etc.

Objects of this class contain the following list components:

table: data frame containing columns for the log2-fold-change, logFC, the average log2-counts-
per-million, logCPM, and the two-sided p-value PValue.

comparison: vector giving the two experimental groups/conditions being compared.

genes: a data frame containing information about each gene (can be NULL).

20 DGEGLM-class

Methods

This class inherits directly from class list, so DGEExact objects can be manipulated as if they
were ordinary lists. However they can also be treated as if they were matrices for the purposes of
subsetting.

The dimensions, row names and column names of a DGEExact object are defined by those of table,
see dim.DGEExact or dimnames.DGEExact.

DGEExact objects can be subsetted, see subsetting.

DGEExact objects also have a show method so that printing produces a compact summary of their
contents.

Author(s)

edgeR team. First created by Mark Robinson and Davis McCarthy

See Also

Other classes defined in edgeR are DGEList-class, DGEGLM-class, DGELRT-class, TopTags-class

DGEGLM-class Digital Gene Expression Generalized Linear Model results - class

Description

A list-based S4 class for storing results of a GLM fit to each gene in a DGE dataset.

List Components

For objects of this class, rows correspond to genomic features and columns to coefficients in the
linear model. The genomic features are called genes, but in reality might correspond to transcripts,
tags, exons etc.

Objects of this class contain the following list components:

coefficients: matrix containing the coefficients computed from fitting the model defined by the
design matrix to each gene in the dataset.

df.residual: vector containing the residual degrees of freedom for the model fit to each gene in
the dataset.

deviance: vector giving the deviance from the model fit to each gene.

design: design matrix for the full model from the likelihood ratio test.

offset: scalar, vector or matrix of offset values to be included in the GLMs for each gene.

samples: data frame containing information about the samples comprising the dataset.

genes: data frame containing information about the genes or tags for which we have DGE data
(can be NULL if there is no information available).

dispersion: scalar or vector providing the value of the dispersion parameter used in the negative
binomial GLM for each gene.

DGEList 21

lib.size: vector providing the effective library size for each sample in the dataset.

weights: matrix of weights used in the GLM fitting for each gene.

fitted.values: the fitted (expected) values from the GLM for each gene.

AveLogCPM: numeric vector giving average log2 counts per million for each gene.

Methods

This class inherits directly from class list so any operation appropriate for lists will work on
objects of this class.

The dimensions, row names and column names of a DGEGLM object are defined by those of the
dataset, see dim.DGEGLM or dimnames.DGEGLM.

DGEGLM objects can be subsetted, see subsetting.

DGEGLM objects also have a show method so that printing produces a compact summary of their
contents.

Author(s)

edgeR team. First created by Davis McCarthy.

See Also

Other classes defined in edgeR are DGEList-class, DGEExact-class, DGELRT-class, TopTags-class

DGEList DGEList Constructor

Description

Creates a DGEList object from a table of counts (rows=features, columns=samples), group indicator
for each column, library size (optional) and a table of feature annotation (optional).

Usage

DGEList(counts = matrix(0, 0, 0), lib.size = colSums(counts),
norm.factors = rep(1,ncol(counts)), group = rep(1,ncol(counts)), genes = NULL,

remove.zeros = FALSE)

Arguments

counts numeric matrix of read counts.

lib.size numeric vector giving the total count (sequence depth) for each library.

norm.factors numeric vector of normalization factors that modify the library sizes.

group vector or factor giving the experimental group/condition for each sample/library.

genes data frame containing annotation information for the tags/transcripts/genes.

remove.zeros logical, whether to remove rows that have 0 total count.

22 DGEList-class

Details

To facilitate programming pipelines, NULL values can be input for lib.size, norm.factors or
group, in which case the default value is used as if the argument had been missing.

Value

a DGEList object

Author(s)

edgeR team. First created by Mark Robinson.

See Also

DGEList-class

Examples

y <- matrix(rnbinom(10000,mu=5,size=2),ncol=4)
d <- DGEList(counts=y, group=rep(1:2,each=2))
dim(d)
colnames(d)
d$samples

DGEList-class Digital Gene Expression data - class

Description

A list-based S4 class for storing read counts and associated information from digital gene expression
or sequencing technologies.

List Components

For objects of this class, rows correspond to genomic features and columns to samples. The genomic
features are called genes, but in reality might correspond to transcripts, tags, exons etc. Objects of
this class contain the following essential list components:

counts: numeric matrix of read counts, one row for each gene and one column for each sample.

samples: data.frame with a row for each sample and columns group, lib.size and norm.factors
containing the group labels, library sizes and normalization factors. Other columns can be op-
tionally added to give more detailed sample information.

Optional components include:

genes: data.frame giving annotation information for each gene. Same number of rows as counts.

AveLogCPM: numeric vector giving average log2 counts per million for each gene.

common.dispersion: numeric scalar giving the overall dispersion estimate.

DGELRT-class 23

trended.dispersion: numeric vector giving trended dispersion estimates for each gene.

tagwise.dispersion: numeric vector giving tagwise dispersion estimates for each gene.

offset: numeric matrix of same size as counts giving offsets for use in log-linear models.

Methods

This class inherits directly from class list, so DGEList objects can be manipulated as if they
were ordinary lists. However they can also be treated as if they were matrices for the purposes of
subsetting.

The dimensions, row names and column names of a DGEList object are defined by those of counts,
see dim.DGEList or dimnames.DGEList.

DGEList objects can be subsetted, see subsetting.

DGEList objects also have a show method so that printing produces a compact summary of their
contents.

Author(s)

edgeR team. First created by Mark Robinson.

See Also

DGEList constructs DGEList objects. Other classes defined in edgeR are DGEExact-class, DGEGLM-class,
DGELRT-class, TopTags-class

DGELRT-class Digital Gene Expression Likelihood Ratio Test data and results - class

Description

A list-based S4 class for storing results of a GLM-based differential expression analysis for DGE
data.

List Components

For objects of this class, rows correspond to genomic features and columns to statistics associated
with the differential expression analysis. The genomic features are called genes, but in reality might
correspond to transcripts, tags, exons etc.

Objects of this class contain the following list components:

table: data frame containing the log-concentration (i.e. expression level), the log-fold change in
expression between the two groups/conditions and the exact p-value for differential expres-
sion, for each gene.

coefficients.full: matrix containing the coefficients computed from fitting the full model (fit
using glmFit and a given design matrix) to each gene in the dataset.

24 dglmStdResid

coefficients.null: matrix containing the coefficients computed from fitting the null model to
each gene in the dataset. The null model is the model to which the full model is compared,
and is fit using glmFit and dropping selected column(s) (i.e. coefficient(s)) from the design
matrix for the full model.

design: design matrix for the full model from the likelihood ratio test.

...: if the argument y to glmLRT (which produces the DGELRT object) was itself a DGEList object,
then the DGELRT will contain all of the elements of y, except for the table of counts and the
table of pseudocounts.

Methods

This class inherits directly from class list, so DGELRT objects can be manipulated as if they were
ordinary lists. However they can also be treated as if they were matrices for the purposes of subset-
ting.

The dimensions, row names and column names of a DGELRT object are defined by those of table,
see dim.DGELRT or dimnames.DGELRT.

DGELRT objects can be subsetted, see subsetting.

DGELRT objects also have a show method so that printing produces a compact summary of their
contents.

Author(s)

edgeR team. First created by Davis McCarthy

See Also

Other classes defined in edgeR are DGEList-class, DGEExact-class, DGEGLM-class, TopTags-class

dglmStdResid Visualize the mean-variance relationship in DGE data using standard-
ized residuals

Description

Appropriate modelling of the mean-variance relationship in DGE data is important for making
inferences about differential expression. However, the standard approach to visualizing the mean-
variance relationship is not appropriate for general, complicated experimental designs that require
generalized linear models (GLMs) for analysis. Here are functions to compute standardized resid-
uals from a Poisson GLM and plot them for bins based on overall expression level of tags as a way
to visualize the mean-variance relationship. A rough estimate of the dispersion parameter can also
be obtained from the standardized residuals.

Usage

dglmStdResid(y, design, dispersion=0, offset=0, nbins=100, make.plot=TRUE,
xlab="Mean", ylab="Ave. binned standardized residual", ...)

getDispersions(binned.object)

dglmStdResid 25

Arguments

y numeric matrix of counts, each row represents one tag, each column represents
one DGE library.

design numeric matrix giving the design matrix of the GLM. Assumed to be full column
rank.

dispersion numeric scalar or vector giving the dispersion parameter for each GLM. Can be
a scalar giving one value for all tags, or a vector of length equal to the number
of tags giving tag-wise dispersions.

offset numeric vector or matrix giving the offset that is to be included in teh log-linear
model predictor. Can be a vector of length equal to the number of libraries, or a
matrix of the same size as y.

nbins scalar giving the number of bins (formed by using the quantiles of the genewise
mean expression levels) for which to compute average means and variances for
exploring the mean-variance relationship. Default is 100 bins

make.plot logical, whether or not to plot the mean standardized residual for binned data
(binned on expression level). Provides a visualization of the mean-variance re-
lationship. Default is TRUE.

xlab character string giving the label for the x-axis. Standard graphical parameter. If
left as the default, then the x-axis label will be set to "Mean".

ylab character string giving the label for the y-axis. Standard graphical parameter. If
left as the default, then the y-axis label will be set to "Ave. binned standardized
residual".

... further arguments passed on to plot

binned.object list object, which is the output of dglmStdResid.

Details

This function is useful for exploring the mean-variance relationship in the data. Raw or pooled
variances cannot be used for complex experimental designs, so instead we can fit a Poisson model
using the appropriate design matrix to each tag and use the standardized residuals in place of the
pooled variance (as in plotMeanVar) to visualize the mean-variance relationship in the data. The
function will plot the average standardized residual for observations split into nbins bins by overall
expression level. This provides a useful summary of how the variance of the counts change with
respect to average expression level (abundance). A line showing the Poisson mean-variance rela-
tionship (mean equals variance) is always shown to illustrate how the genewise variances may differ
from a Poisson mean-variance relationship. A log-log scale is used for the plot.

The function mglmLS is used to fit the Poisson models to the data. This code is fast for fitting models,
but does not compute the value for the leverage, technically required to compute the standardized
residuals. Here, we approximate the standardized residuals by replacing the usual denominator of
(1 - leverage) by (1 - p/n) , where n is the number of observations per tag (i.e. number
of libraries) and p is the number of parameters in the model (i.e. number of columns in the full-rank
design matrix.

26 dglmStdResid

Value

dglmStdResid produces a mean-variance plot based on standardized residuals from a Poisson
model fitfor each tag for the DGE data. dglmStdResid returns a list with the following elements:

ave.means vector of the average expression level within each bin of observations

ave.std.resid vector of the average standardized Poisson residual within each bin of tags

bin.means list containing the average (mean) expression level (given by the fitted value
from the given Poisson model) for observations divided into bins based on
amount of expression

bin.std.resid list containing the standardized residual from the given Poisson model for ob-
servations divided into bins based on amount of expression

means vector giving the fitted value for each observed count

standardized.residuals

vector giving approximate standardized residual for each observed count

bins list containing the indices for the observations, assigning them to bins

nbins scalar giving the number of bins used to split up the observed counts

ngenes scalar giving the number of genes/tags in the dataset

nlibs scalar giving the number of libraries in the dataset

getDispersions computes the dispersion from the standardized residuals and returns a list with
the following components:

bin.dispersion vector giving the estimated dispersion value for each bin of observed counts,
computed using the average standardized residual for the bin

bin.dispersion.used

vector giving the actual estimated dispersion value to be used. Some computed
dispersions using the method in this function can be negative, which is not al-
lowed. We use the dispersion value from the nearest bin of higher expression
level with positive dispersion value in place of any negative dispersions.

dispersion vector giving the estimated dispersion for each observation, using the binned
dispersion estimates from above, so that all of the observations in a given bin
get the same dispersion value.

Author(s)

Davis McCarthy

See Also

plotMeanVar, plotMDS.DGEList, plotSmear and maPlot provide more ways of visualizing DGE
data.

diffSpliceDGE 27

Examples

y <- matrix(rnbinom(1000,mu=10,size=2),ncol=4)
design <- model.matrix(~c(0,0,1,1)+c(0,1,0,1))
binned <- dglmStdResid(y, design, dispersion=0.5)

getDispersions(binned)$bin.dispersion.used # Look at the estimated dispersions for the bins

diffSpliceDGE Test for Differential Exon Usage

Description

Given a negative binomial generalized log-linear model fit at the exon level, test for differential
exon usage between experimental conditions.

Usage

diffSpliceDGE(fit.exon, coef=ncol(fit.exon$design), geneid, exonid=NULL, verbose=TRUE)

Arguments

fit.exon an DGEGLM fitted model object produced by glmFit. Rows should correspond to
exons.

coef integer indicating which coefficient of the generalized linear model is to be
tested for differential exon usage. Defaults to the last coefficient.

geneid gene identifiers. Either a vector of length nrow(fit.exon) or the name of the
column of fit.exon$genes containing the gene identifiers. Rows with the same
ID are assumed to belong to the same gene.

exonid exon identifiers. Either a vector of length nrow(fit.exon) or the name of the
column of fit.exon$genes containing the exon identifiers.

verbose logical, if TRUE some diagnostic information about the number of genes and
exons is output.

Details

This function tests for differential exon usage for each gene for a given coefficient of the generalized
linear model.

Testing for differential exon usage is equivalent to testing whether the exons in each gene have the
same log-fold changes as the other exons in the same gene. At exon-level, each exon is compared
to the average of all other exons for the same gene using quasi-likelihood F-tests. At gene-level,
two different tests are provided. The first is converting exon-level p-values to gene-level p-values
by Simes method. The other is an F-test for differences between the exon log-fold-changes within
each gene.

28 diffSpliceDGE

Value

diffSpliceDGE produces an object of class DGELRT containing the component design from fit.exon
plus the following new components:

comparison character string describing the coefficient being tested.

coefficients numeric vector of coefficients on the natural log scale. Each coefficient is the
difference between the log-fold-change for that exon versus the average log-
fold-change for the rest exons within the same gene.

exon.F numeric vector of F-statistics for exons.

exon.df.test numeric vector of testing degrees of freedom for exons.

exon.df.prior numeric vector of prior degrees of freedom for exons.
exon.df.residual

numeric vector of residual degrees of freedom for exons.

exon.p.value numeric vector of p-values for exons.

genes data.frame of exon annotation

genecolname character string giving the name of the column of genes containing gene IDs.

exoncolname character string giving the name of the column of genes containing exon IDs.

gene.df.test numeric vector of testing degrees of freedom for genes.

gene.df.prior numeric vector of prior degrees of freedom for genes.
gene.df.residual

numeric vector of residual degrees of freedom for genes.
gene.Simes.p.value

numeric vector of Simes’ p-values for genes.

gene.F numeric vector of F-statistics for gene-level test.

gene.F.p.value numeric vector of F-test p-values for genes.

gene.genes data.frame of gene annotation.

The information and testing results for both exons and genes are sorted by geneid and by exonid
within gene.

Author(s)

Yunshun Chen and Gordon Smyth

Examples

Gene exon annotation
Gene <- paste("G", 1:10, sep="")
Gene <- rep(Gene, each=10)
Exon <- paste("Ex", 1:10, sep="")
Gene.Exon <- paste(Gene, Exon, sep=".")
genes <- data.frame(GeneID=Gene, Gene.Exon=Gene.Exon)

design <- model.matrix(~c(0,0,0,1,1,1))
mu <- matrix(20, 100, 6)

dim 29

mu[1,4:6] <- 200
counts <- matrix(rnbinom(600,mu=mu,size=20),100,6)

y <- DGEList(counts=counts, lib.size=rep(1e6,6), genes=genes)
gfit <- glmFit(y, design, dispersion=0.05)

ds <- diffSpliceDGE(gfit, geneid="GeneID")
topSpliceDGE(ds)
plotSpliceDGE(ds)

dim Retrieve the Dimensions of a DGEList, DGEExact, DGEGLM,
DGELRT or TopTags Object

Description

Retrieve the number of rows (transcripts) and columns (libraries) for an DGEList, DGEExact or
TopTags Object.

Usage

S3 method for class DGEList
dim(x)
S3 method for class DGEList
length(x)

Arguments

x an object of class DGEList, DGEExact, TopTags, DGEGLM or DGELRT

Details

Digital gene expression data objects share many analogies with ordinary matrices in which the rows
correspond to transcripts or genes and the columns to arrays. These methods allow one to extract
the size of microarray data objects in the same way that one would do for ordinary matrices.

A consequence is that row and column commands nrow(x), ncol(x) and so on also work.

Value

Numeric vector of length 2. The first element is the number of rows (genes) and the second is the
number of columns (arrays).

Author(s)

Gordon Smyth, Davis McCarthy

30 dimnames

See Also

dim in the base package.

02.Classes gives an overview of data classes used in LIMMA.

Examples

M <- A <- matrix(11:14,4,2)
rownames(M) <- rownames(A) <- c("a","b","c","d")
colnames(M) <- colnames(A) <- c("A1","A2")
MA <- new("MAList",list(M=M,A=A))
dim(M)
ncol(M)
nrow(M)
length(M)

dimnames Retrieve the Dimension Names of a DGE Object

Description

Retrieve the dimension names of a digital gene expression data object.

Usage

S3 method for class DGEList
dimnames(x)
S3 replacement method for class DGEList
dimnames(x) <- value

Arguments

x an object of class DGEList, DGEExact, DGEGLM, DGELRT or TopTags

value a possible value for dimnames(x), see dimnames

Details

The dimension names of a DGE data object are the same as those of the most important component
of that object.

Setting dimension names is currently only permitted for DGEList or DGEGLM objects.

A consequence is that rownames and colnames will work as expected.

Value

Either NULL or a list of length 2. If a list, its components are either NULL or a character vector the
length of the appropriate dimension of x.

dispBinTrend 31

Author(s)

Gordon Smyth

See Also

dimnames in the base package.

dispBinTrend Estimate Dispersion Trend by Binning for NB GLMs

Description

Estimate the abundance-dispersion trend by computing the common dispersion for bins of genes of
similar AveLogCPM and then fitting a smooth curve.

Usage

dispBinTrend(y, design=NULL, offset=NULL, df = 5, span=0.3, min.n=400,
method.bin="CoxReid", method.trend="spline", AveLogCPM=NULL,
weights=NULL, ...)

Arguments

y numeric matrix of counts

design numeric matrix giving the design matrix for the GLM that is to be fit.

offset numeric scalar, vector or matrix giving the offset (in addition to the log of the
effective library size) that is to be included in the NB GLM for the transcripts. If
a scalar, then this value will be used as an offset for all transcripts and libraries.
If a vector, it should be have length equal to the number of libraries, and the same
vector of offsets will be used for each transcript. If a matrix, then each library
for each transcript can have a unique offset, if desired. In adjustedProfileLik
the offset must be a matrix with the same dimension as the table of counts.

df degrees of freedom for spline curve.

span span used for loess curve.

min.n minimim number of genes in a bins.

method.bin method used to estimate the dispersion in each bin. Possible values are "CoxReid",
"Pearson" or "deviance".

method.trend type of curve to smooth the bins. Possible values are "spline" for a natural
cubic regression spline or "loess" for a linear lowess curve.

AveLogCPM numeric vector giving average log2 counts per million for each gene

weights optional numeric matrix giving observation weights

... other arguments are passed to estimateGLMCommonDisp

32 dispBinTrend

Details

Estimate a dispersion parameter for each of many negative binomial generalized linear models by
computing the common dispersion for genes sorted into bins based on overall AveLogCPM. A
regression natural cubic splines or a linear loess curve is used to smooth the trend and extrapolate a
value to each gene.

If there are fewer than min.n rows of y with at least one positive count, then one bin is used. The
number of bins is limited to 1000.

Value

list with the following components:

AveLogCPM numeric vector containing the overall AveLogCPM for each gene

dispersion numeric vector giving the trended dispersion estimate for each gene

bin.AveLogCPM numeric vector of length equal to nbins giving the average (mean) AveLogCPM
for each bin

bin.dispersion numeric vector of length equal to nbins giving the estimated common disper-
sion for each bin

Author(s)

Davis McCarthy and Gordon Smyth

References

McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-
Seq experiments with respect to biological variation. Nucleic Acids Research 40, 4288-4297. http:
//nar.oxfordjournals.org/content/40/10/4288

See Also

estimateGLMTrendedDisp

Examples

ntags <- 1000
nlibs <- 4
means <- seq(5,10000,length.out=ntags)
y <- matrix(rnbinom(ntags*nlibs,mu=rep(means,nlibs),size=0.1*means),nrow=ntags,ncol=nlibs)
keep <- rowSums(y) > 0
y <- y[keep,]
group <- factor(c(1,1,2,2))
design <- model.matrix(~group) # Define the design matrix for the full model
out <- dispBinTrend(y, design, min.n=100, span=0.3)
with(out, plot(AveLogCPM, sqrt(dispersion)))

http://nar.oxfordjournals.org/content/40/10/4288
http://nar.oxfordjournals.org/content/40/10/4288

dispCoxReid 33

dispCoxReid Estimate Common Dispersion for Negative Binomial GLMs

Description

Estimate a common dispersion parameter across multiple negative binomial generalized linear mod-
els.

Usage

dispCoxReid(y, design=NULL, offset=NULL, weights=NULL, AveLogCPM=NULL, interval=c(0,4),
tol=1e-5, min.row.sum=5, subset=10000)

dispDeviance(y, design=NULL, offset=NULL, interval=c(0,4), tol=1e-5, min.row.sum=5,
subset=10000, AveLogCPM=NULL, robust=FALSE, trace=FALSE)

dispPearson(y, design=NULL, offset=NULL, min.row.sum=5, subset=10000,
AveLogCPM=NULL, tol=1e-6, trace=FALSE, initial.dispersion=0.1)

Arguments

y numeric matrix of counts. A glm is fitted to each row.

design numeric design matrix, as for glmFit.

offset numeric vector or matrix of offsets for the log-linear models, as for glmFit.
Defaults to log(colSums(y)).

weights optional numeric matrix giving observation weights

AveLogCPM numeric vector giving average log2 counts per million.

interval numeric vector of length 2 giving minimum and maximum allowable values for
the dispersion, passed to optimize.

tol the desired accuracy, see optimize or uniroot.

min.row.sum integer. Only rows with at least this number of counts are used.

subset integer, number of rows to use in the calculation. Rows used are chosen evenly
spaced by AveLogCPM.

trace logical, should iteration information be output?

robust logical, should a robust estimator be used?
initial.dispersion

starting value for the dispersion

Details

These are low-level (non-object-orientated) functions called by estimateGLMCommonDisp.

dispCoxReid maximizes the Cox-Reid adjusted profile likelihood (Cox and Reid, 1987). dispPearson
sets the average Pearson goodness of fit statistics to its (asymptotic) expected value. This is also
known as the pseudo-likelihood estimator. dispDeviance sets the average residual deviance statis-
tic to its (asymptotic) expected values. This is also known as the quasi-likelihood estimator.

34 dispCoxReid

Robinson and Smyth (2008) and McCarthy et al (2011) showed that the Pearson (pseudo-likelihood)
estimator typically under-estimates the true dispersion. It can be seriously biased when the number
of libraries (ncol(y) is small. On the other hand, the deviance (quasi-likelihood) estimator typically
over-estimates the true dispersion when the number of libraries is small. Robinson and Smyth
(2008) and McCarthy et al (2011) showed the Cox-Reid estimator to be the least biased of the three
options.

dispCoxReid uses optimize to maximize the adjusted profile likelihood. dispDeviance uses
uniroot to solve the estimating equation. The robust options use an order statistic instead the mean
statistic, and have the effect that a minority of tags with very large (outlier) dispersions should have
limited influence on the estimated value. dispPearson uses a globally convergent Newton iteration.

Value

Numeric vector of length one giving the estimated common dispersion.

Author(s)

Gordon Smyth

References

Cox, DR, and Reid, N (1987). Parameter orthogonality and approximate conditional inference.
Journal of the Royal Statistical Society Series B 49, 1-39.

Robinson MD and Smyth GK (2008). Small-sample estimation of negative binomial dispersion,
with applications to SAGE data. Biostatistics, 9, 321-332

McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-
Seq experiments with respect to biological variation. Nucleic Acids Research. http://nar.oxfordjournals.
org/content/early/2012/02/06/nar.gks042 (Published online 28 January 2012)

See Also

estimateGLMCommonDisp, optimize, uniroot

Examples

ntags <- 100
nlibs <- 4
y <- matrix(rnbinom(ntags*nlibs,mu=10,size=10),nrow=ntags,ncol=nlibs)
group <- factor(c(1,1,2,2))
lib.size <- rowSums(y)
design <- model.matrix(~group)
disp <- dispCoxReid(y, design, offset=log(lib.size), subset=100)

http://nar.oxfordjournals.org/content/early/2012/02/06/nar.gks042
http://nar.oxfordjournals.org/content/early/2012/02/06/nar.gks042

dispCoxReidInterpolateTagwise 35

dispCoxReidInterpolateTagwise

Estimate Tagwise Dispersion for Negative Binomial GLMs by Cox-
Reid Adjusted Profile Likelihood

Description

Estimate tagwise dispersion parameters across multiple negative binomial generalized linear models
using weighted Cox-Reid Adjusted Profile-likelihood and cubic spline interpolation over a tagwise
grid.

Usage

dispCoxReidInterpolateTagwise(y, design, offset=NULL, dispersion, trend=TRUE,
AveLogCPM=NULL, min.row.sum=5, prior.df=10,
span=0.3, grid.npts=11, grid.range=c(-6,6),
weights=NULL)

Arguments

y numeric matrix of counts

design numeric matrix giving the design matrix for the GLM that is to be fit.

offset numeric scalar, vector or matrix giving the offset (in addition to the log of the
effective library size) that is to be included in the NB GLM for the transcripts. If
a scalar, then this value will be used as an offset for all transcripts and libraries.
If a vector, it should be have length equal to the number of libraries, and the same
vector of offsets will be used for each transcript. If a matrix, then each library
for each transcript can have a unique offset, if desired. In adjustedProfileLik
the offset must be a matrix with the same dimension as the table of counts.

dispersion numeric scalar or vector giving the dispersion(s) towards which the tagwise dis-
persion parameters are shrunk.

trend logical, whether abundance-dispersion trend is used for smoothing.

AveLogCPM numeric vector giving average log2 counts per million for each tag.

min.row.sum numeric scalar giving a value for the filtering out of low abundance tags. Only
tags with total sum of counts above this value are used. Low abundance tags
can adversely affect the estimation of the common dispersion, so this argument
allows the user to select an appropriate filter threshold for the tag abundance.

prior.df numeric scalar, prior degsmoothing parameter that indicates the weight to give
to the common likelihood compared to the individual tag’s likelihood; default
getPriorN(object) gives a value for prior.n that is equivalent to giving
the common likelihood 20 prior degrees of freedom in the estimation of the
tag/genewise dispersion.

span numeric parameter between 0 and 1 specifying proportion of data to be used in
the local regression moving window. Larger numbers give smoother fits.

36 dispCoxReidInterpolateTagwise

grid.npts numeric scalar, the number of points at which to place knots for the spline-based
estimation of the tagwise dispersion estimates.

grid.range numeric vector of length 2, giving relative range, in terms of log2(dispersion),
on either side of trendline for each tag for spline grid points.

weights optional numeric matrix giving observation weights

Details

In the edgeR context, dispCoxReidInterpolateTagwise is a low-level function called by estimateGLMTagwiseDisp.

dispCoxReidInterpolateTagwise calls the function maximizeInterpolant to fit cubic spline
interpolation over a tagwise grid.

Value

dispCoxReidInterpolateTagwise produces a vector of tagwise dispersions having the same length
as the number of genes in the count data.

Author(s)

Yunshun Chen, Gordon Smyth

References

Cox, DR, and Reid, N (1987). Parameter orthogonality and approximate conditional inference.
Journal of the Royal Statistical Society Series B 49, 1-39.

McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-
Seq experiments with respect to biological variation. Nucleic Acids Research 40, 4288-4297. http:
//nar.oxfordjournals.org/content/40/10/4288

See Also

estimateGLMTagwiseDisp, maximizeInterpolant

Examples

y <- matrix(rnbinom(1000, mu=10, size=2), ncol=4)
design <- matrix(1, 4, 1)
dispersion <- 0.5
d <- dispCoxReidInterpolateTagwise(y, design, dispersion=dispersion)
d

http://nar.oxfordjournals.org/content/40/10/4288
http://nar.oxfordjournals.org/content/40/10/4288

dispCoxReidSplineTrend 37

dispCoxReidSplineTrend

Estimate Dispersion Trend for Negative Binomial GLMs

Description

Estimate trended dispersion parameters across multiple negative binomial generalized linear models
using Cox-Reid adjusted profile likelihood.

Usage

dispCoxReidSplineTrend(y, design, offset=NULL, df = 5, subset=10000, AveLogCPM=NULL,
method.optim="Nelder-Mead", trace=0)

dispCoxReidPowerTrend(y, design, offset=NULL, subset=10000, AveLogCPM=NULL,
method.optim="Nelder-Mead", trace=0)

Arguments

y numeric matrix of counts

design numeric matrix giving the design matrix for the GLM that is to be fit.

offset numeric scalar, vector or matrix giving the offset (in addition to the log of the
effective library size) that is to be included in the NB GLM for the transcripts. If
a scalar, then this value will be used as an offset for all transcripts and libraries.
If a vector, it should be have length equal to the number of libraries, and the same
vector of offsets will be used for each transcript. If a matrix, then each library
for each transcript can have a unique offset, if desired. In adjustedProfileLik
the offset must be a matrix with the same dimension as the table of counts.

df integer giving the degrees of freedom of the spline function, see ns in the splines
package.

subset integer, number of rows to use in the calculation. Rows used are chosen evenly
spaced by AveLogCPM using cutWithMinN.

AveLogCPM numeric vector giving average log2 counts per million for each gene

method.optim the method to be used in optim. See optim for more detail.

trace logical, should iteration information be output?

Details

In the edgeR context, these are low-level functions called by estimateGLMTrendedDisp.

dispCoxReidSplineTrend and dispCoxReidPowerTrend fit abundance trends to the tagwise dis-
persions. dispCoxReidSplineTrend fits a regression spline whereas dispCoxReidPowerTrend fits
a log-linear trend of the form a*exp(abundance)^b+c. In either case, optim is used to maximize
the adjusted profile likelihood (Cox and Reid, 1987).

38 edgeRUsersGuide

Value

List containing numeric vectors dispersion and abundance containing the estimated dispersion
and abundance for each transcript. The vectors are of the same length as nrow(y).

Author(s)

Yunshun Chen, Davis McCarthy, Gordon Smyth

References

Cox, DR, and Reid, N (1987). Parameter orthogonality and approximate conditional inference.
Journal of the Royal Statistical Society Series B 49, 1-39.

See Also

estimateGLMTrendedDisp

Examples

design <- matrix(1,4,1)
y <- matrix((rnbinom(400,mu=100,size=5)),100,4)
d1 <- dispCoxReidSplineTrend(y, design, df=3)
d2 <- dispCoxReidPowerTrend(y, design)
with(d2,plot(AveLogCPM,sqrt(dispersion)))

edgeRUsersGuide View edgeR User’s Guide

Description

Finds the location of the edgeR User’s Guide and optionally opens it.

Usage

edgeRUsersGuide(view=TRUE)

Arguments

view logical, should the document be opened using the default PDF document reader?

Details

The function vignette("edgeR") will find the short edgeR Vignette which describes how to obtain
the edgeR User’s Guide. The User’s Guide is not itself a true vignette because it is not automatically
generated using Sweave during the package build process. This means that it cannot be found using
vignette, hence the need for this special function.

If the operating system is other than Windows, then the PDF viewer used is that given by Sys.getenv("R_PDFVIEWER").
The PDF viewer can be changed using Sys.putenv(R_PDFVIEWER=).

equalizeLibSizes 39

Value

Character string giving the file location. If view=TRUE, the PDF document reader is started and the
User’s Guide is opened, as a side effect.

Author(s)

Gordon Smyth

See Also

system

Examples

To get the location:
edgeRUsersGuide(view=FALSE)
To open in pdf viewer:
Not run: edgeRUsersGuide()

equalizeLibSizes Equalize Library Sizes by Quantile-to-Quantile Normalization

Description

Adjusts counts so that the effective library sizes are equal, preserving fold-changes between groups
and preserving biological variability within each group.

Usage

equalizeLibSizes(object, dispersion=NULL, common.lib.size)

Arguments

object DGEList object

dispersion numeric vector of dispersion parameters. By default, is extracted from object
or, if object contains no dispersion information, is set to 0.05.

common.lib.size

numeric scalar, the library size to normalize to; default is the geometric mean of
the original effective library sizes

40 equalizeLibSizes

Details

Thus function implements the quantile-quantile normalization method of Robinson and Smyth
(2008). It computes normalized counts, or pseudo-counts, used by exactTest and estimateCommonDisp.

The output pseudo-counts are the counts that would have theoretically arisen had the effective li-
brary sizes been equal for all samples. The pseudo-counts are computed in such as way as to
preserve fold-change differences beween the groups defined by object$samples$group as well as
biological variability within each group. Consequently, the results will depend on how the groups
are defined.

Note that the column sums of the pseudo.counts matrix will not generally be equal, because the
effective library sizes are not necessarily the same as actual library sizes and because the normalized
pseudo counts are not equal to expected counts.

Value

A list with components

pseudo.counts numeric matrix of normalized pseudo-counts
common.lib.size

normalized library size

Note

This function is intended mainly for internal edgeR use. It is not normally called directly by users.

Author(s)

Mark Robinson, Davis McCarthy, Gordon Smyth

References

Robinson MD and Smyth GK (2008). Small-sample estimation of negative binomial dispersion,
with applications to SAGE data. Biostatistics, 9, 321-332. http://biostatistics.oxfordjournals.
org/content/9/2/321

See Also

q2qnbinom

Examples

ngenes <- 1000
nlibs <- 2
counts <- matrix(0,ngenes,nlibs)
colnames(counts) <- c("Sample1","Sample2")
counts[,1] <- rpois(ngenes,lambda=10)
counts[,2] <- rpois(ngenes,lambda=20)
summary(counts)
y <- DGEList(counts=counts)
out <- equalizeLibSizes(y)
summary(out$pseudo.counts)

http://biostatistics.oxfordjournals.org/content/9/2/321
http://biostatistics.oxfordjournals.org/content/9/2/321

estimateCommonDisp 41

estimateCommonDisp Estimate Common Negative Binomial Dispersion by Conditional Max-
imum Likelihood

Description

Maximizes the negative binomial conditional common likelihood to give the estimate of the com-
mon dispersion across all tags.

Usage

estimateCommonDisp(object, tol=1e-06, rowsum.filter=5, verbose=FALSE)

Arguments

object DGEList object

tol the desired accuracy, passed to optimize

rowsum.filter numeric scalar giving a value for the filtering out of low abundance tags in the
estimation of the common dispersion. Only tags with total sum of counts above
this value are used in the estimation of the common dispersion.

verbose logical, if TRUE estimated dispersion and BCV will be printed to standard output.

Details

Implements the method of Robinson and Smyth (2008) for estimating a common dispersion param-
eter by conditional maximum likelihood. The method of conditional maximum likelihood assumes
that library sizes are equal, which is not true in general, so pseudocounts (counts adjusted so that
the library sizes are equal) need to be calculated. The function equalizeLibSizes is called to
adjust the counts using a quantile-to-quantile method, but this requires a fixed value for the com-
mon dispersion parameter. To obtain a good estimate for the common dispersion, pseudocounts are
calculated under the Poisson model (dispersion is zero) and these pseudocounts are used to give
an estimate of the common dispersion. This estimate of the common dispersion is then used to
recalculate the pseudocounts, which are used to provide a final estimate of the common dispersion.

Value

Returns object with the following added components:

common.dispersion

estimate of the common dispersion.

pseudo.counts numeric matrix of quantile-quantile normalized counts. These are counts ad-
justed so that the library sizes are equal, while preserving differences between
groups and variability within each group.

pseudo.lib.size

the common library size to which the counts have been adjusted

42 estimateDisp

Author(s)

Mark Robinson, Davis McCarthy, Gordon Smyth

References

Robinson MD and Smyth GK (2008). Small-sample estimation of negative binomial dispersion,
with applications to SAGE data. Biostatistics, 9, 321-332

See Also

equalizeLibSizes

Examples

True dispersion is 1/5=0.2
y <- matrix(rnbinom(1000,mu=10,size=5),ncol=4)
d <- DGEList(counts=y,group=c(1,1,2,2),lib.size=c(1000:1003))
d <- estimateCommonDisp(d, verbose=TRUE)

estimateDisp Estimate Common, Trended and Tagwise Negative Binomial disper-
sions by weighted likelihood empirical Bayes

Description

Maximizes the negative binomial likelihood to give the estimate of the common, trended and tag-
wise dispersions across all tags.

Usage

estimateDisp(y, design=NULL, prior.df=NULL, trend.method="locfit", span=NULL,
min.row.sum=5, grid.length=21, grid.range=c(-10,10), robust=FALSE,
winsor.tail.p=c(0.05,0.1), tol=1e-06)

Arguments

y DGEList object

design numeric design matrix

prior.df prior degrees of freedom. It is used in calculating prior.n.

trend.method method for estimating dispersion trend. Possible values are "none", "movingave",
"loess" and "locfit".

span width of the smoothing window, as a proportion of the data set.

min.row.sum numeric scalar giving a value for the filtering out of low abundance tags. Only
tags with total sum of counts above this value are used. Low abundance tags
can adversely affect the dispersion estimation, so this argument allows the user
to select an appropriate filter threshold for the tag abundance.

estimateDisp 43

grid.length the number of points on which the interpolation is applied for each tag.

grid.range the range of the grid points around the trend on a log2 scale.

robust logical, should the estimation of prior.df be robustified against outliers?

winsor.tail.p numeric vector of length 1 or 2, giving left and right tail proportions of the
deviances to Winsorize when estimating prior.df.

tol the desired accuracy, passed to optimize

Details

This function calculates a matrix of likelihoods for each gene at a set of dispersion grid points,
and then applies weighted likelihood empirical Bayes method to obtain posterior dispersion es-
timates. If there is no design matrix, it calculates the quantile conditional likelihood for each
gene (tag) and then maximize it. The method is same as in the function estimateCommonDisp
and estimateTagwiseDisp. If a design matrix is given, it then calculates the adjusted profile log-
likelihood for each gene (tag) and then maximize it. It is similar to the functions estimateGLMCommonDisp,
estimateGLMTrendedDisp and estimateGLMTagwiseDisp.

Value

Returns object with the following added components:

common.dispersion

estimate of the common dispersion.
trended.dispersion

estimates of the trended dispersions.
tagwise.dispersion

tag- or gene-wise estimates of the dispersion parameter.

logCPM the tag abundance in log average counts per million.

prior.df prior degrees of freedom. It is a vector when robust method is used.

prior.n estimate of the prior weight, i.e. the smoothing parameter that indicates the
weight to put on the common likelihood compared to the individual tag’s likeli-
hood.

span width of the smoothing window used in estimating dispersions.

Author(s)

Yunshun Chen, Gordon Smyth

References

Chen, Y, Lun, ATL, and Smyth, GK (2014). Differential expression analysis of complex RNA-
seq experiments using edgeR. In: Statistical Analysis of Next Generation Sequence Data, Somnath
Datta and Daniel S Nettleton (eds), Springer, New York. http://www.statsci.org/smyth/pubs/
edgeRChapterPreprint.pdf

http://www.statsci.org/smyth/pubs/edgeRChapterPreprint.pdf
http://www.statsci.org/smyth/pubs/edgeRChapterPreprint.pdf

44 estimateExonGenewiseDisp

See Also

estimateCommonDisp, estimateTagwiseDisp, estimateGLMCommonDisp, estimateGLMTrendedDisp,
estimateGLMTagwiseDisp

Examples

True dispersion is 1/5=0.2
y <- matrix(rnbinom(1000, mu=10, size=5), ncol=4)
group <- c(1,1,2,2)
design <- model.matrix(~group)
d <- DGEList(counts=y, group=group)
d1 <- estimateDisp(d)
d2 <- estimateDisp(d, design)

estimateExonGenewiseDisp

Estimate Genewise Dispersions from Exon-Level Count Data

Description

Estimate a dispersion value for each gene from exon-level count data by collapsing exons into the
genes to which they belong.

Usage

estimateExonGenewiseDisp(y, geneID, group=NULL)

Arguments

y either a matrix of exon-level counts or a DGEList object with (at least) elements
counts (table of counts summarized at the exon level) and samples (data frame
containing information about experimental group, library size and normalization
factor for the library size). Each row of y should represent one exon.

geneID vector of length equal to the number of rows of y, which provides the gene
identifier for each exon in y. These identifiers are used to group the relevant
exons into genes for the gene-level analysis of splice variation.

group factor supplying the experimental group/condition to which each sample (col-
umn of y) belongs. If NULL (default) the function will try to extract if from y,
which only works if y is a DGEList object.

Details

This function can be used to compute genewise dispersion estimates (for an experiment with a one-
way, or multiple group, layout) from exon-level count data. estimateCommonDisp and estimateTagwiseDisp
are used to do the computation and estimation, and the default arguments for those functions are
used.

estimateGLMCommonDisp 45

Value

estimateExonGenewiseDisp returns a vector of genewise dispersion estimates, one for each unique
geneID.

Author(s)

Davis McCarthy, Gordon Smyth

See Also

estimateCommonDisp and related functions for estimating the dispersion parameter for the negative
binomial model.

Examples

generate exon counts from NB, create list object
y<-matrix(rnbinom(40,size=1,mu=10),nrow=10)
d<-DGEList(counts=y,group=rep(1:2,each=2))
genes <- rep(c("gene.1","gene.2"), each=5)
estimateExonGenewiseDisp(d, genes)

estimateGLMCommonDisp Estimate Common Dispersion for Negative Binomial GLMs

Description

Estimates a common negative binomial dispersion parameter for a DGE dataset with a general
experimental design.

Usage

S3 method for class DGEList
estimateGLMCommonDisp(y, design=NULL, method="CoxReid",

subset=10000, verbose=FALSE, ...)
Default S3 method:
estimateGLMCommonDisp(y, design=NULL, offset=NULL,

method="CoxReid", subset=10000, AveLogCPM=NULL,
verbose=FALSE, weights=NULL,...)

Arguments

y object containing read counts, as for glmFit.

design numeric design matrix, as for glmFit.

offset numeric vector or matrix of offsets for the log-linear models, as for glmFit.

method method for estimating the dispersion. Possible values are "CoxReid", "Pearson"
or "deviance".

46 estimateGLMCommonDisp

subset maximum number of rows of y to use in the calculation. Rows used are chosen
evenly spaced by AveLogCPM using systematicSubset.

AveLogCPM numeric vector giving average log2 counts per million for each gene

verbose logical, if TRUE estimated dispersion and BCV will be printed to standard output.

weights optional numeric matrix giving observation weights

... other arguments are passed to lower-level functions. See dispCoxReid, dispPearson
and dispDeviance for details.

Details

This function calls dispCoxReid, dispPearson or dispDeviance depending on the method spec-
ified. See dispCoxReid for details of the three methods and a discussion of their relative perfor-
mance.

Value

The default method returns a numeric vector of length 1 containing the estimated common disper-
sion.

The DGEList method returns the same DGEList y as input but with common.dispersion as an
added component. The output object will also contain a component AveLogCPM if it was not already
present in y.

Author(s)

Gordon Smyth, Davis McCarthy, Yunshun Chen

References

McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-
Seq experiments with respect to biological variation. Nucleic Acids Research 40, 4288-4297. http:
//nar.oxfordjournals.org/content/40/10/4288

See Also

dispCoxReid, dispPearson, dispDeviance

estimateGLMTrendedDisp for trended dispersion and estimateGLMTagwiseDisp for tagwise dis-
persions in the context of a generalized linear model.

estimateCommonDisp for common dispersion or estimateTagwiseDisp for tagwise dispersion in
the context of a multiple group experiment (one-way layout).

Examples

True dispersion is 1/size=0.1
y <- matrix(rnbinom(1000,mu=10,size=10),ncol=4)
d <- DGEList(counts=y,group=c(1,1,2,2))
design <- model.matrix(~group, data=d$samples)
d1 <- estimateGLMCommonDisp(d, design, verbose=TRUE)

http://nar.oxfordjournals.org/content/40/10/4288
http://nar.oxfordjournals.org/content/40/10/4288

estimateGLMRobustDisp 47

Compare with classic CML estimator:
d2 <- estimateCommonDisp(d, verbose=TRUE)

See example(glmFit) for a different example

estimateGLMRobustDisp Empirical Robust Bayes Tagwise Dispersions for Negative Binomial
GLMs using Observation Weights

Description

Compute a robust estimate of the negative binomial dispersion parameter for each tag or transcript,
with expression levels specified by a log-linear model, using observation weights. These observa-
tion weights will be stored and used later for estimating regression parameters.

Usage

estimateGLMRobustDisp(y, design = NULL, prior.df = 10, update.trend = TRUE,
trend.method = "bin.loess", maxit = 6, k = 1.345,
residual.type = "pearson", verbose = FALSE,
record = FALSE)

Arguments

y a DGEList object.
design numeric design matrix, as for glmFit.
prior.df prior degrees of freedom.
update.trend logical. Should the trended dispersion be re-estimated at each iteration?
trend.method method (low-level function) used to estimated the trended dispersions. estimateGLMTrendedDisp
maxit maximum number of iterations for weighted estimateGLMTagwiseDisp.
k the tuning constant for Huber estimator. If the absolute value of residual (r) is

less than k, its observation weight is 1, otherwise k/abs(r).
residual.type type of residual (r) used for estimation observation weight
verbose logical. Should verbose comments be printed?
record logical. Should information for each iteration be recorded (and returned as a

list)?

Details

At times, because of the moderation of dispersion estimates towards a trended values, features (typ-
ically, genes) can be sensitive to outliers and causing false positives. That is, since the dispersion
estimates are moderated downwards toward the trend and because the regression parameter esti-
mates may be affected by the outliers, genes are deemed significantly differential expressed. The
function uses an iterative procedure where weights are calculated from residuals and estimates are
made after re-weighting.

Note: it is not necessary to first calculate the common, trended and tagwise dispersion estimates. If
these are not available, the function will first calculate this (in an unweighted) fashion.

48 estimateGLMTagwiseDisp

Value

estimateGLMRobustDisp produces a DGEList object, which contains the (robust) tagwise disper-
sion parameter estimate for each tag for the negative binomial model that maximizes the weighted
Cox-Reid adjusted profile likelihood, as well as the observation weights. The observation weights
are calculated using residuals and the Huber function.

Note that when record=TRUE, a simple list of DGEList objects is returned, one for each iteration
(this is for debugging or tracking purposes).

Author(s)

Xiaobei Zhou, Mark D. Robinson

References

Zhou X, Lindsay H, Robinson MD (2014). Robustly detecting differential expression in RNA
sequencing data using observation weights. Nucleic Acids Research, 42(11), e91.

See Also

This function calls estimateGLMTrendedDisp and estimateGLMTagwiseDisp.

Examples

y <- matrix(rnbinom(100*6,mu=10,size=1/0.1),ncol=6)
d <- DGEList(counts=y,group=c(1,1,1,2,2,2),lib.size=c(1000:1005))
d <- calcNormFactors(d)
design <- model.matrix(~group, data=d$samples) # Define the design matrix for the full model
d <- estimateGLMRobustDisp(d, design)
summary(d$tagwise.dispersion)

estimateGLMTagwiseDisp

Empirical Bayes Tagwise Dispersions for Negative Binomial GLMs

Description

Compute an empirical Bayes estimate of the negative binomial dispersion parameter for each tag or
transcript, with expression levels specified by a log-linear model.

Usage

S3 method for class DGEList
estimateGLMTagwiseDisp(y, design=NULL, prior.df=10,

trend=!is.null(y$trended.dispersion), span=NULL, ...)
Default S3 method:
estimateGLMTagwiseDisp(y, design=NULL, offset=NULL, dispersion,

prior.df=10, trend=TRUE, span=NULL, AveLogCPM=NULL,
weights=NULL, ...)

estimateGLMTagwiseDisp 49

Arguments

y matrix of counts or a DGEList object.

design numeric design matrix, as for glmFit.

trend logical. Should the prior be the trended dispersion (TRUE) or the common dis-
persion (FALSE)?

offset offset matrix for the log-linear model, as for glmFit. Defaults to the log-
effective library sizes.

dispersion common or trended dispersion estimates, used as an initial estimate for the tag-
wise estimates. By default uses values stored in the DGEList object.

prior.df prior degrees of freedom.

span width of the smoothing window, in terms of proportion of the data set. Default
value decreases with the number of tags.

AveLogCPM numeric vector giving average log2 counts per million for each gene

weights optional numeric matrix giving observation weights

... other arguments are passed to dispCoxReidInterpolateTagwise.

Details

This function implements the empirical Bayes strategy proposed by McCarthy et al (2012) for
estimating the tagwise negative binomial dispersions. The experimental conditions are specified
by design matrix allowing for multiple explanatory factors. The empirical Bayes posterior is im-
plemented as a conditional likelihood with tag-specific weights, and the conditional likelihood is
computed using Cox-Reid approximate conditional likelihood (Cox and Reid, 1987).

The prior degrees of freedom determines the weight given to the global dispersion trend. The larger
the prior degrees of freedom, the more the tagwise dispersions are squeezed towards the global
trend.

This function calls the lower-level function dispCoxReidInterpolateTagwise.

Value

estimateGLMTagwiseDisp.DGEList produces a DGEList object, which contains the tagwise dis-
persion parameter estimate for each tag for the negative binomial model that maximizes the Cox-
Reid adjusted profile likelihood. The tagwise dispersions are simply added to the DGEList object
provided as the argument to the function.

estimateGLMTagwiseDisp.default returns a vector of the tagwise dispersion estimates.

Author(s)

Gordon Smyth, Davis McCarthy

50 estimateGLMTrendedDisp

References

Cox, DR, and Reid, N (1987). Parameter orthogonality and approximate conditional inference.
Journal of the Royal Statistical Society Series B 49, 1-39.

McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-
Seq experiments with respect to biological variation. Nucleic Acids Research 40, 4288-4297. http:
//nar.oxfordjournals.org/content/40/10/4288

See Also

estimateGLMCommonDisp for common dispersion and estimateGLMTrendedDisp for trended dis-
persion in the context of a generalized linear model.

estimateCommonDisp for common dispersion or estimateTagwiseDisp for tagwise dispersion in
the context of a multiple group experiment (one-way layout).

Examples

y <- matrix(rnbinom(1000,mu=10,size=10),ncol=4)
d <- DGEList(counts=y,group=c(1,1,2,2),lib.size=c(1000:1003))
design <- model.matrix(~group, data=d$samples) # Define the design matrix for the full model
d <- estimateGLMTrendedDisp(d, design, min.n=10)
d <- estimateGLMTagwiseDisp(d, design)
summary(d$tagwise.dispersion)

estimateGLMTrendedDisp

Estimate Trended Dispersion for Negative Binomial GLMs

Description

Estimates the abundance-dispersion trend by Cox-Reid approximate profile likelihood.

Usage

S3 method for class DGEList
estimateGLMTrendedDisp(y, design=NULL, method="auto", ...)
Default S3 method:
estimateGLMTrendedDisp(y, design=NULL, offset=NULL, AveLogCPM=NULL,

method="auto", weights=NULL, ...)

Arguments

y a matrix of counts or a DGEList object.)

design numeric design matrix, as for glmFit.

http://nar.oxfordjournals.org/content/40/10/4288
http://nar.oxfordjournals.org/content/40/10/4288

estimateGLMTrendedDisp 51

method method (low-level function) used to estimated the trended dispersions. Possi-
ble values are "auto" (default, switch to "bin.spline" method if the num-
ber of tags is great than 200 and "power" method otherwise),"bin.spline",
"bin.loess" (which both result in a call to dispBinTrend), "power" (call to
dispCoxReidPowerTrend), or "spline" (call to dispCoxReidSplineTrend).

offset numeric scalar, vector or matrix giving the linear model offsets, as for glmFit.

AveLogCPM numeric vector giving average log2 counts per million for each gene.

weights optional numeric matrix giving observation weights

... other arguments are passed to lower-level functions dispBinTrend, dispCoxReidPowerTrend
or dispCoxReidSplineTrend.

Details

Estimates the dispersion parameter for each transcript (tag) with a trend that depends on the overall
level of expression for the transcript for a DGE dataset for general experimental designs by using
Cox-Reid approximate conditional inference for a negative binomial generalized linear model for
each transcript (tag) with the unadjusted counts and design matrix provided.

The function provides an object-orientated interface to lower-level functions.

Value

When the input object is a DGEList, estimateGLMTrendedDisp produces a DGEList object, which
contains the estimates of the trended dispersion parameter for the negative binomial model accord-
ing to the method applied.

When the input object is a numeric matrix, the output of one of the lower-level functions dispBinTrend,
dispCoxReidPowerTrend of dispCoxReidSplineTrend is returned.

Author(s)

Gordon Smyth, Davis McCarthy, Yunshun Chen

References

Cox, DR, and Reid, N (1987). Parameter orthogonality and approximate conditional inference.
Journal of the Royal Statistical Society Series B 49, 1-39.

McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-
Seq experiments with respect to biological variation. Nucleic Acids Research 40, 4288-4297. http:
//nar.oxfordjournals.org/content/40/10/4288

See Also

dispBinTrend, dispCoxReidPowerTrend and dispCoxReidSplineTrend for details on how the
calculations are done.

http://nar.oxfordjournals.org/content/40/10/4288
http://nar.oxfordjournals.org/content/40/10/4288

52 estimateTagwiseDisp

Examples

ntags <- 250
nlibs <- 4
y <- matrix(rnbinom(ntags*nlibs,mu=10,size=10),ntags,nlibs)
d <- DGEList(counts=y,group=c(1,1,2,2),lib.size=c(1000:1003))
design <- model.matrix(~group, data=d$samples)
disp <- estimateGLMTrendedDisp(d, design, min.n=25, df=3)
plotBCV(disp)

estimateTagwiseDisp Estimate Empirical Bayes Tagwise Dispersion Values

Description

Estimates tagwise dispersion values by an empirical Bayes method based on weighted conditional
maximum likelihood.

Usage

estimateTagwiseDisp(object, prior.df=10, trend="movingave", span=NULL, method="grid",
grid.length=11, grid.range=c(-6,6), tol=1e-06, verbose=FALSE)

Arguments

object object of class DGEList containing (at least) the elements counts (table of raw
counts), group (factor indicating group), lib.size (numeric vector of library
sizes) and pseudo.alt (numeric matrix of quantile-adjusted pseudocounts cal-
culated under the alternative hypothesis of a true difference between groups; rec-
ommended to use the DGEList object provided as the output of estimateCommonDisp

prior.df prior degrees of freedom.

trend method for estimating dispersion trend. Possible values are "none", "movingave"
and "loess".

span width of the smoothing window, as a proportion of the data set.

method method for maximizing the posterior likelihood. Possible values are "grid"
for interpolation on grid points or "optimize" to call the function of the same
name.

grid.length for method="grid", the number of points on which the interpolation is applied
for each tag.

grid.range for method="grid", the range of the grid points around the trend on a log2 scale.

tol for method="optimize", the tolerance for Newton-Rhapson iterations.

verbose logical, if TRUE then diagnostic ouput is produced during the estimation process.

estimateTagwiseDisp 53

Details

This function implements the empirical Bayes strategy proposed by Robinson and Smyth (2007)
for estimating the tagwise negative binomial dispersions. The experimental design is assumed to
be a oneway layout with one or more experimental groups. The empirical Bayes posterior is imple-
mented as a conditional likelihood with tag-specific weights.

The prior values for the dispersions are determined by a global trend. The individual tagwise dis-
persions are then squeezed towards this trend. The prior degrees of freedom determines the weight
given to the prior. The larger the prior degrees of freedom, the more the tagwise dispersions are
squeezed towards the global trend. If the number of libraries is large, the prior becomes less impor-
tant and the tagwise dispersion are determined more by the individual tagwise data.

If trend="none", then the prior dispersion is just a constant, the common dispersion. Otherwise,
the trend is determined by a moving average (trend="movingave") or loess smoother applied to
the tagwise conditional log-likelihood. method="loess" applies a loess curve of degree 0 as im-
plemented in loessByCol.

method="optimize" is not recommended for routine use as it is very slow. It is included for testing
purposes.

Value

An object of class DGEList with the same components as for estimateCommonDisp plus the fol-
lowing:

prior.n estimate of the prior weight, i.e. the smoothing parameter that indicates the
weight to put on the common likelihood compared to the individual tag’s like-
lihood; prior.n of 10 means that the common likelihood is given 10 times the
weight of the individual tag/gene’s likelihood in the estimation of the tag/genewise
dispersion

tagwise.dispersion

tag- or gene-wise estimates of the dispersion parameter

Author(s)

Mark Robinson, Davis McCarthy, Yunshun Chen and Gordon Smyth

References

Robinson, MD, and Smyth, GK (2007). Moderated statistical tests for assessing differences in
tag abundance. Bioinformatics 23, 2881-2887. http://bioinformatics.oxfordjournals.org/
content/23/21/2881

See Also

estimateCommonDisp is usually run before estimateTagwiseDisp.

movingAverageByCol and loessByCol implement the moving average or loess smoothers.

Examples

See ?exactTest or ?estimateTrendedDisp for examples

http://bioinformatics.oxfordjournals.org/content/23/21/2881
http://bioinformatics.oxfordjournals.org/content/23/21/2881

54 estimateTrendedDisp

estimateTrendedDisp Estimate Empirical Bayes Trended Dispersion Values

Description

Estimates trended dispersion values by an empirical Bayes method.

Usage

estimateTrendedDisp(object, method="bin.spline", df=5, span=2/3)

Arguments

object object of class DGEList containing (at least) the elements counts (table of raw
counts), group (factor indicating group), lib.size (numeric vector of library
sizes) and pseudo.alt (numeric matrix of quantile-adjusted pseudocounts cal-
culated under the alternative hypothesis of a true difference between groups; rec-
ommended to use the DGEList object provided as the output of estimateCommonDisp

method method used to estimated the trended dispersions. Possible values are "spline",
and "loess".

df integer giving the degrees of freedom of the spline function if "spline" method
is used, see ns in the splines package. Default is 5.

span scalar, passed to loess to determine the amount of smoothing for the loess fit
when "loess" method is used. Default is 2/3.

Details

This function takes the binned common dispersion and abundance, and fits a smooth curve through
these binned values using either natural cubic splines or loess. From this smooth curve it predicts
the dispersion value for each gene based on the gene’s overall abundance. This results in estimates
for the NB dispersion parameter which have a dependence on the overall expression level of the
gene, and thus have an abundance-dependent trend.

Value

An object of class DGEList with the same components as for estimateCommonDisp plus the trended
dispersion estimates for each gene or tag.

Author(s)

Yunshun Chen and Gordon Smyth

See Also

estimateCommonDisp estimates a common value for the dispersion parameter for all tags/genes -
should generally be run before estimateTrendedDisp.

exactTest 55

Examples

ngenes <- 1000
nlib <- 4
log2cpm <- seq(from=0,to=16,length=ngenes)
lib.size <- 1e7
mu <- 2^log2cpm * lib.size * 1e-6
dispersion <- 1/sqrt(mu) + 0.1
counts <- rnbinom(ngenes*nlib, mu=mu, size=1/dispersion)
counts <- matrix(counts,ngenes,nlib)
y <- DGEList(counts,lib.size=rep(lib.size,nlib))
y <- estimateCommonDisp(y)
y <- estimateTrendedDisp(y)
y <- estimateTagwiseDisp(y)
plotBCV(y)

exactTest Exact Tests for Differences between Two Groups of Negative-Binomial
Counts

Description

Compute genewise exact tests for differences in the means between two groups of negative-binomially
distributed counts.

Usage

exactTest(object, pair=1:2, dispersion="auto", rejection.region="doubletail",
big.count=900, prior.count=0.125)

exactTestDoubleTail(y1, y2, dispersion=0, big.count=900)
exactTestBySmallP(y1, y2, dispersion=0)
exactTestByDeviance(y1, y2, dispersion=0)
exactTestBetaApprox(y1, y2, dispersion=0)

Arguments

object an object of class DGEList.

pair vector of length two, either numeric or character, providing the pair of groups to
be compared; if a character vector, then should be the names of two groups (e.g.
two levels of object$samples$group); if numeric, then groups to be compared
are chosen by finding the levels of object$samples$group corresponding to
those numeric values and using those levels as the groups to be compared; if
NULL, then first two levels of object$samples$group (a factor) are used. Note
that the first group listed in the pair is the baseline for the comparison—so if
the pair is c("A","B") then the comparison is B - A, so genes with positive
log-fold change are up-regulated in group B compared with group A (and vice
versa for genes with negative log-fold change).

56 exactTest

dispersion either a numeric vector of dispersions or a character string indicating that dis-
persions should be taken from the data object. If a numeric vector, then can be
either of length one or of length equal to the number of tags. Allowable charac-
ter values are "common", "trended", "tagwise" or "auto". Default behavior
("auto" is to use most complex dispersions found in data object.

rejection.region

type of rejection region for two-sided exact test. Possible values are "doubletail",
"smallp" or "deviance".

big.count count size above which asymptotic beta approximation will be used.

prior.count average prior count used to shrink log-fold-changes. Larger values produce
more shrinkage.

y1 numeric matrix of counts for the first the two experimental groups to be tested
for differences. Rows correspond to genes or transcripts and columns to li-
braries. Libraries are assumed to be equal in size - e.g. adjusted pseudocounts
from the output of equalizeLibSizes.

y2 numeric matrix of counts for the second of the two experimental groups to be
tested for differences. Rows correspond to genes or transcripts and columns to
libraries. Libraries are assumed to be equal in size - e.g. adjusted pseudocounts
from the output of equalizeLibSizes. Must have the same number of rows as
y1.

Details

The functions test for differential expression between two groups of count libraries. They imple-
ment the exact test proposed by Robinson and Smyth (2008) for a difference in mean between two
groups of negative binomial random variables. The functions accept two groups of count libraries,
and a test is performed for each row of data. For each row, the test is conditional on the sum of
counts for that row. The test can be viewed as a generalization of the well-known exact binomial
test (implemented in binomTest) but generalized to overdispersed counts.

exactTest is the main user-level function, and produces an object containing all the necessary com-
ponents for downstream analysis. exactTest calls one of the low level functions exactTestDoubleTail,
exactTestBetaApprox, exactTestBySmallP or exactTestByDeviance to do the p-value compu-
tation. The low level functions all assume that the libraries have been normalized to have the same
size, i.e., to have the same expected column sum under the null hypothesis. exactTest equalizes
the library sizes using equalizeLibSizes before calling the low level functions.

The functions exactTestDoubleTail, exactTestBySmallP and exactTestByDeviance corre-
spond to different ways to define the two-sided rejection region when the two groups have different
numbers of samples. exactTestBySmallP implements the method of small probabilities as pro-
posed by Robinson and Smyth (2008). This method corresponds exactly to binomTest as the disper-
sion approaches zero, but gives poor results when the dispersion is very large. exactTestDoubleTail
computes two-sided p-values by doubling the smaller tail probability. exactTestByDeviance uses
the deviance goodness of fit statistics to define the rejection region, and is therefore equivalent to a
conditional likelihood ratio test.

Note that rejection.region="smallp" is no longer recommended. It is preserved as an option
only for backward compatiblity with early versions of edgeR. rejection.region="deviance" has
good theoretical statistical properties but is relatively slow to compute. rejection.region="doubletail"

exactTest 57

is just slightly more conservative than rejection.region="deviance", but is recommended be-
cause of its much greater speed. For general remarks on different types of rejection regions for
exact tests see Gibbons and Pratt (1975).

exactTestBetaApprox implements an asymptotic beta distribution approximation to the condi-
tional count distribution. It is called by the other functions for rows with both group counts greater
than big.count.

Value

exactTest produces an object of class DGEExact containing the following components:

table data frame containing columns for the log2-fold-change, logFC, the average
log2-counts-per-million, logCPM, and the two-sided p-value PValue

comparison character vector giving the names of the two groups being compared

genes optional data frame containing annotation for transcript; taken from object

The low-level functions, exactTestDoubleTail etc, produce a numeric vector of genewise p-
values, one for each row of y1 and y2.

Author(s)

Mark Robinson, Davis McCarthy, Gordon Smyth

References

Robinson MD and Smyth GK (2008). Small-sample estimation of negative binomial dispersion,
with applications to SAGE data. Biostatistics, 9, 321-332.

Gibbons, JD and Pratt, JW (1975). P-values: interpretation and methodology. The American Statis-
tician 29, 20-25.

See Also

equalizeLibSizes, binomTest

Examples

generate raw counts from NB, create list object
y <- matrix(rnbinom(80,size=1/0.2,mu=10),nrow=20,ncol=4)
d <- DGEList(counts=y, group=c(1,1,2,2), lib.size=rep(1000,4))

de <- exactTest(d, dispersion=0.2)
topTags(de)

same p-values using low-level function directly
p.value <- exactTestDoubleTail(y[,1:2], y[,3:4], dispersion=0.2)
sort(p.value)[1:10]

58 getCounts

expandAsMatrix expandAsMatrix

Description

Expand scalar or vector to a matrix.

Usage

expandAsMatrix(x, dim)

Arguments

x scalar, vector or matrix. If a vector, length must match one of the output dimen-
sions.

dim required dimension for the output matrix.

Details

This function expands a row or column vector to be a matrix. It is used internally in edgeR to
convert offsets to a matrix.

Value

Numeric matrix of dimension dim.

Author(s)

Gordon Smyth

Examples

expandAsMatrix(1:3,c(4,3))
expandAsMatrix(1:4,c(4,3))

getCounts Extract Specified Component of a DGEList Object

Description

getCounts(y) returns the matrix of read counts y$counts.

getOffset(y) returns offsets for the log-linear predictor account for sequencing depth and possibly
other normalization factors. Specifically it returns the matrix y$offset if it is non-null, otherwise
it returns the log product of lib.size and norm.factors from y$samples.

getDispersion(y) returns the most complex dispersion estimates (common, trended or tagwise)
found in y.

getPriorN 59

Usage

getCounts(y)
getOffset(y)
getDispersion(y)

Arguments

y DGEList object containing (at least) the elements counts (table of raw counts),
group (factor indicating group) and lib.size (numeric vector of library sizes)

Value

getCounts returns the matrix of counts. getOffset returns a numeric matrix or vector. getDispersion
returns vector of dispersion values.

Author(s)

Mark Robinson, Davis McCarthy, Gordon Smyth

See Also

DGEList-class

Examples

generate raw counts from NB, create list object
y <- matrix(rnbinom(20,size=5,mu=10),5,4)
d <- DGEList(counts=y, group=c(1,1,2,2), lib.size=1001:1004)
getCounts(d)
getOffset(d)
d <- estimateCommonDisp(d)
getDispersion(d)

getPriorN Get a Recommended Value for Prior N from DGEList Object

Description

Returns the lib.size component of the samples component of DGEList object multiplied by the
norm.factors component

Usage

getPriorN(y, design=NULL, prior.df=20)

60 getPriorN

Arguments

y a DGEList object with (at least) elements counts (table of unadjusted counts)
and samples (data frame containing information about experimental group, li-
brary size and normalization factor for the library size)

design numeric matrix (optional argument) giving the design matrix for the GLM that
is to be fit. Must be of full column rank. If provided design is used to determine
the number of parameters to be fit in the statistical model and therefore the resid-
ual degrees of freedom. If left as the default (NULL) then the y$samples$group
element of the DGEList object is used to determine the residual degrees of free-
dom.

prior.df numeric scalar giving the weight, in terms of prior degrees of freedom, to be
given to the common parameter likelihood when estimating tagwise dispersion
estimates.

Details

When estimating tagwise dispersion values using estimateTagwiseDisp or estimateGLMTagwiseDisp
we need to decide how much weight to give to the common parameter likelihood in order to smooth
(or stabilize) the dispersion estimates. The best choice of value for the prior.n parameter varies be-
tween datasets depending on the number of samples in the dataset and the complexity of the model
to be fit. The value of prior.n should be inversely proportional to the residual degrees of freedom.
We have found that choosing a value for prior.n that is equivalent to giving the common parameter
likelihood 20 degrees of freedom generally gives a good amount of smoothing for the tagwise dis-
persion estimates. This function simply recommends an appropriate value for prior.n—to be used
as an argument for estimateTagwiseDisp or estimateGLMTagwiseDisp—given the experimental
design at hand and the chosen prior degrees of freedom.

Value

getPriorN returns a numeric scalar

Author(s)

Davis McCarthy, Gordon Smyth

See Also

DGEList for more information about the DGEList class. as.matrix.DGEList.

Examples

generate raw counts from NB, create list object
y<-matrix(rnbinom(20,size=1,mu=10),nrow=5)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
getPriorN(d)

glmFit 61

glmFit Genewise Negative Binomial Generalized Linear Models

Description

Fit a negative binomial generalized log-linear model to the read counts for each gene or transcript.
Conduct genewise statistical tests for a given coefficient or coefficient contrast.

Usage

S3 method for class DGEList
glmFit(y, design=NULL, dispersion=NULL, prior.count=0.125, start=NULL, ...)
Default S3 method:
glmFit(y, design=NULL, dispersion=NULL, offset=NULL, lib.size=NULL, weights=NULL,

prior.count=0.125, start=NULL, ...)
glmLRT(glmfit, coef=ncol(glmfit$design), contrast=NULL, test="chisq")

Arguments

y an object that contains the raw counts for each library (the measure of expres-
sion level); alternatively, a matrix of counts, or a DGEList object with (at least)
elements counts (table of unadjusted counts) and samples (data frame contain-
ing information about experimental group, library size and normalization factor
for the library size)

design numeric matrix giving the design matrix for the tagwise linear models. Must be
of full column rank. Defaults to a single column of ones, equivalent to treating
the columns as replicate libraries.

dispersion numeric scalar or vector of negative binomial dispersions. Can be a common
value for all tags, or a vector of values can provide a unique dispersion value for
each tag. If NULL will be extracted from y, with order of precedence: tagwise
dispersion, trended dispersions, common dispersion.

offset numeric matrix of same size as y giving offsets for the log-linear models. Can
be a scalor or a vector of length ncol{y}, in which case it is expanded out to a
matrix.

weights optional numeric matrix giving prior weights for the observations (for each li-
brary and transcript) to be used in the GLM calculations. Not supported by
methods "linesearch" or "levenberg".

lib.size numeric vector of length ncol(y) giving library sizes. Only used if offset=NULL,
in which case offset is set to log(lib.size). Defaults to colSums(y).

prior.count average prior count to be added to observation to shrink the estimated log-fold-
changes towards zero.

start optional numeric matrix of initial estimates for the linear model coefficients.

... other arguments are passed to lower level fitting functions.

glmfit a DGEGLM object, usually output from glmFit.

62 glmFit

coef integer or character vector indicating which coefficients of the linear model are
to be tested equal to zero. Values must be columns or column names of design.
Defaults to the last coefficient. Ignored if contrast is specified.

contrast numeric vector or matrix specifying one or more contrasts of the linear model
coefficients to be tested equal to zero. Number of rows must equal to the number
of columns of design. If specified, then takes precedence over coef.

test which test (distribution) to use in calculating the p-values. Possible values are
"F" or "chisq".

Details

glmFit and glmLRT implement generalized linear model (glm) methods developed by McCarthy et
al (2012).

glmFit fits genewise negative binomial glms, all with the same design matrix but possibly differ-
ent dispersions, offsets and weights. When the design matrix defines a one-way layout, or can be
re-parametrized to a one-way layout, the glms are fitting very quickly using mglmOneGroup. Oth-
erwise the default fitting method, implemented in mglmLevenberg a Fisher scoring algorithm with
Levenberg-style damping.

Positive prior.count cause the returned coefficients to be shrunk in such a way that fold-changes
between the treatment conditions are decreased. In particular, infinite fold-changes are avoided.
Larger values cause more shrinkage. The returned coefficients are affected but not the likelihood
ratio tests or p-values.

glmLRT conducts likelihood ratio tests for one or more coefficients in the linear model. If coef is
used, the null hypothesis is that all the coefficients indicated by coef are equal to zero. If contrast
is non-null, then the null hypothesis is that the specified contrasts of the coefficients are equal to
zero. For example, a contrast of c(0,1,-1), assuming there are three coefficients, would test the
hypothesis that the second and third coefficients are equal.

Value

glmFit produces an object of class DGEGLM containing components counts, samples, genes and
abundance from y plus the following new components:

design design matrix as input.

weights matrix of weights as input.

df.residual numeric vector of residual degrees of freedom, one for each tag.

offset numeric matrix of linear model offsets.

dispersion vector of dispersions used for the fit.

coefficients numeric matrix of estimated coefficients from the glm fits, on the natural log
scale, of size nrow(y) by ncol(design).

fitted.values matrix of fitted values from glm fits, same number of rows and columns as y.

deviance numeric vector of deviances, one for each tag.

glmLRT produces objects of class DGELRT with the same components as for glmfit plus the follow-
ing:

glmFit 63

table data frame with the same rows as y containing the log2-fold changes, likelhood
ratio statistics and p-values, ready to be displayed by topTags..

comparison character string describing the coefficient or the contrast being tested.

The data frame table contains the following columns:

logFC log2-fold change of expression between conditions being tested.

logCPM average log2-counts per million, the average taken over all libraries in y.

LR likelihood ratio statistics.

PValue p-values.

Author(s)

Davis McCarthy and Gordon Smyth

References

McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-
Seq experiments with respect to biological variation. Nucleic Acids Research 40, 4288-4297. http:
//nar.oxfordjournals.org/content/40/10/4288

See Also

Low-level computations are done by mglmOneGroup or mglmLevenberg.

topTags displays results from glmLRT.

Examples

nlibs <- 3
ntags <- 100
dispersion.true <- 0.1

Make first transcript respond to covariate x
x <- 0:2
design <- model.matrix(~x)
beta.true <- cbind(Beta1=2,Beta2=c(2,rep(0,ntags-1)))
mu.true <- 2^(beta.true %*% t(design))

Generate count data
y <- rnbinom(ntags*nlibs,mu=mu.true,size=1/dispersion.true)
y <- matrix(y,ntags,nlibs)
colnames(y) <- c("x0","x1","x2")
rownames(y) <- paste("Gene",1:ntags,sep="")
d <- DGEList(y)

Normalize
d <- calcNormFactors(d)

Fit the NB GLMs
fit <- glmFit(d, design, dispersion=dispersion.true)

http://nar.oxfordjournals.org/content/40/10/4288
http://nar.oxfordjournals.org/content/40/10/4288

64 glmQLFit

Likelihood ratio tests for trend
results <- glmLRT(fit, coef=2)
topTags(results)

Estimate the dispersion (may be unreliable with so few tags)
d <- estimateGLMCommonDisp(d, design, verbose=TRUE)

glmQLFit Quasi-likelihood methods with empirical Bayes shrinkage

Description

Fit a quasi-likelihood negative binomial generalized log-linear model to count data. Conduct ge-
newise statistical tests for a given coefficient or coefficient contrast.

Usage

glmQLFit(y, design=NULL, dispersion=NULL, abundance.trend=TRUE, robust=FALSE, winsor.tail.p=c(0.05, 0.1), ...)
glmQLFTest(glmfit, coef=ncol(glmfit$design), contrast=NULL)

Arguments

y a DGEList object containing count and sample data.

design numeric matrix giving the design matrix for the tagwise linear models.

dispersion numeric scalar or vector of negative binomial dispersions. Defaults to the trended
dispersion, or the common dispersion (if no trend is available), or a value of 0.05
(if no common value is available).

abundance.trend

logical, whether to allow an abundance-dependent trend when estimating the
prior values for the quasi-likelihood multiplicative dispersion parameter.

robust logical, whether to estimate the prior degrees of freedom robustly.

winsor.tail.p numeric vector of length 2 giving proportion to trim (Winsorize) from lower
and upper tail of the distribution of genewise deviances when estimating the hy-
perparameters. Positive values produce robust empirical Bayes ignoring outlier
small or large deviances. Only used when robust=TRUE.

... other arguments are passed to glmFit.

glmfit a DGEGLM object, usually output from qlmQLFit.

coef integer or character vector indicating which coefficients of the linear model are
to be tested equal to zero.

contrast numeric vector or matrix specifying one or more contrasts of the linear model
coefficients to be tested equal to zero.

glmQLFit 65

Details

glmQLFTest implements the quasi-likelihood method of Lund et al (2012). It behaves the same as
glmLRT except that it replaces likelihood ratio tests with quasi-likelihood F-tests for coefficients in
the linear model. This function calls the limma function squeezeVar to conduct empirical Bayes
smoothing of the genewise multiplicative dispersions. Note that the QuasiSeq package provides a
alternative implementation of Lund et al (2012), with slightly different glm, trend and FDR meth-
ods.

There are a number of subtleties involved in the use of QL models. The first is that the negative
binomial dispersions must be trended or common values. This is because the function assumes
that the supplied values are the true values. For the trended/common values, the assumption is
reasonable as information from many genes improves precision. This is not the case for the tagwise
dispersions due to the limited information for each gene.

Another subtlety involves the handling of zero counts. Observations with fitted values of zero
provide no residual degrees of freedom. This must be considered when computing the value of the
quasi-likelihood dispersion for genes with many zeros. Finally, a lower bound is defined for the
p-value of each gene, based on the likelihood ratio test. This avoids spurious results involving weak
shrinkage with very low quasi-likelihood dispersions.

Value

glmQLFit produces an object of class DGEGLM with the same components as that produced by
glmFit, plus:

df.residual a numeric vector containing the number of residual degrees of freedom for the
GLM fit of each gene.

s2.fit a list containing df.prior, the prior degrees of fredom; and var.prior, the lo-
cation of the prior distribution. Both are numeric vectors if abundance.trend=TRUE
and scalars otherwise. var.post is a numeric vector containing the shrunk
quasi-likelihood dispersion for each gene.

df.prior a numeric vector or scalar containing the prior degrees of freedom, same as that
in s2.fit.

glmQFTest produces objects of class DGELRT with the same components as for glmfit plus the
following:

table data frame with the same rows as y containing the log2-fold changes, F-statistics
and p-values, ready to be displayed by topTags..

comparison character string describing the coefficient or the contrast being tested.

The data frame table contains the following columns:

logFC log2-fold change of expression between conditions being tested.

logCPM average log2-counts per million, the average taken over all libraries in y.

F F-statistics.

PValue p-values.

66 goana.DGELRT

Author(s)

Davis McCarthy and Gordon Smyth, with modifications by Aaron Lun

References

Lund, SP, Nettleton, D, McCarthy, DJ, and Smyth, GK (2012). Detecting differential expression in
RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. Statistical Appli-
cations in Genetics and Molecular Biology Volume 11, Issue 5, Article 8. http://www.statsci.
org/smyth/pubs/QuasiSeqPreprint.pdf

See Also

topTags displays results from glmQLFTest.

plotQLDisp can be used to visualize the distribution of QL dispersions after EB shrinkage from
glmQLFit.

The QuasiSeq package gives an alternative implementation of glmQLFTest based on the same sta-
tistical ideas.

Examples

nlibs <- 4
ntags <- 1000
dispersion.true <- 1/rchisq(ntags, df=10)
design <- model.matrix(~factor(c(1,1,2,2)))

Generate count data
y <- rnbinom(ntags*nlibs,mu=20,size=1/dispersion.true)
y <- matrix(y,ntags,nlibs)
d <- DGEList(y)
d <- calcNormFactors(d)

Fit the NB GLMs with QL methods
d <- estimateDisp(d, design)
fit <- glmQLFit(d, design)
results <- glmQLFTest(fit)
topTags(results)
fit <- glmQLFit(d, design, robust=TRUE)
results <- glmQLFTest(fit)
topTags(results)
fit <- glmQLFit(d, design, abundance.trend=FALSE)
results <- glmQLFTest(fit)
topTags(results)

goana.DGELRT Gene Ontology Analysis of Differentially Expressed Genes

http://www.statsci.org/smyth/pubs/QuasiSeqPreprint.pdf
http://www.statsci.org/smyth/pubs/QuasiSeqPreprint.pdf

goana.DGELRT 67

Description

Test for over-representation of gene ontology (GO) terms in the up and down differentially ex-
pressed genes from a linear model fit.

Usage

S3 method for class DGELRT
goana(de, geneid = rownames(de), FDR = 0.05, species = "Hs",

trend = FALSE, ...)

Arguments

de an DGELRT object.

geneid Entrez Gene identifiers. Either a vector of length nrow(de) or the name of the
column of de$genes containing the Entrez Gene IDs.

FDR false discovery rate cutoff for differentially expressed genes. Numeric value
between 0 and 1.

species species identifier. Possible values are "Hs", "Mm", "Rn" or "Dm".

trend adjust analysis for gene length or abundance? Can be logical, or a numeric
vector of covariate values, or the name of the column of de$genes containing
the covariate values. If TRUE, then de$AveLogCPM is used as the covariate.

... any other arguments are passed to goana.default.

Details

Performs Gene Ontology enrichment analyses for the up and down differentially expressed genes
from a linear model analysis. The Entrez Gene ID must be supplied for each gene.

If trend=FALSE, the function computes one-sided hypergeometric tests equivalent to Fisher’s exact
test.

If trend=TRUE or a covariate is supplied, then a trend is fitted to the differential expression re-
sults and the method of Young et al (2010) is used to adjust for this trend. The adjusted test uses
Wallenius’ noncentral hypergeometric distribution.

Value

A data frame with a row for each GO term and the following columns:

Term GO term.

Ont ontology that the GO term belongs to. Possible values are "BP", "CC" and "MF".

N Number of genes in the GO term.

Up number of up-regulated differentially expressed genes.

Down number of down-regulated differentially expressed genes.

P.Up p-value for over-representation of GO term in up-regulated genes.

P.Down p-value for over-representation of GO term in down-regulated genes.

The row names of the data frame give the GO term IDs.

68 gof

Author(s)

Gordon Smyth and Yifang Hu

References

Young, M. D., Wakefield, M. J., Smyth, G. K., Oshlack, A. (2010). Gene ontology analysis for
RNA-seq: accounting for selection bias. Genome Biology 11, R14. http://genomebiology.com/
2010/11/2/R14

See Also

goana, topGO

Examples

Not run:

fit <- glmFit(y, design)
lrt <- glmLRT(fit)
go <- goana(lrt)
topGO(go, ont="BP", sort = "up")
topGO(go, ont="BP", sort = "down")

End(Not run)

gof Goodness of Fit Tests for Multiple GLM Fits

Description

Conducts deviance goodness of fit tests for each fit in a DGEGLM object

Usage

gof(glmfit, pcutoff=0.1, adjust="holm", plot=FALSE,
main="qq-plot of genewise goodness of fit", ...)

Arguments

glmfit DGEGLM object containing results from fitting NB GLMs to genes in a DGE
dataset. Output from glmFit.

pcutoff scalar giving the cut-off value for the Holm-adjusted p-value. Genes with Holm-
adjusted p-values lower than this cutoff value are flagged as ‘dispersion outlier’
genes.

adjust method used to adjust goodness of fit p-values for multiple testing.
plot logical, if TRUE a qq-plot is produced.
main character, title for the plot.
... other arguments are passed to qqnorm.

http://genomebiology.com/2010/11/2/R14
http://genomebiology.com/2010/11/2/R14

gof 69

Details

If plot=TRUE, produces a plot similar to Figure 2 of McCarthy et al (2012).

Value

This function returns a list with the following components:

gof.statistics numeric vector of deviance statistics, which are the statistics used for the good-
ness of fit test

gof.pvalues numeric vector of p-values providing evidence of poor fit; computed from the
chi-square distribution on the residual degrees of freedom from the GLM fits.

outlier logical vector indicating whether or not each gene is a ‘dispersion outlier’ (i.e.,
the model fit is poor for that gene indicating that the dispersion estimate is not
good for that gene).

df scalar, the residual degrees of freedom from the GLM fit for which the good-
ness of fit statistics have been computed. Also the degrees of freedom for the
goodness of fit statistics for the LR (chi-quare) test for significance.

Author(s)

Davis McCarthy and Gordon Smyth

References

McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-
Seq experiments with respect to biological variation. Nucleic Acids Research 40, 4288-4297 http:
//nar.oxfordjournals.org/content/40/10/4288

See Also

qqnorm.

glmFit for more information on fitting NB GLMs to DGE data.

Examples

nlibs <- 3
ntags <- 100
dispersion.true <- 0.1

Make first transcript respond to covariate x
x <- 0:2
design <- model.matrix(~x)
beta.true <- cbind(Beta1=2,Beta2=c(2,rep(0,ntags-1)))
mu.true <- 2^(beta.true %*% t(design))

Generate count data
y <- rnbinom(ntags*nlibs,mu=mu.true,size=1/dispersion.true)
y <- matrix(y,ntags,nlibs)
colnames(y) <- c("x0","x1","x2")

http://nar.oxfordjournals.org/content/40/10/4288
http://nar.oxfordjournals.org/content/40/10/4288

70 goodTuring

rownames(y) <- paste("Gene",1:ntags,sep="")
d <- DGEList(y)

Normalize
d <- calcNormFactors(d)

Fit the NB GLMs
fit <- glmFit(d, design, dispersion=dispersion.true)
Check how good the fit is for each gene
gof(fit)

goodTuring Good-Turing Frequency Estimation

Description

Non-parametric empirical Bayes estimates of the frequencies of observed (and unobserved) species.

Usage

goodTuring(x, conf=1.96)
goodTuringPlot(x)
goodTuringProportions(counts)

Arguments

x numeric vector of non-negative integers, representing the observed frequency of
each species.

conf confidence factor, as a quantile of the standard normal distribution, used to de-
cide for what values the log-linear relationship between frequencies and fre-
quencies of frequencies is acceptable.

counts matrix of counts

Details

Observed counts are assumed to be Poisson distributed. Using an non-parametric empirical Bayes
strategy, the algorithm evaluates the posterior expectation of each species mean given its observed
count. The posterior means are then converted to proportions. In the empirical Bayes step, the
counts are smoothed by assuming a log-linear relationship between frequencies and frequencies
of frequencies. The fundamentals of the algorithm are from Good (1953). Gale and Sampson
(1995) proposed a simplied algorithm with a rule for switching between the observed and smoothed
frequencies, and it is Gale and Sampson’s simplified algorithm that is implemented here. The
number of zero values in x are not used in the algorithm, but is returned by this function.

Sampson gives a C code version on his webpage at http://www.grsampson.net/RGoodTur.html
which gives identical results to this function.

goodTuringPlot plots log-probability (i.e., log frequencies of frequencies) versus log-frequency.

goodTuringProportions runs goodTuring on each column of data, then uses the results to predict
the proportion of each tag in each library.

http://www.grsampson.net/RGoodTur.html

loessByCol 71

Value

goodTuring returns a list with components

count observed frequencies, i.e., the unique positive values of x

n frequencies of frequencies

n0 frequency of zero, i.e., number of zeros found in x

proportion estimated proportion of each species given its count

P0 estimated combined proportion of all undetected species

goodTuringProportions returns a matrix of proportions of the same size as counts.

Author(s)

Aaron Lun and Gordon Smyth, adapted from Sampson’s C code from http://www.grsampson.
net/RGoodTur.html

References

Gale, WA, and Sampson, G (1995). Good-Turing frequency estimation without tears. Journal of
Quantitative Linguistics 2, 217-237.

Examples

True means of observed species
lambda <- rnbinom(10000,mu=2,size=1/10)
lambda <- lambda[lambda>1]

Oberved frequencies
Ntrue <- length(lambda)
x <- rpois(Ntrue, lambda=lambda)
freq <- goodTuring(x)
goodTuringPlot(x)

loessByCol Locally Weighted Mean By Column

Description

Smooth columns of matrix by non-robust loess curves of degree 0.

Usage

loessByCol(y, x=NULL, span=0.5)
locfitByCol(y, x=NULL, weights=1, span=0.5, degree=0)

http://www.grsampson.net/RGoodTur.html
http://www.grsampson.net/RGoodTur.html

72 maPlot

Arguments

y numeric matrix of response variables.

x numeric covariate vector of length nrow(y), defaults to equally spaced.

span width of the smoothing window, in terms of proportion of the data set. Larger
values produce smoother curves.

weights relative weights of each observation, one for each covariate value.

degree degree of local polynomial fit

Details

Fits a loess curve with degree 0 to each column of the response matrix, using the same covariate
vector for each column. The smoothed column values are tricube-weighted means of the original
values.

locfitByCol uses the locfit.raw function of the locfit package.

Value

A list containing a numeric matrix with smoothed columns and a vector of leverages for each co-
variate value.

locfitByCol returns a numeric matrix.

Author(s)

Aaron Lun for loessByCol, replacing earlier R code by Davis McCarthy. Gordon Smyth for
locfitByCol.

See Also

loess

Examples

y <- matrix(rnorm(100*3), nrow=100, ncol=3)
head(y)
out <- loessByCol(y)
head(out$fitted.values)

maPlot Plots Log-Fold Change versus Log-Concentration (or, M versus A) for
Count Data

Description

To represent counts that were low (e.g. zero in 1 library and non-zero in the other) in one of the two
conditions, a ’smear’ of points at low A value is presented.

maPlot 73

Usage

maPlot(x, y, logAbundance=NULL, logFC=NULL, normalize=FALSE, plot.it=TRUE,
smearWidth=1, col=NULL, allCol="black", lowCol="orange", deCol="red",
de.tags=NULL, smooth.scatter=FALSE, lowess=FALSE, ...)

Arguments

x vector of counts or concentrations (group 1)

y vector of counts or concentrations (group 2)

logAbundance vector providing the abundance of each tag on the log2 scale. Purely optional
(default is NULL), but in combination with logFC provides a more direct way to
create an MA-plot if the log-abundance and log-fold change are available.

logFC vector providing the log-fold change for each tag for a given experimental con-
trast. Default is NULL, only to be used together with logAbundance as both need
to be non-null for their values to be used.

normalize logical, whether to divide x and y vectors by their sum

plot.it logical, whether to produce a plot

smearWidth scalar, width of the smear

col vector of colours for the points (if NULL, uses allCol and lowCol)

allCol colour of the non-smeared points

lowCol colour of the smeared points

deCol colour of the DE (differentially expressed) points

de.tags indices for tags identified as being differentially expressed; use exactTest to
identify DE genes

smooth.scatter logical, whether to produce a ’smooth scatter’ plot using the KernSmooth::smoothScatter
function or just a regular scatter plot; default is FALSE, i.e. produce a regular
scatter plot

lowess logical, indicating whether or not to add a lowess curve to the MA-plot to give
an indication of any trend in the log-fold change with log-concentration

... further arguments passed on to plot

Details

The points to be smeared are identified as being equal to the minimum in one of the two groups.
The smear is created by using random uniform numbers of width smearWidth to the left of the
minimum A value.

Value

a plot to the current device (if plot.it=TRUE), and invisibly returns the M (logFC) and A (logConc)
values used for the plot, plus identifiers w and v of genes for which M and A values, or just M values,
respectively, were adjusted to make a nicer looking plot.

74 maximizeInterpolant

Author(s)

Mark Robinson, Davis McCarthy

See Also

plotSmear

Examples

y <- matrix(rnbinom(10000,mu=5,size=2),ncol=4)
maPlot(y[,1], y[,2])

maximizeInterpolant Maximize a function given a table of values by spline interpolation.

Description

Maximize a function given a table of values by spline interpolation.

Usage

maximizeInterpolant(x, y)

Arguments

x numeric vector of the inputs of the function.

y numeric matrix of function values at the values of x. Columns correspond to x
values and each row corresponds to a different function to be maximized.

Details

Calculates the cubic spline interpolant for each row the method of Forsythe et al (1977) using the
function fmm_spline from splines.c in the stats package). Then calculates the derivatives of the
spline segments adjacant to the input with the maximum function value. This allows identification
of the maximum of the interpolating spline.

Value

numeric vector of input values at which the function maximums occur.

Author(s)

Aaron Lun, improving on earlier code by Gordon Smyth

References

Forsythe, G. E., Malcolm, M. A. and Moler, C. B. (1977). Computer Methods for Mathematical
Computations, Prentice-Hall.

maximizeQuadratic 75

Examples

x <- seq(0,1,length=10)
y <- rnorm(10,1,1)
maximizeInterpolant(x,y)

maximizeQuadratic Maximize a function given a table of values by quadratic interpolation.

Description

Maximize a function given a table of values by quadratic interpolation.

Usage

maximizeQuadratic(y, x=1:ncol(y))

Arguments

y numeric matrix of response values.

x numeric matrix of inputs of the function of same dimension as y. If a vector,
must be a row vector of length equal to ncol(y).

Details

For each row of y, finds the three x values bracketing the maximum of y, interpolates a quadatric
polyonomial through these y for these three values and solves for the location of the maximum of
the polynomial.

Value

numeric vector of length equal to nrow(y) giving the x-value at which y is maximized.

Author(s)

Yunshun Chen and Gordon Smyth

See Also

maximizeInterpolant

Examples

y <- matrix(rnorm(5*9),5,9)
maximizeQuadratic(y)

76 meanvar

meanvar Explore the mean-variance relationship for DGE data

Description

Appropriate modelling of the mean-variance relationship in DGE data is important for making in-
ferences about differential expression. Here are functions to compute tag/gene means and variances,
as well at looking at these quantities when data is binned based on overall expression level.

Usage

plotMeanVar(object, meanvar=NULL, show.raw.vars=FALSE, show.tagwise.vars=FALSE,
show.binned.common.disp.vars=FALSE, show.ave.raw.vars=TRUE,
scalar=NULL, NBline=FALSE, nbins=100, log.axes="xy", xlab=NULL,
ylab=NULL, ...)

binMeanVar(x, group, nbins=100, common.dispersion=FALSE, object=NULL)

Arguments

object DGEList object containing the raw data and dispersion value. According the
method desired for computing the dispersion, either estimateCommonDisp and
(possibly) estimateTagwiseDisp should be run on the DGEList object before
using plotMeanVar. The argument object must be supplied in the function
binMeanVar if common dispersion values are to be computed for each bin.

meanvar list (optional) containing the output from binMeanVar or the returned value of
plotMeanVar. Providing this object as an argument will save time in computing
the tag/gene means and variances when producing a mean-variance plot.

show.raw.vars logical, whether or not to display the raw (pooled) gene/tag variances on the
mean-variance plot. Default is FALSE.

show.tagwise.vars

logical, whether or not to display the estimated genewise/tagwise variances on
the mean-variance plot. Default is FALSE.

show.binned.common.disp.vars

logical, whether or not to compute the common dispersion for each bin of tags
and show the variances computed from those binned common dispersions and
the mean expression level of the respective bin of tags. Default is FALSE.

show.ave.raw.vars

logical, whether or not to show the average of the raw variances for each bin of
tags plotted against the average expression level of the tags in the bin. Averages
are taken on the square root scale as regular arithmetic means are likely to be
upwardly biased for count data, whereas averaging on the square scale gives a
better summary of the mean-variance relationship in the data. The default is
TRUE.

scalar vector (optional) of scaling values to divide counts by. Would expect to have this
the same length as the number of columns in the count matrix (i.e. the number
of libraries).

meanvar 77

NBline logical, whether or not to add a line on the graph showing the mean-variance
relationship for a NB model with common dispersion.

nbins scalar giving the number of bins (formed by using the quantiles of the genewise
mean expression levels) for which to compute average means and variances for
exploring the mean-variance relationship. Default is 100 bins

log.axes character vector indicating if any of the axes should use a log scale. Default is
"xy", which makes both y and x axes on the log scale. Other valid options are
"x" (log scale on x-axis only), "y" (log scale on y-axis only) and "" (linear scale
on x- and y-axis).

xlab character string giving the label for the x-axis. Standard graphical parameter. If
left as the default NULL, then the x-axis label will be set to "logConc".

ylab character string giving the label for the y-axis. Standard graphical parameter. If
left as the default NULL, then the x-axis label will be set to "logConc".

... further arguments passed on to plot

x matrix of count data, with rows representing tags/genes and columns represent-
ing samples

group factor giving the experimental group or condition to which each sample (i.e.
column of x or element of y) belongs

common.dispersion

logical, whether or not to compute the common dispersion for each bin of tags.

Details

This function is useful for exploring the mean-variance relationship in the data. Raw variances
are, for each gene, the pooled variance of the counts from each sample, divided by a scaling factor
(by default the effective library size). The function will plot the average raw variance for tags
split into nbins bins by overall expression level. The averages are taken on the square-root scale
as for count data the arithmetic mean is upwardly biased. Taking averages on the square-root
scale provides a useful summary of how the variance of the gene counts change with respect to
expression level (abundance). A line showing the Poisson mean-variance relationship (mean equals
variance) is always shown to illustrate how the genewise variances may differ from a Poisson mean-
variance relationship. Optionally, the raw variances and estimated tagwise variances can also be
plotted. Estimated tagwise variances can be calculated using either qCML estimates of the tagwise
dispersions (estimateTagwiseDisp) or Cox-Reid conditional inference estimates (CRDisp). A log-
log scale is used for the plot.

Value

plotMeanVar produces a mean-variance plot for the DGE data using the options described above.
plotMeanVar and binMeanVar both return a list with the following components:

avemeans vector of the average expression level within each bin of genes, with the average
taken on the square-root scale

avevars vector of the average raw pooled gene-wise variance within each bin of genes,
with the average taken on the square-root scale

bin.means list containing the average (mean) expression level for genes divided into bins
based on amount of expression

78 mglm

bin.vars list containing the pooled variance for genes divided into bins based on amount
of expression

means vector giving the mean expression level for each gene
vars vector giving the pooled variance for each gene
bins list giving the indices of the tags in each bin, ordered from lowest expression bin

to highest

Author(s)

Davis McCarthy

See Also

plotMDS.DGEList, plotSmear and maPlot provide more ways of visualizing DGE data.

Examples

y <- matrix(rnbinom(1000,mu=10,size=2),ncol=4)
d <- DGEList(counts=y,group=c(1,1,2,2),lib.size=c(1000:1003))
plotMeanVar(d) # Produce a straight-forward mean-variance plot
Produce a mean-variance plot with the raw variances shown and save the means
and variances for later use
meanvar <- plotMeanVar(d, show.raw.vars=TRUE)
If we want to show estimated tagwise variances on the plot, we must first estimate them!
d <- estimateCommonDisp(d) # Obtain an estimate of the dispersion parameter
d <- estimateTagwiseDisp(d) # Obtain tagwise dispersion estimates
Use previously saved object to speed up plotting
plotMeanVar(d, meanvar=meanvar, show.tagwise.vars=TRUE, NBline=TRUE)
We could also estimate common/tagwise dispersions using the Cox-Reid methods with an
appropriate design matrix

mglm Fit Negative Binomial Generalized Linear Model to Multiple Response
Vectors: Low Level Functions

Description

Fit the same log-link negative binomial or Poisson generalized linear model (GLM) to each row of
a matrix of counts.

Usage

mglmOneGroup(y, dispersion=0, offset=0, weights=NULL, maxit=50, tol=1e-10,
verbose=FALSE, coef.start=NULL)

mglmOneWay(y, design=NULL, dispersion=0, offset=0, weights=NULL, maxit=50,
tol=1e-10, coef.start=NULL)

mglmLevenberg(y, design, dispersion=0, offset=0, weights=NULL,
coef.start=NULL, start.method="null", maxit=200, tol=1e-06)

designAsFactor(design)

mglm 79

Arguments

y numeric matrix containing the negative binomial counts. Rows for tags and
columns for libraries.

design numeric matrix giving the design matrix of the GLM. Assumed to be full column
rank.

dispersion numeric scalar or vector giving the dispersion parameter for each GLM. Can be
a scalar giving one value for all tags, or a vector of length equal to the number
of tags giving tag-wise dispersions.

offset numeric vector or matrix giving the offset that is to be included in the log-linear
model predictor. Can be a scalar, a vector of length equal to the number of
libraries, or a matrix of the same size as y.

weights numeric vector or matrix of non-negative quantitative weights. Can be a vector
of length equal to the number of libraries, or a matrix of the same size as y.

coef.start numeric matrix of starting values for the linear model coefficients. Number of
rows should agree with y and number of columns should agree with design.

start.method method used to generate starting values when coef.stat=NULL. Possible values
are "null" to start from the null model of equal expression levels or "y" to use
the data as starting value for the mean.

tol numeric scalar giving the convergence tolerance. For mglmOneGroup, conver-
gence is judged successful when the step size falls below tol in absolute size.

maxit scalar giving the maximum number of iterations for the Fisher scoring algo-
rithm.

verbose logical. If TRUE, warnings will be issued when maxit iterations are exceeded
before convergence is achieved.

Details

The functions mglmOneGroup, mglmOneWay and mglmLevenberg all fit negative binomial gener-
alized linear models, with the same design matrix but possibly different dispersions, offsets and
weights, to a series of response vectors. The functions are all low-level functions in that they oper-
ate on atomic objects such as matrices. They are used as work-horses by higher-level functions in
the edgeR package, especially by glmFit.
mglmOneGroup fit the null model, with intercept term only, to each response vector. In other words,
it treats the libraries as belonging to one group. It implements Fisher scoring with a score-statistic
stopping criterion for each tag. Excellent starting values are available for the null model, so this
function seldom has any problems with convergence. It is used by other edgeR functions to compute
the overall abundance for each tag.
mglmLevenberg fits an arbitrary log-linear model to each response vector. It implements a Levenberg-
Marquardt modification of the glm scoring algorithm to prevent divergence. The main computation
is implemented in C++.
All these functions treat the dispersion parameter of the negative binomial distribution as a known
input.
deviances.function chooses the appropriate deviance function to use given a scalar or vector
of dispersion parameters. If the dispersion values are zero, then the Poisson deviance function
is returned; if the dispersion values are positive, then the negative binomial deviance function is
returned.

80 mglm

Value

mglmOneGroup produces a vector of length equal to the number of tags/genes (number of rows of
y) providing the single coefficent from the GLM fit for each tag/gene. This can be interpreted as a
measure of the ’average expression’ level of the tag/gene.

mglmLevenberg produces a list with the following components:

coefficients matrix of estimated coefficients for the linear models
fitted.values matrix of fitted values
deviance residual deviances
iter number of iterations used
fail logical vector indicating tags for which the maximum damping was exceeded

before convergence was achieved

deviances.function returns a function to calculate the deviance as appropriate for the given val-
ues of the dispersion.

designAsFactor returns a factor of length equal to nrow(design).

Author(s)

Gordon Smyth, Yunshun Chen, Davis McCarthy, Aaron Lun. C++ code by Aaron Lun.

References

McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-
Seq experiments with respect to biological variation. Nucleic Acids Research 40, 4288-4297. http:
//nar.oxfordjournals.org/content/40/10/4288

See Also

glmFit, for more object-orientated GLM modelling for DGE data.

Examples

y <- matrix(rnbinom(1000,mu=10,size=2),ncol=4)
lib.size <- colSums(y)
dispersion <- 0.1

abundance <- mglmOneGroup(y, dispersion=dispersion, offset=log(lib.size))
AveLogCPM <- log1p(exp(1e6*abundance))/log(2)
summary(AveLogCPM)

Same as above:
AveLogCPM <- aveLogCPM(y, dispersion, offset=log(lib.size))

Fit the NB GLM to the counts with a given design matrix
f1 <- factor(c(1,1,2,2))
f2 <- factor(c(1,2,1,2))
x <- model.matrix(~f1+f2)
fit <- mglmLevenberg(y, x, dispersion=dispersion, offset=log(lib.size))
head(fit$coefficients)

http://nar.oxfordjournals.org/content/40/10/4288
http://nar.oxfordjournals.org/content/40/10/4288

movingAverageByCol 81

movingAverageByCol Moving Average Smoother of Matrix Columns

Description

Apply a moving average smoother to the columns of a matrix.

Usage

movingAverageByCol(x, width=5, full.length=TRUE)

Arguments

x numeric matrix

width integer, width of window of rows to be averaged

full.length logical value, should output have same number of rows as input?

Details

If full.length=TRUE, narrower windows are used at the start and end of each column to make a
column of the same length as input. If FALSE, all values are averager of width input values, so the
number of rows is less than input.

Value

Numeric matrix containing smoothed values. If full.length=TRUE, of same dimension as x. If
full.length=FALSE, has width-1 fewer rows than x.

Author(s)

Gordon Smyth

Examples

x <- matrix(rpois(20,lambda=5),10,2)
movingAverageByCol(x,3)

82 nbinomDeviance

nbinomDeviance Negative Binomial Deviance

Description

Fit the same log-link negative binomial or Poisson generalized linear model (GLM) to each row of
a matrix of counts.

Usage

nbinomUnitDeviance(y, mean, dispersion=0)
nbinomDeviance(y, mean, dispersion=0, weights=NULL)

Arguments

y numeric vector or matrix containing the negative binomial counts. If a matrix,
then rows for tags and columns for libraries. nbinomDeviance treats a vector as
a matrix with one row.

mean numeric vector matrix of expected values, of same dimension as y.
dispersion numeric vector or matrix of negative binomial dispersions. Can be a scalar, or a

vector of length equal to the number of tags, or a matrix of same dimensions as
y.

weights numeric vector or matrix of non-negative weights, as for glmFit.

Details

nbinomUnitDeviance computes the unit deviance for each y observation. nbinomDeviance com-
putes the total residual deviance for each row of y observation, i.e., weighted row sums of the unit
deviances.

Care is taken to ensure accurate computation for small dispersion values.

Value

nbinomUnitDeviance returns a numeric vector or matrix of the same size as y.

nbinomDeviance returns a numeric vector of length equal to the number of rows of y.

Author(s)

Gordon Smyth, Yunshun Chen, Aaron Lun. C++ code by Aaron Lun.

References

Jorgensen, B. (2006). Generalized linear models. Encyclopedia of Environmetrics, Wiley. http:
//onlinelibrary.wiley.com/doi/10.1002/9780470057339.vag010/full.

McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-
Seq experiments with respect to biological variation. Nucleic Acids Research 40, 4288-4297. http:
//nar.oxfordjournals.org/content/40/10/4288

http://onlinelibrary.wiley.com/doi/10.1002/9780470057339.vag010/full
http://onlinelibrary.wiley.com/doi/10.1002/9780470057339.vag010/full
http://nar.oxfordjournals.org/content/40/10/4288
http://nar.oxfordjournals.org/content/40/10/4288

normalizeChIPtoInput 83

Examples

y <- matrix(1:6,3,2)
mu <- matrix(3,3,2)
nbinomUnitDeviance(y,mu,dispersion=0.2)
nbinomDeviance(y,mu,dispersion=0.2)

normalizeChIPtoInput Normalize ChIP-Seq Read Counts to Input and Test for Enrichment

Description

Normalize ChIP-Seq read counts to input control values, then test for significant enrichment relative
to the control.

Usage

normalizeChIPtoInput(input, response, dispersion=0.01, niter=6, loss="p", plot=FALSE,
verbose=FALSE, ...)

calcNormOffsetsforChIP(input, response, dispersion=0.01, niter=6, loss="p", plot=FALSE,
verbose=FALSE, ...)

Arguments

input numeric vector of non-negative input values, not necessarily integer.

response vector of non-negative integer counts of some ChIP-Seq mark for each gene or
other genomic feature.

dispersion negative binomial dispersion, must be positive.

niter number of iterations.

loss loss function to be used when fitting the response counts to the input: "p" for
cumulative probabilities or "z" for z-value.

plot if TRUE, a plot of the fit is produced.

verbose if TRUE, working estimates from each iteration are output.

... other arguments are passed to the plot function.

Details

normalizeChIPtoInput identifies significant enrichment for a ChIP-Seq mark relative to input
values. The ChIP-Seq mark might be for example transcriptional factor binding or an epigenetic
mark. The function works on the data from one sample. Replicate libraries are not explicitly
accounted for, and would normally be pooled before using this function.

ChIP-Seq counts are assumed to be summarized by gene or similar genomic feature of interest.

This function makes the assumption that a non-negligible proportion of the genes, say 25% or more,
are not truly marked by the ChIP-Seq feature of interest. Unmarked genes are further assumed to
have counts at a background level proportional to the input. The function aligns the counts to

84 plotBCV

the input so that the counts for the unmarked genes behave like a random sample. The function
estimates the proportion of marked genes, and removes marked genes from the fitting process. For
this purpose, marked genes are those with a Holm-adjusted mid-p-value less than 0.5.

The read counts are treated as negative binomial. The dispersion parameter is not estimated from
the data; instead a reasonable value is assumed to be given.

calcNormOffsetsforChIP returns a numeric matrix of offsets, ready for linear modelling.

Value

normalizeChIPtoInput returns a list with components

p.value numeric vector of p-values for enrichment.

scaling.factor factor by which input is scaled to align with response counts for unmarked
genes.

prop.enriched proportion of marked genes, as internally estimated

calcNormOffsetsforChIP returns a numeric matrix of offsets.

Author(s)

Gordon Smyth

plotBCV Plot Biological Coefficient of Variation

Description

Plot genewise biological coefficient of variation (BCV) against gene abundance (in log2 counts per
million).

Usage

plotBCV(y, xlab="Average log CPM", ylab="Biological coefficient of variation",
pch=16, cex=0.2, col.common="red", col.trend="blue", col.tagwise="black", ...)

Arguments

y a DGEList object.

xlab label for the x-axis.

ylab label for the y-axis.

pch the plotting symbol. See points for more details.

cex plot symbol expansion factor. See points for more details.

col.common color of line showing common dispersion

col.trend color of line showing dispersion trend

col.tagwise color of points showing tagwise dispersions

... any other arguments are passed to plot.

plotExonUsage 85

Details

The BCV is the square root of the negative binomial dispersion. This function displays the common,
trended and tagwise BCV estimates.

Value

A plot is created on the current graphics device.

Author(s)

Davis McCarthy, Yunshun Chen, Gordon Smyth

Examples

BCV.true <- 0.1
y <- DGEList(matrix(rnbinom(6000, size = 1/BCV.true^2, mu = 10),1000,6))
y <- estimateCommonDisp(y)
y <- estimateTrendedDisp(y)
y <- estimateTagwiseDisp(y)
plotBCV(y)

plotExonUsage Create a Plot of Exon Usage from Exon-Level Count Data

Description

Create a plot of exon usage for a given gene by plotting the (un)transformed counts for each exon,
coloured by experimental group.

Usage

plotExonUsage(y, geneID, group=NULL, transform="none", counts.per.million=TRUE,
legend.coords=NULL, ...)

Arguments

y either a matrix of exon-level counts, a list containing a matrix of counts for
each exon or a DGEList object with (at least) elements counts (table of counts
summarized at the exon level) and samples (data frame containing information
about experimental group, library size and normalization factor for the library
size). Each row of y should represent one exon.

geneID character string giving the name of the gene for which exon usage is to be plot-
ted.

group factor supplying the experimental group/condition to which each sample (col-
umn of y) belongs. If NULL (default) the function will try to extract if from y,
which only works if y is a DGEList object.

86 plotMDS.DGEList

transform character, supplying the method of transformation to be applied to the exon
counts, if any. Options are "none" (original counts are preserved), "sqrt"
(square-root transformation) and "log2" (log2 transformation). Default is "none".

counts.per.million

logical, if TRUE then counts per million (as determined from total library sizes)
will be plotted for each exon, if FALSE the raw read counts will be plotted. Using
counts per million effectively normalizes for different read depth among the
different samples, which can make the exon usage plots easier to interpret.

legend.coords optional vector of length 2 giving the x- and y-coordinates of the legend on the
plot. If NULL (default), the legend will be automatically placed near the top right
corner of the plot.

... optional further arguments to be passed on to plot.

Details

This function produces a simple plot for comparing exon usage between different experimental
conditions for a given gene.

Value

plotExonUsage (invisibly) returns the transformed matrix of counts for the gene being plotted and
produces a plot to the current device.

Author(s)

Davis McCarthy, Gordon Smyth

See Also

spliceVariants for methods to detect genes with evidence for alternative exon usage.

Examples

generate exon counts from NB, create list object
y<-matrix(rnbinom(40,size=1,mu=10),nrow=10)
rownames(y) <- rep(c("gene.1","gene.2"), each=5)
d<-DGEList(counts=y,group=rep(1:2,each=2))
plotExonUsage(d, "gene.1")

plotMDS.DGEList Multidimensional scaling plot of distances between digital gene ex-
pression profiles

Description

Plot samples on a two-dimensional scatterplot so that distances on the plot approximate the expres-
sion differences between the samples.

plotMDS.DGEList 87

Usage

S3 method for class DGEList
plotMDS(x, top = 500, labels = NULL, pch = NULL, cex = 1,

dim.plot = c(1,2), ndim = max(dim.plot), gene.selection = "pairwise",
xlab = NULL, ylab = NULL, method = "logFC", prior.count = 2,
...)

Arguments

x a DGEList object.

top number of top genes used to calculate pairwise distances.

labels character vector of sample names or labels. If x has no column names, then
defaults the index of the samples.

pch plotting symbol or symbols. See points for possible values. Ignored if labels
is non-NULL.

cex numeric vector of plot symbol expansions. See text for possible values.

dim.plot which two dimensions should be plotted, numeric vector of length two.

ndim number of dimensions in which data is to be represented

gene.selection character, "pairwise" to choose the top genes separately for each pairwise
comparison between the samples or "common" to select the same genes for all
comparisons. Only used when method="logFC".

xlab x-axis label

ylab y-axis label

method method used to compute distances. Possible values are "logFC" or "bcv".

prior.count average prior count to be added to observation to shrink the estimated log-fold-
changes towards zero. Only used when method="logFC".

... any other arguments are passed to plot.

Details

The default method (method="logFC") is to convert the counts to log-counts-per-million using cpm
and to pass these to the limma plotMDS function. This method calculates distances between samples
based on log2 fold changes. See the plotMDS help page for details.

The alternative method (method="bcv") calculates distances based on biological coefficient of vari-
ation. A set of top genes are chosen that have largest biological variation between the libraries (those
with largest tagwise dispersion treating all libraries as one group). Then the distance between each
pair of libraries (columns) is the biological coefficient of variation (square root of the common
dispersion) between those two libraries alone, using the top genes.

The number of genes (top) chosen for this exercise should roughly correspond to the number of
differentially expressed genes with materially large fold-changes. The default setting of 500 genes
is widely effective and suitable for routine use, but a smaller value might be chosen for when the
samples are distinguished by a specific focused molecular pathway. Very large values (greater than
1000) are not usually so effective.

Note that the "bcv" method is slower than the "logFC" method when there are many libraries.

88 plotQLDisp

Value

An object of class MDS is invisibly returned and a plot is created on the current graphics device.

Author(s)

Yunshun Chen, Mark Robinson and Gordon Smyth

See Also

plotMDS, cmdscale, as.dist

Examples

Simulate DGE data for 1000 genes(tags) and 6 samples.
Samples are in two groups
First 200 genes are differentially expressed in second group

ngenes <- 1000
nlib <- 6
counts <- matrix(rnbinom(ngenes*nlib, size=1/10, mu=20),ngenes,nlib)
rownames(counts) <- paste("Gene",1:ngenes)
group <- gl(2,3,labels=c("Grp1","Grp2"))
counts[1:200,group=="Grp2"] <- counts[1:200,group=="Grp2"] + 10
y <- DGEList(counts,group=group)
y <- calcNormFactors(y)

without labels, indexes of samples are plotted.
col <- as.numeric(group)
mds <- plotMDS(y, top=200, col=col)

or labels can be provided, here group indicators:
plotMDS(mds, col=col, labels=group)

plotQLDisp Plot the quasi-likelihood dispersion

Description

Plot the genewise quasi-likelihood dispersion against the gene abundance (in log2 counts per mil-
lion).

Usage

plotQLDisp(glmfit, xlab="Average Log2 CPM", ylab="Quarter-Root Mean Deviance", pch=16, cex=0.2,
col.shrunk="red", col.trend="blue", col.raw="black", ...)

plotQLDisp 89

Arguments

glmfit a DGEGLM object produced by glmQLFit.

xlab label for the x-axis.

ylab label for the y-axis.

pch the plotting symbol. See points for more details.

cex plot symbol expansion factor. See points for more details.

col.shrunk color of the points representing the shrunk quasi-liklihood dispersions.

col.trend color of line showing dispersion trend.

col.raw color of points showing the unshrunk dispersions.

... any other arguments are passed to plot.

Details

This function displays the quarter-root of the quasi-likelihood dispersions for all genes, before and
after shrinkage towards a trend. If glmfit was constructed without an abundance trend, the function
instead plots a horizontal line (of colour col.trend) at the common value towards which disper-
sions are shrunk. The quarter-root transformation is applied to improve visibility for dispersions
around unity.

Value

A plot is created on the current graphics device.

Author(s)

Aaron Lun, based on code by Davis McCarthy and Gordon Smyth

Examples

nbdisp <- 1/rchisq(1000, df=10)
y <- DGEList(matrix(rnbinom(6000, size = 1/nbdisp, mu = 10),1000,6))
design <- model.matrix(~factor(c(1,1,1,2,2,2)))
y <- estimateDisp(y, design)

fit <- glmQLFit(y, design)
plotQLDisp(fit)

fit <- glmQLFit(y, design, abundance.trend=FALSE)
plotQLDisp(fit)

90 plotSmear

plotSmear Plots log-Fold Change versus log-Concentration (or, M versus A) for
Count Data

Description

Both of these functions plot the log-fold change (i.e. the log of the ratio of expression levels for
each tag between two experimential groups) against the log-concentration (i.e. the overall average
expression level for each tag across the two groups). To represent counts that were low (e.g. zero in
1 library and non-zero in the other) in one of the two conditions, a ’smear’ of points at low A value
is presented in plotSmear.

Usage

plotSmear(object, pair=NULL, de.tags=NULL, xlab="Average logCPM", ylab="logFC", pch=19,
cex=0.2, smearWidth=0.5, panel.first=grid(), smooth.scatter=FALSE, lowess=FALSE, ...)

Arguments

object DGEList, DGEExact or DGELRT object containing data to produce an MA-plot.

pair pair of experimental conditions to plot (if NULL, the first two conditions are
used). Ignored if object is a DGELRT object.

de.tags rownames for tags identified as being differentially expressed; use exactTest
to identify DE genes

xlab x-label of plot

ylab y-label of plot

pch scalar or vector giving the character(s) to be used in the plot; default value of 19
gives a round point.

cex character expansion factor, numerical value giving the amount by which plotting
text and symbols should be magnified relative to the default; default cex=0.2 to
make the plotted points smaller

smearWidth width of the smear

panel.first an expression to be evaluated after the plot axes are set up but before any plotting
takes place; the default grid() draws a background grid to aid interpretation of
the plot

smooth.scatter logical, whether to produce a ’smooth scatter’ plot using the KernSmooth::smoothScatter
function or just a regular scatter plot; default is FALSE, i.e. produce a regular
scatter plot

lowess logical, indicating whether or not to add a lowess curve to the MA-plot to give
an indication of any trend in the log-fold change with log-concentration

... further arguments passed on to plot

plotSpliceDGE 91

Details

plotSmear is a more sophisticated and superior way to produce an ’MA plot’. plotSmear resolves
the problem of plotting tags that have a total count of zero for one of the groups by adding the
’smear’ of points at low A value. The points to be smeared are identified as being equal to the
minimum estimated concentration in one of the two groups. The smear is created by using random
uniform numbers of width smearWidth to the left of the minimum A. plotSmear also allows easy
highlighting of differentially expressed (DE) tags.

Value

A plot to the current device

Author(s)

Mark Robinson, Davis McCarthy

See Also

maPlot

Examples

y <- matrix(rnbinom(10000,mu=5,size=2),ncol=4)
d <- DGEList(counts=y, group=rep(1:2,each=2), lib.size=colSums(y))
rownames(d$counts) <- paste("tag",1:nrow(d$counts),sep=".")
d <- estimateCommonDisp(d)
plotSmear(d)

find differential expression
de <- exactTest(d)

highlighting the top 500 most DE tags
de.tags <- rownames(topTags(de, n=500)$table)
plotSmear(d, de.tags=de.tags)

plotSpliceDGE Plot exons on differentially spliced gene

Description

Plot exons of differentially spliced gene.

Usage

plotSpliceDGE(lrt, geneid=NULL, rank=1L, FDR = 0.05)

92 predFC

Arguments

lrt GLMLRT object produced by diffSpliceDGE.

geneid character string, ID of the gene to plot.

rank integer, if geneid=NULL then this ranked gene will be plotted.

FDR numeric, mark exons with false discovery rate less than this cutoff.

Details

Plots interaction log-fold-change by exon for the specified gene.

Value

A plot is created on the current graphics device.

Author(s)

Yunshun Chen, Yifang Hu and Gordon Smyth

See Also

diffSpliceDGE

Examples

See \code{\link{diffSpliceDGE}}

predFC Predictive log-fold changes

Description

Computes estimated coefficients for a NB glm in such a way that the log-fold-changes are shrunk
towards zero.

Usage

S3 method for class DGEList
predFC(y, design=NULL, prior.count=0.125, offset=NULL, dispersion=NULL, weights=NULL, ...)
Default S3 method:
predFC(y, design=NULL, prior.count=0.125, offset=NULL, dispersion=0, weights=NULL, ...)

predFC 93

Arguments

y a matrix of counts or a DGEList object

design the design matrix for the experiment

prior.count the average prior count to be added to each observation. Larger values produce
more shrinkage.

offset numeric vector or matrix giving the offset in the log-linear model predictor, as
for glmFit. Usually equal to log library sizes.

dispersion numeric vector of negative binomial dispersions.

weights optional numeric matrix giving observation weights

... other arguments are passed to glmFit.

Details

This function computes predictive log-fold changes (pfc) for a NB glm. The pfc are posterior
Bayesian estimators of the true log-fold-changes. They are predictive of values that might be repli-
cated in a future experiment.

Specifically the function adds a small prior count to each observation before estimating the glm.
The actual prior count that is added is proportion to the library size. This has the effect that any
log-fold-change that was zero prior to augmentation remains zero and non-zero log-fold-changes
are shrunk towards zero.

The prior counts can be viewed as equivalent to a prior belief that the log-fold changes are small,
and the output can be viewed as posterior log-fold-changes from this Bayesian viewpoint. The
output coefficients are called predictive log fold-changes because, depending on the prior, they may
be a better prediction of the true log fold-changes than the raw estimates.

Log-fold changes for transcripts with low counts are shrunk more than transcript with high counts.
In particular, infinite log-fold-changes arising from zero counts are avoided. The exact degree to
which this is done depends on the negative binomail dispersion.

If design=NULL, then the function returns a matrix of the same size as y containing log2 counts-
per-million, with zero values for the counts avoided. This equivalent to choosing design to be the
identity matrix with the same number of columns as y.

Value

Numeric matrix of linear model coefficients (if design is given) or logCPM (if design=NULL) on
the log2 scale.

Author(s)

Belinda Phipson and Gordon Smyth

References

Phipson, B. (2013). Empirical Bayes modelling of expression profiles and their associations.
PhD Thesis. University of Melbourne, Australia. http://repository.unimelb.edu.au/10187/
17614

http://repository.unimelb.edu.au/10187/17614
http://repository.unimelb.edu.au/10187/17614

94 processAmplicons

See Also

glmFit, exactTest

Examples

generate counts for a two group experiment with n=2 in each group and 100 genes
dispersion <- 0.1
y <- matrix(rnbinom(400,size=1/dispersion,mu=4),nrow=100)
y <- DGEList(y,group=c(1,1,2,2))
design <- model.matrix(~group, data=y$samples)

#estimate the predictive log fold changes
predlfc<-predFC(y,design,dispersion=dispersion,prior.count=1)
logfc <- predFC(y,design,dispersion=dispersion,prior.count=0)
logfc.truncated <- pmax(pmin(logfc,100),-100)

#plot predFCs vs logFCs
plot(predlfc[,2],logfc.truncated[,2],xlab="Predictive log fold changes",ylab="Raw log fold changes")
abline(a=0,b=1)

processAmplicons Process raw data from pooled genetic sequencing screens

Description

Given a list of sample-specific index (barcode) sequences and hairpin/sgRNA-specific sequences
from an amplicon sequencing screen, generate a DGEList of counts from the raw fastq file/(s)
containing the sequence reads.

Usage

processAmplicons(readfile, readfile2=NULL, barcodefile, hairpinfile,
barcodeStart=1, barcodeEnd=5,
barcodeStartRev=NULL, barcodeEndRev=NULL,
hairpinStart=37, hairpinEnd=57,
allowShifting=FALSE, shiftingBase=3,
allowMismatch=FALSE, barcodeMismatchBase=1,
hairpinMismatchBase=2, allowShiftedMismatch=FALSE,
verbose=FALSE)

Arguments

readfile character vector giving one or more fastq filenames

readfile2 character vector giving one or more fastq filenames for reverse read, default to
NULL

barcodefile filename containing sample-specific barcode ids and sequences

hairpinfile filename containing hairpin/sgRNA-specific ids and sequences

processAmplicons 95

barcodeStart numeric value, starting position (inclusive) of barcode sequence in reads

barcodeEnd numeric value, ending position (inclusive) of barcode sequence in reads
barcodeStartRev

numeric value, starting position (inclusive) of barcode sequence in reverse reads,
default to NULL

barcodeEndRev numeric value, ending position (inclusive) of barcode sequence in reverse reads,
default to NULL

hairpinStart numeric value, starting position (inclusive) of hairpin/sgRNA sequence in reads

hairpinEnd numeric value, ending position (inclusive) of hairpin/sgRNA sequence in reads

allowShifting logical, indicates whether a given hairpin/sgRNA can be matched to a neigh-
bouring position

shiftingBase numeric value of maximum number of shifted bases from input hairpinStart
and hairpinEnd should the program check for a hairpin/sgRNA match when
allowShifting is TRUE

allowMismatch logical, indicates whether sequence mismatch is allowed
barcodeMismatchBase

numeric value of maximum number of base sequence mismatches allowed in a
barcode sequence when allowShifting is TRUE

hairpinMismatchBase

numeric value of maximum number of base sequence mismatches allowed in a
hairpin/sgRNA sequence when allowShifting is TRUE

allowShiftedMismatch

logical, effective when allowShifting and allowMismatch are both TRUE. It
indicates whether we check for sequence mismatches at a shifted position.

verbose if TRUE, output program progress

Details

The input barcode file and hairpin/sgRNA files are tab-separated text files with at least two columns
(named ’ID’ and ’Sequences’) containing the sample or hairpin/sgRNA ids and a second column in-
dicating the sample index or hairpin/sgRNA sequences to be matched. If readfile2, barcodeStartRev
and barcodeEndRev are specified, a third column ’SequencesReverse’ is expected in the barcode
file. The barcode file may also contain a ’group’ column that indicates which experimental group
a sample belongs to. Additional columns in each file will be included in the respective $samples
or $genes data.frames of the final codeDGEList object. These files, along with the fastq file/(s) are
assumed to be in the current working directory.

To compute the count matrix, matching to the given barcodes and hairpins/sgRNAs is conducted
in two rounds. The first round looks for an exact sequence match for the given barcode sequences
and hairpin/sgRNA sequences at the locations specified. If allowShifting is set to TRUE, the pro-
gram also checks if a given hairpin/sgRNA sequence can be found at a neighbouring position in
the read. For hairpins/sgRNAs without a match, the program performs a second round of matching
which allows for sequence mismatches. The program checks parameter allowShifting to see if
matches can be found at shifted positions in the read and allowShiftedMismatch accommodates
mismatches at the shifted positions. The maximum number of mismatch bases in barcode and hair-
pin/sgRNA are specified by the parameters barcodeMismatchBase and hairpinMismatchBase.

96 q2qnbinom

The program outputs a DGEList object, with a count matrix indicating the number of times each
barcode and hairpin/sgRNA combination could be matched in reads from input fastq file/(s).

For further examples and data, refer to the Case studies available from http://bioinf.wehi.edu.au/shRNAseq/.

Value

Returns a DGEList object with following components:

counts read count matrix tallying up the number of reads with particular barcode and
hairpin/sgRNA matches. Each row is a hairpin and each column is a sample

genes In this case, hairpin/sgRNA-specific information (ID, sequences, corresponding
target gene) may be recorded in this data.frame

lib.size auto-calculated column sum of the counts matrix

Author(s)

Zhiyin Dai and Matthew Ritchie

References

Dai Z, Sheridan JM, et al. (2014). shRNA-seq data analysis with edgeR. F1000Research, http://f1000research.com/articles/10.12688/f1000research.4204/doi.

q2qnbinom Quantile to Quantile Mapping between Negative-Binomial Distribu-
tions

Description

Interpolated quantile to quantile mapping between negative-binomial distributions with the same
dispersion but different means. The Poisson distribution is a special case.

Usage

q2qpois(x, input.mean, output.mean)
q2qnbinom(x, input.mean, output.mean, dispersion=0)

Arguments

x numeric matrix of counts.

input.mean numeric matrix of population means for x. If a vector, then of the same length
as nrow(x).

output.mean numeric matrix of population means for the output values. If a vector, then of
the same length as nrow(x).

dispersion numeric scalar, vector or matrix giving negative binomial dispersion values.

readDGE 97

Details

This function finds the quantile with the same left and right tail probabilities relative to the output
mean as x has relative to the input mean. q2qpois is equivalent to q2qnbinom with dispersion=0.

In principle, q2qnbinom gives similar results to calling pnbinom followed by qnbinom as in the
example below. However this function avoids infinite values arising from rounding errors and does
appropriate interpolation to return continuous values.

q2qnbinom is called by equalizeLibSizes to perform quantile-to-quantile normalization.

Value

numeric matrix of same dimensions as x, with output.mean as the new nominal population mean.

Author(s)

Gordon Smyth

See Also

equalizeLibSizes

Examples

x <- 15
input.mean <- 10
output.mean <- 20
dispersion <- 0.1
q2qnbinom(x,input.mean,output.mean,dispersion)

Similar in principle:
qnbinom(pnbinom(x,mu=input.mean,size=1/dispersion),mu=output.mean,size=1/dispersion)

readDGE Read and Merge a Set of Files Containing DGE Data

Description

Reads and merges a set of text files containing digital gene expression data.

Usage

readDGE(files, path=NULL, columns=c(1,2), group=NULL, labels=NULL, ...)

98 readDGE

Arguments

files character vector of filenames, or alternatively a data.frame with a column con-
taining the file names of the files containing the libraries of counts and, option-
ally, columns containing the group to which each library belongs, descriptions
of the other samples and other information.

path character string giving the directory containing the files. The default is the cur-
rent working directory.

columns numeric vector stating which two columns contain the tag names and counts,
respectively

group vector, or preferably a factor, indicating the experimental group to which each
library belongs. If group is not NULL, then this argument overrides any group
information included in the files argument.

labels character vector giving short names to associate with the libraries. Defaults to
the file names.

... other are passed to read.delim

Details

Each file is assumed to contained digital gene expression data for one sample (or library), with
transcript identifiers in the first column and counts in the second column. Transcript identifiers are
assumed to be unique and not repeated in any one file. By default, the files are assumed to be
tab-delimited and to contain column headings. The function forms the union of all transcripts and
creates one big table with zeros where necessary.

Value

DGEList object

Author(s)

Mark Robinson and Gordon Smyth

See Also

DGEList provides more information about the DGEList class and the function DGEList, which can
also be used to construct a DGEList object, if readDGE is not required to read in and construct a
table of counts from separate files.

Examples

Read all .txt files from current working directory

Not run: files <- dir(pattern="*\\.txt$")
RG <- readDGE(files)
End(Not run)

roast.DGEList 99

roast.DGEList Rotation Gene Set Tests for Digital Gene Expression Data

Description

Rotation gene set testing for Negative Binomial generalized linear models.

Usage

S3 method for class DGEList
roast(y, index=NULL, design=NULL, contrast=ncol(design), ...)
S3 method for class DGEList
mroast(y, index=NULL, design=NULL, contrast=ncol(design), ...)

Arguments

y DGEList object.

index index vector specifying which rows (genes) of y are in the test set. This can be
a vector of indices, or a logical vector of the same length as statistics, or
any vector such as y[iset,] contains the values for the gene set to be tested.
Defaults to all genes. For mroast a list of index vectors.

design design matrix

contrast contrast for which the test is required. Can be an integer specifying a column
of design, or else a contrast vector of length equal to the number of columns of
design.

... other arguments are passed to link{roast.default} or link{mroast.default}.

Details

The roast gene set test was proposed by Wu et al (2010) for microarray data. This function makes the
roast test available for digital gene expression data. The negative binomial count data is converted
to approximate normal deviates by computing mid-p quantile residuals (Dunn and Smyth, 1996;
Routledge, 1994) under the null hypothesis that the contrast is zero. See roast for more description
of the test and for a complete list of possible arguments.

The design matrix defaults to the model.matrix(~y$samples$group).

mroast performs roast tests for a multiple of gene sets.

Value

roast produces an object of class Roast. See roast for details.

mroast produces a data.frame. See mroast for details.

Author(s)

Yunshun Chen and Gordon Smyth

100 spliceVariants

References

Dunn, K. P., and Smyth, G. K. (1996). Randomized quantile residuals. J. Comput. Graph. Statist.,
5, 236-244. http://www.statsci.org/smyth/pubs/residual.html

Routledge, RD (1994). Practicing safe statistics with the mid-p. Canadian Journal of Statistics 22,
103-110.

Wu, D, Lim, E, Francois Vaillant, F, Asselin-Labat, M-L, Visvader, JE, and Smyth, GK (2010).
ROAST: rotation gene set tests for complex microarray experiments. Bioinformatics 26, 2176-
2182. http://bioinformatics.oxfordjournals.org/content/26/17/2176

See Also

roast, camera.DGEList

Examples

mu <- matrix(10, 100, 4)
group <- factor(c(0,0,1,1))
design <- model.matrix(~group)

First set of 10 genes that are genuinely differentially expressed
iset1 <- 1:10
mu[iset1,3:4] <- mu[iset1,3:4]+10

Second set of 10 genes are not DE
iset2 <- 11:20

Generate counts and create a DGEList object
y <- matrix(rnbinom(100*4, mu=mu, size=10),100,4)
y <- DGEList(counts=y, group=group)

Estimate dispersions
y <- estimateDisp(y, design)

roast(y, iset1, design, contrast=2)
mroast(y, iset1, design, contrast=2)
mroast(y, list(set1=iset1, set2=iset2), design, contrast=2)

spliceVariants Identify Genes with Splice Variants

Description

Identify genes exhibiting evidence for splice variants (alternative exon usage/transcript isoforms)
from exon-level count data using negative binomial generalized linear models.

Usage

spliceVariants(y, geneID, dispersion=NULL, group=NULL, estimate.genewise.disp=TRUE,
trace=FALSE)

http://www.statsci.org/smyth/pubs/residual.html
http://bioinformatics.oxfordjournals.org/content/26/17/2176

spliceVariants 101

Arguments

y either a matrix of exon-level counts or a DGEList object with (at least) elements
counts (table of counts summarized at the exon level) and samples (data frame
containing information about experimental group, library size and normalization
factor for the library size). Each row of y should represent one exon.

geneID vector of length equal to the number of rows of y, which provides the gene
identifier for each exon in y. These identifiers are used to group the relevant
exons into genes for the gene-level analysis of splice variation.

dispersion scalar (in future a vector will also be allowed) supplying the negative bino-
mial dispersion parameter to be used in the negative binomial generalized linear
model.

group factor supplying the experimental group/condition to which each sample (col-
umn of y) belongs. If NULL (default) the function will try to extract if from y,
which only works if y is a DGEList object.

estimate.genewise.disp

logical, should genewise dispersions (as opposed to a common dispersion value)
be computed if the dispersion argument is NULL?

trace logical, whether or not verbose comments should be printed as function is run.
Default is FALSE.

Details

This function can be used to identify genes showing evidence of splice variation (i.e. alternative
splicing, alternative exon usage, transcript isoforms). A negative binomial generalized linear model
is used to assess evidence, for each gene, given the counts for the exons for each gene, by fitting a
model with an interaction between exon and experimental group and comparing this model (using a
likelihood ratio test) to a null model which does not contain the interaction. Genes that show signif-
icant evidence for an interaction between exon and experimental group by definition show evidence
for splice variation, as this indicates that the observed differences between the exon counts between
the different experimental groups cannot be explained by consistent differential expression of the
gene across all exons. The function topTags can be used to display the results of spliceVariants
with genes ranked by evidence for splice variation.

Value

spliceVariants returns a DGEExact object, which contains a table of results for the test of differ-
ential splicing between experimental groups (alternative exon usage), a data frame containing the
gene identifiers for which results were obtained and the dispersion estimate(s) used in the statistical
models and testing.

Author(s)

Davis McCarthy, Gordon Smyth

See Also

estimateExonGenewiseDisp for more information about estimating genewise dispersion values
from exon-level counts. DGEList for more information about the DGEList class. topTags for more

102 splitIntoGroups

information on displaying ranked results from spliceVariants. estimateCommonDisp and related
functions for estimating the dispersion parameter for the negative binomial model.

Examples

generate exon counts from NB, create list object
y<-matrix(rnbinom(40,size=1,mu=10),nrow=10)
d<-DGEList(counts=y,group=rep(1:2,each=2))
genes <- rep(c("gene.1","gene.2"), each=5)
disp <- 0.2
spliceVariants(d, genes, disp)

splitIntoGroups Split the Counts or Pseudocounts from a DGEList Object According
To Group

Description

Split the counts from a DGEList object according to group, creating a list where each element
consists of a numeric matrix of counts for a particular experimental group. Given a pair of groups,
split pseudocounts for these groups, creating a list where each element is a matrix of pseudocounts
for a particular gourp.

Usage

splitIntoGroups(object)
splitIntoGroupsPseudo(pseudo, group, pair)

Arguments

object DGEList, object containing (at least) the elements counts (table of raw counts),
group (factor indicating group) and lib.size (numeric vector of library sizes)

pseudo numeric matrix of quantile-adjusted pseudocounts to be split

group factor indicating group to which libraries/samples (i.e. columns of pseudo be-
long; must be same length as ncol(pseudo)

pair vector of length two stating pair of groups to be split for the pseudocounts

Value

splitIntoGroups outputs a list in which each element is a matrix of count counts for an individual
group. splitIntoGroupsPseudo outputs a list with two elements, in which each element is a
numeric matrix of (pseudo-)count data for one of the groups specified.

Author(s)

Davis McCarthy

subsetting 103

Examples

generate raw counts from NB, create list object
y<-matrix(rnbinom(80,size=1,mu=10),nrow=20)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
rownames(d$counts)<-paste("tagno",1:nrow(d$counts),sep=".")
z1<-splitIntoGroups(d)

z2<-splitIntoGroupsPseudo(d$counts,d$group,pair=c(1,2))

subsetting Subset DGEList, DGEGLM, DGEExact and DGELRT Objects

Description

Extract a subset of a DGEList, DGEGLM, DGEExact or DGELRT object.

Usage

S3 method for class DGEList
object[i, j, keep.lib.sizes=TRUE]
S3 method for class DGEGLM
object[i, j]
S3 method for class DGEExact
object[i, j]
S3 method for class DGELRT
object[i, j]
S3 method for class TopTags
object[i, j]

Arguments

object object of class DGEList, DGEGLM, DGEExact or DGELRT. For subsetListOfArrays,
any list of conformal matrices and vectors.

i,j elements to extract. i subsets the tags or genes while j subsets the libraries. Note
that columns of DGEGLM, DGEExact and DGELRT objects cannot be subsetted.

keep.lib.sizes logical, if TRUE the lib.sizes will be kept unchanged on output, otherwise they
will be recomputed as the column sums of the counts of the remaining rows.

Details

i,j may take any values acceptable for the matrix components of object of class DGEList. See
the Extract help entry for more details on subsetting matrices. For DGEGLM, DGEExact and DGELRT
objects, only rows (i.e. i) may be subsetted.

Value

An object of the same class as object holding data from the specified subset of rows and columns.

104 sumTechReps

Author(s)

Davis McCarthy, Gordon Smyth

See Also

Extract in the base package.

Examples

d <- matrix(rnbinom(16,size=1,mu=10),4,4)
rownames(d) <- c("a","b","c","d")
colnames(d) <- c("A1","A2","B1","B2")
d <- DGEList(counts=d,group=factor(c("A","A","B","B")))
d[1:2,]
d[1:2,2]
d[,2]
d <- estimateCommonDisp(d)
results <- exactTest(d)
results[1:2,]
NB: cannot subset columns for DGEExact objects

sumTechReps Sum Over Replicate Samples

Description

Condense the columns of a matrix or DGEList object so that counts are summed over technical
replicate samples.

Usage

Default S3 method:
sumTechReps(x, ID=colnames(x), ...)
S3 method for class DGEList
sumTechReps(x, ID=colnames(x), ...)

Arguments

x a numeric matrix or DGEList object.

ID sample identifier.

... other arguments are not currently used.

Details

A new matrix or DGEList object is computed in which the counts for technical replicate samples
are replaced by their sums.

systematicSubset 105

Value

A data object of the same class as x with a column for each unique value of ID. Columns are in the
same order as the ID values first occur in the ID vector.

Author(s)

Gordon Smyth and Yifang Hu

See Also

rowsum.

Examples

x <- matrix(rpois(8*3,lambda=5),8,3)
colnames(x) <- c("a","a","b")
sumTechReps(x)

systematicSubset Take a systematic subset of indices.

Description

Take a systematic subset of indices stratified by a ranking variable.

Usage

systematicSubset(n, order.by)

Arguments

n integer giving the size of the subset.
order.by numeric vector of the values by which the indices are ordered.

Value

systematicSubset returns a vector of size n.

Author(s)

Gordon Smyth

See Also

order

Examples

y <- rnorm(100, 1, 1)
systematicSubset(20, y)

106 thinCounts

thinCounts Binomial or Multinomial Thinning of Counts

Description

Reduce the size of Poisson-like counts by binomial thinning.

Usage

thinCounts(x, prob=NULL, target.size=min(colSums(x)))

Arguments

x numeric vector or array of non-negative integers.

prob numeric scalar or vector of same length as x, the expected proportion of the
events to keep.

target.size integer scale or vector of the same length as NCOL{x}, the desired total column
counts. Must be not greater than column sum of x. Ignored if prob is not NULL.

Details

If prob is not NULL, then this function calls rbinom with size=x and prob=prob to generate the
new counts. This is classic binomial thinning. The new column sums are random, with expected
values determined by prob.

If prob is NULL, then this function does multinomial thinning of the counts to achieve specified
column totals. The default behavior is to thin the columns to have the same column sum, equal to
the smallest column sum of x.

If the elements of x are Poisson, then binomial thinning produces new Poisson random variables
with expected values reduced by factor prob. If the elements of each column of x are multinomial,
then multinomial thinning produces a new multinomial observation with a reduced sum.

Value

A vector or array of the same dimensions as x, with thinned counts.

Author(s)

Gordon Smyth

Examples

x <- rpois(10,lambda=10)
thinCounts(x,prob=0.5)

topSpliceDGE 107

topSpliceDGE Top table of differentially spliced genes or exons

Description

Top table ranking the most differentially spliced genes or exons.

Usage

topSpliceDGE(lrt, level="gene", gene.test="Simes", number=10, FDR=1)

Arguments

lrt DGELRT object produced by diffSpliceDGE.

level character string, should the table be by "exon" or by "gene".

gene.test character string, choice for the gene-level p-values. Possible values are "Simes"
and "F".

number integer, maximum number of rows to output.

FDR numeric, only show exons or genes with false discovery rate less than this cutoff.

Details

Ranks exons or genes by p-values.

Value

A data.frame with any annotation columns found in fit plus the following columns

NExons number of exons if level="gene"

Gene.Exon exon annotation if level="exon"

logFC log-fold change of one exon vs all the exons for the same gene (if level="exon")

F F-statistics for exons if level="exon"

P.Value p-value

FDR false discovery rate

Author(s)

Yunshun Chen and Gordon Smyth

Examples

See \code{\link{diffSpliceDGE}}

108 topTags

topTags Table of the Top Differentially Expressed Tags

Description

Extracts the top DE tags in a data frame for a given pair of groups, ranked by p-value or absolute
log-fold change.

Usage

topTags(object, n=10, adjust.method="BH", sort.by="PValue")

Arguments

object a DGEExact object (output from exactTest) or a DGELRT object (output from
glmLRT), containing the (at least) the elements table: a data frame contain-
ing the log-concentration (i.e. expression level), the log-fold change in expres-
sion between the two groups/conditions and the p-value for differential expres-
sion, for each tag. If it is a DGEExact object, then topTags will also use the
comparison element, which is a vector giving the two experimental groups/conditions
being compared. The object may contain other elements that are not used by
topTags.

n scalar, number of tags to display/return
adjust.method character string stating the method used to adjust p-values for multiple testing,

passed on to p.adjust

sort.by character string, should the top tags be sorted by p-value ("PValue"), by abso-
lute log-fold change ("logFC"), or not sorted ("none").

Value

an object of class TopTags containing the following elements for the top n most differentially ex-
pressed tags as determined by sort.by:

table a data frame containing the elements logFC, the log-abundance ratio, i.e. fold
change, for each tag in the two groups being compared, logCPM, the log-average
concentration/abundance for each tag in the two groups being compared, PValue,
exact p-value for differential expression using the NB model, FDR, the p-value
adjusted for multiple testing as found using p.adjust using the method speci-
fied.

adjust.method character string stating the method used to adjust p-values for multiple testing.
comparison a vector giving the names of the two groups being compared.
test character string stating the name of the test.

The dimensions, row names and column names of a TopTags object are defined by those of table,
see dim.TopTags or dimnames.TopTags.

TopTags objects also have a show method so that printing produces a compact summary of their
contents.

treatDGE 109

Author(s)

Mark Robinson, Davis McCarthy, Gordon Smyth

References

Robinson MD, Smyth GK (2008). Small-sample estimation of negative binomial dispersion, with
applications to SAGE data. Biostatistics 9, 321-332.

Robinson MD, Smyth GK (2007). Moderated statistical tests for assessing differences in tag abun-
dance. Bioinformatics 23, 2881-2887.

See Also

exactTest, glmLRT, p.adjust.

Analogous to topTable in the limma package.

Examples

generate raw counts from NB, create list object
y <- matrix(rnbinom(80,size=1,mu=10),nrow=20)
d <- DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
rownames(d$counts) <- paste("tag",1:nrow(d$counts),sep=".")

estimate common dispersion and find differences in expression
here we demonstrate the exact methods, but the use of topTags is
the same for a GLM analysis
d <- estimateCommonDisp(d)
de <- exactTest(d)

look at top 10
topTags(de)
Can specify how many tags to view
tp <- topTags(de, n=15)
Here we view top 15
tp
Or order by fold change instead
topTags(de,sort.by="logFC")

treatDGE Testing for Differential Expression Relative to a Threshold

Description

Conduct genewise statistical tests for a given coefficient or coefficient contrast relative to a specified
threshold.

Usage

treatDGE(glmfit, coef=ncol(glmfit$design), contrast=NULL, lfc=0)

110 treatDGE

Arguments

glmfit a DGEGLM object, usually output from glmFit.

coef integer or character vector indicating which coefficients of the linear model are
to be tested equal to zero. Values must be columns or column names of design.
Defaults to the last coefficient. Ignored if contrast is specified.

contrast numeric vector specifying the contrast of the linear model coefficients to be
tested against the log2-fold change threshold. Length must equal to the number
of columns of design. If specified, then takes precedence over coef.

lfc numeric scalar specifying the absolute value of the log2-fold change threshold
above which differential expression is to be considered.

Details

treatDGE implements a two-sided modified likelihood ratio test.

Value

treatDGE produces an object of class DGELRT with the same components as for glmfit plus the
following:

lfc absolute value of the specified log2-fold change threshold.

table data frame with the same rows as glmfit containing the log2-fold changes, av-
erage log2-counts per million and p-values, ready to be displayed by topTags..

comparison character string describing the coefficient or the contrast being tested.

The data frame table contains the following columns:

logFC log2-fold change of expression between conditions being tested.

logCPM average log2-counts per million, the average taken over all libraries.

PValue p-values.

Author(s)

Yunshun Chen and Gordon Smyth

Examples

ngenes <- 100
n1 <- 3
n2 <- 3
nlibs <- n1+n2
mu <- 100
phi <- 0.1
group <- c(rep(1,n1), rep(2,n2))
design <- model.matrix(~as.factor(group))

4-fold change for the first 5 genes
i <- 1:5
fc <- 4

validDGEList 111

mu <- matrix(mu, ngenes, nlibs)
mu[i, 1:n1] <- mu[i, 1:n1]*fc

counts <- matrix(rnbinom(ngenes*nlibs, mu=mu, size=1/phi), ngenes, nlibs)
d <- DGEList(counts=counts,lib.size=rep(1e6, nlibs), group=group)

gfit <- glmFit(d, design, dispersion=phi)
tr <- treatDGE(gfit, coef=2, lfc=1)
topTags(tr)

validDGEList Check for Valid DGEList object

Description

Check for existence of standard components of DGEList object.

Usage

validDGEList(y)

Arguments

y DGEList object.

Details

This function checks that the standard counts and samples components of a DGEList object are
present.

Value

DGEList with missing components added.

Author(s)

Gordon Smyth

See Also

DGEList

Examples

counts <- matrix(rpois(4*2,lambda=5),4,2)
dge <- new("DGEList", list(counts=counts))
validDGEList(dge)

112 weightedCondLogLikDerDelta

weightedCondLogLikDerDelta

Weighted Conditional Log-Likelihood in Terms of Delta

Description

Weighted conditional log-likelihood parameterized in terms of delta (phi / (phi+1)) for a given
tag/gene - maximized to find the smoothed (moderated) estimate of the dispersion parameter

Usage

weightedCondLogLikDerDelta(y, delta, tag, prior.n=10, ntags=nrow(y[[1]]), der=0)

Arguments

y list with elements comprising the matrices of count data (or pseudocounts) for
the different groups

delta delta (phi / (phi+1))parameter of negative binomial

tag tag/gene at which the weighted conditional log-likelihood is evaluated

prior.n smoothing paramter that indicates the weight to put on the common likelihood
compared to the individual tag’s likelihood; default 10 means that the common
likelihood is given 10 times the weight of the individual tag/gene’s likelihood in
the estimation of the tag/genewise dispersion

ntags numeric scalar number of tags/genes in the dataset to be analysed

der derivative, either 0 (the function), 1 (first derivative) or 2 (second derivative)

Details

This function computes the weighted conditional log-likelihood for a given tag, parameterized in
terms of delta. The value of delta that maximizes the weighted conditional log-likelihood is con-
verted back to the phi scale, and this value is the estimate of the smoothed (moderated) dispersion
parameter for that particular tag. The delta scale for convenience (delta is bounded between 0 and
1).

Value

numeric scalar of function/derivative evaluated for the given tag/gene and delta

Author(s)

Mark Robinson, Davis McCarthy

WLEB 113

Examples

counts<-matrix(rnbinom(20,size=1,mu=10),nrow=5)
d<-DGEList(counts=counts,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
y<-splitIntoGroups(d)
ll1<-weightedCondLogLikDerDelta(y,delta=0.5,tag=1,prior.n=10,der=0)
ll2<-weightedCondLogLikDerDelta(y,delta=0.5,tag=1,prior.n=10,der=1)

WLEB Calculate Weighted Likelihood Empirical Bayes Estimates

Description

Estimates the parameters which maximize the given log-likelihood matrix using empirical Bayes
method.

Usage

WLEB(theta, loglik, prior.n, covariate, trend.method="locfit", span=NULL, overall=TRUE,
trend=TRUE, individual=TRUE, m0=NULL, m0.out=FALSE)

Arguments

theta numeric vector of values of the parameter at which the log-likelihoods are cal-
culated.

loglik numeric matrix of log-likelihood of all the candidates at those values of param-
eter.

prior.n numeric scaler, estimate of the prior weight, i.e. the smoothing parameter that
indicates the weight to put on the common likelihood compared to the individ-
ual’s likelihood.

covariate numeric vector of values across which a parameter trend is fitted

trend.method method for estimating the parameter trend. Possible values are "none", "movingave"
and "loess".

span width of the smoothing window, as a proportion of the data set.

overall logical, should a single value of the parameter which maximizes the sum of all
the log-likelihoods be estimated?

trend logical, should a parameter trend (against the covariate) which maximizes the
local shared log-likelihoods be estimated?

individual logical, should individual estimates of all the candidates after applying empirical
Bayes method along the trend be estimated?

m0 numeric matrix of local shared log-likelihoods. If Null, they will be calculated
using the method selected by trend.method.

m0.out logical, should local shared log-likelihoods be included in the output?

114 zscoreNBinom

Details

This function is a generic function that calculates an overall estimate, trend estimates and individual
estimates for each candidate given the values of the log-likelihood of all the candidates at some
specified parameter values.

Value

A list with the following:

overall the parameter estimate that maximizes the sum of all the log-likelihoods.

trend the estimated trended parameters against the covariate.

individual the individual estimates of all the candidates after applying empirical Bayes
method along the trend.

shared.loglik the estimated numeric matrix of local shared log-likelihoods

Author(s)

Yunshun Chen, Gordon Smyth

See Also

locfitByCol, movingAverageByCol and loessByCol implement the local fit, moving average or
loess smoothers.

Examples

y <- matrix(rpois(100, lambda=10), ncol=4)
theta <- 7:14
loglik <- matrix(0,nrow=nrow(y),ncol=length(theta))
for(i in 1:nrow(y))
for(j in 1:length(theta))
loglik[i,j] <- sum(dpois(y[i,], theta[j] ,log=TRUE))
covariate <- log(rowSums(y))
out <- WLEB(theta, loglik, prior.n=3, covariate)
out

zscoreNBinom Z-score Equivalents of Negative Binomial Deviate

Description

Compute z-score equivalents of negative binomial random deviates.

Usage

zscoreNBinom(q, size, mu)

zscoreNBinom 115

Arguments

q numeric vector or matrix giving negative binomial random values.

size negative binomial size parameter (>0).

mu mean of negative binomial distribution (>0).

Details

This function computes the mid-p value of q, then converts to the standard normal deviate with the
same cumulative probability distribution value.

Care is taken to do the computations accurately in both tails of the distributions.

Value

Numeric vector or matrix giving equivalent deviates from a standard normal distribution.

Author(s)

Gordon Smyth

See Also

pnbinom, qnorm in the stats package.

Examples

zscoreNBinom(c(0,10,100), mu=10, size=1/10)

Index

∗Topic algebra
dglmStdResid, 24
dispCoxReidInterpolateTagwise, 35
estimateTagwiseDisp, 52
exactTest, 55
gof, 68
meanvar, 76
splitIntoGroups, 102
topTags, 108
WLEB, 113

∗Topic array
as.data.frame, 6
as.matrix, 7
dim, 29

∗Topic category
cutWithMinN, 17

∗Topic classes
DGEExact-class, 19
DGEGLM-class, 20
DGEList-class, 22
DGELRT-class, 23

∗Topic distribution
zscoreNBinom, 114

∗Topic documentation
edgeRUsersGuide, 38

∗Topic file
commonCondLogLikDerDelta, 14
getPriorN, 59
readDGE, 97
weightedCondLogLikDerDelta, 112

∗Topic gene set test
goana.DGELRT, 66

∗Topic hplot
expandAsMatrix, 58
plotExonUsage, 85
plotMDS.DGEList, 86

∗Topic htest
binomTest, 9
decideTestsDGE, 18

spliceVariants, 100
∗Topic interpolation

maximizeInterpolant, 74
maximizeQuadratic, 75

∗Topic models
dispCoxReidSplineTrend, 37
estimateExonGenewiseDisp, 44
estimateGLMCommonDisp, 45
glmFit, 61
glmQLFit, 64
goodTuring, 70
thinCounts, 106

∗Topic package
edgeR-package, 3

∗Topic plot
plotBCV, 84
plotQLDisp, 88

∗Topic smooth
movingAverageByCol, 81

∗Topic subset
systematicSubset, 105

[.DGEExact (subsetting), 103
[.DGEGLM (subsetting), 103
[.DGELRT (subsetting), 103
[.DGEList (subsetting), 103
[.TopTags (subsetting), 103
02.Classes, 30

adjustedProfileLik, 4
as.data.frame, 6, 6
as.dist, 88
as.matrix, 7, 7
as.matrix.DGEList, 60
as.matrix.RGList, 7
aveLogCPM, 7, 17

binMeanVar (meanvar), 76
binom.test, 10
binomTest, 9, 57

116

INDEX 117

calcNormFactors, 10
calcNormOffsetsforChIP

(normalizeChIPtoInput), 83
camera, 13
camera.default, 12
camera.DGEList, 12, 100
cmdscale, 88
commonCondLogLikDerDelta, 14
condLogLikDerDelta (condLogLikDerSize),

15
condLogLikDerSize, 15
cpm, 8, 16
cut, 18
cutWithMinN, 17, 37

decideTests, 19
decideTestsDGE, 18
designAsFactor (mglm), 78
DGEExact, 108
DGEExact-class, 19
DGEGLM-class, 20
DGEList, 21, 22, 23, 39, 55, 60, 95, 96, 98,

101, 111
DGEList-class, 22
DGELRT, 108
DGELRT-class, 23
dglmStdResid, 24
diffSpliceDGE, 27, 92
dim, 29, 30
dim.DGEExact, 20
dim.DGEGLM, 21
dim.DGEList, 23
dim.DGELRT, 24
dim.TopTags, 108
dimnames, 30, 30, 31
dimnames.DGEExact, 20
dimnames.DGEGLM, 21
dimnames.DGEList, 23
dimnames.DGELRT, 24
dimnames.TopTags, 108
dimnames<-.DGEGLM (dimnames), 30
dimnames<-.DGEList (dimnames), 30
dispBinTrend, 31, 51
dispCoxReid, 33, 46
dispCoxReidInterpolateTagwise, 35, 49
dispCoxReidPowerTrend, 51
dispCoxReidPowerTrend

(dispCoxReidSplineTrend), 37
dispCoxReidSplineTrend, 37, 51

dispDeviance, 46
dispDeviance (dispCoxReid), 33
dispPearson, 46
dispPearson (dispCoxReid), 33

edgeR (edgeR-package), 3
edgeR-package, 3
edgeRUsersGuide, 38
equalizeLibSizes, 39, 42, 56, 57, 97
estimateCommonDisp, 14, 41, 44–46, 50, 53,

54, 102
estimateDisp, 42
estimateExonGenewiseDisp, 44, 101
estimateGLMCommonDisp, 34, 44, 45, 50
estimateGLMRobustDisp, 47
estimateGLMTagwiseDisp, 36, 44, 46, 47, 48,

48, 60
estimateGLMTrendedDisp, 32, 38, 44, 46–48,

50, 50
estimateTagwiseDisp, 44, 46, 50, 52, 60
estimateTrendedDisp, 54
exactTest, 55, 94, 109
exactTestBetaApprox (exactTest), 55
exactTestByDeviance (exactTest), 55
exactTestBySmallP (exactTest), 55
exactTestDoubleTail (exactTest), 55
expandAsMatrix, 58
Extract, 103, 104

getCounts, 58
getDispersion (getCounts), 58
getDispersions (dglmStdResid), 24
getOffset (getCounts), 58
getPriorN, 59
glmFit, 4, 5, 33, 45, 47, 49–51, 61, 64, 65, 69,

80, 93, 94
glmLRT, 109
glmLRT (glmFit), 61
glmQLFit, 64, 89
glmQLFTest (glmQLFit), 64
goana, 68
goana.DGEExact (goana.DGELRT), 66
goana.DGELRT, 66
gof, 68
goodTuring, 70
goodTuringPlot (goodTuring), 70
goodTuringProportions (goodTuring), 70

length.DGEExact (dim), 29

118 INDEX

length.DGEGLM (dim), 29
length.DGEList (dim), 29
length.DGELRT (dim), 29
length.TopTags (dim), 29
locfitByCol, 114
locfitByCol (loessByCol), 71
loess, 72
loessByCol, 53, 71, 114

maPlot, 26, 72, 78, 91
maximizeInterpolant, 36, 74, 75
maximizeQuadratic, 75
MDS, 88
meanvar, 76
mglm, 78
mglmLevenberg, 62, 63
mglmLevenberg (mglm), 78
mglmOneGroup, 8, 62, 63
mglmOneGroup (mglm), 78
mglmOneWay (mglm), 78
movingAverageByCol, 53, 81, 114
mroast, 99
mroast.DGEList (roast.DGEList), 99

nbinomDeviance, 82
nbinomUnitDeviance (nbinomDeviance), 82
normalizeChIPtoInput, 83

optim, 37
optimize, 34, 41, 43
order, 105

p.adjust, 19, 109
plotBCV, 84
plotExonUsage, 85
plotMDS, 88
plotMDS.DGEList, 26, 78, 86
plotMeanVar, 26
plotMeanVar (meanvar), 76
plotQLDisp, 66, 88
plotSmear, 26, 74, 78, 90
plotSpliceDGE, 91
pnbinom, 115
points, 84, 87, 89
predFC, 92
processAmplicons, 94

q2qnbinom, 40, 96
q2qpois (q2qnbinom), 96

qnorm, 115
qqnorm, 69
quantile, 18

readDGE, 97
Roast, 99
roast, 99, 100
roast.DGEList, 13, 99
rowsum, 105
rpkm (cpm), 16

sage.test, 10
show,DGEExact-method (DGEExact-class),

19
show,DGEGLM-method (DGEGLM-class), 20
show,DGELRT-method (DGELRT-class), 23
show,TopTags-method (topTags), 108
spliceVariants, 86, 100
splitIntoGroups, 102
splitIntoGroupsPseudo

(splitIntoGroups), 102
squeezeVar, 65
subsetting, 20, 21, 23, 24, 103
sumTechReps, 104
Sweave, 38
system, 39
systematicSubset, 46, 105

TestResults, 19
text, 87
thinCounts, 106
topGO, 68
topSpliceDGE, 107
topTable, 109
topTags, 63, 66, 101, 108
TopTags-class (topTags), 108
treatDGE, 109

uniroot, 34

validDGEList, 111

weightedCondLogLikDerDelta, 112
WLEB, 113

zscoreNBinom, 114

	edgeR-package
	adjustedProfileLik
	as.data.frame
	as.matrix
	aveLogCPM
	binomTest
	calcNormFactors
	camera.DGEList
	commonCondLogLikDerDelta
	condLogLikDerSize
	cpm
	cutWithMinN
	decideTestsDGE
	DGEExact-class
	DGEGLM-class
	DGEList
	DGEList-class
	DGELRT-class
	dglmStdResid
	diffSpliceDGE
	dim
	dimnames
	dispBinTrend
	dispCoxReid
	dispCoxReidInterpolateTagwise
	dispCoxReidSplineTrend
	edgeRUsersGuide
	equalizeLibSizes
	estimateCommonDisp
	estimateDisp
	estimateExonGenewiseDisp
	estimateGLMCommonDisp
	estimateGLMRobustDisp
	estimateGLMTagwiseDisp
	estimateGLMTrendedDisp
	estimateTagwiseDisp
	estimateTrendedDisp
	exactTest
	expandAsMatrix
	getCounts
	getPriorN
	glmFit
	glmQLFit
	goana.DGELRT
	gof
	goodTuring
	loessByCol
	maPlot
	maximizeInterpolant
	maximizeQuadratic
	meanvar
	mglm
	movingAverageByCol
	nbinomDeviance
	normalizeChIPtoInput
	plotBCV
	plotExonUsage
	plotMDS.DGEList
	plotQLDisp
	plotSmear
	plotSpliceDGE
	predFC
	processAmplicons
	q2qnbinom
	readDGE
	roast.DGEList
	spliceVariants
	splitIntoGroups
	subsetting
	sumTechReps
	systematicSubset
	thinCounts
	topSpliceDGE
	topTags
	treatDGE
	validDGEList
	weightedCondLogLikDerDelta
	WLEB
	zscoreNBinom
	Index

