
The quantro user’s guide

Stephanie C. Hicks shicks@jimmy.harvard.edu

Rafael A. Irizarry rafa@jimmy.harvard.edu

Modified: August 22, 2014. Compiled: October 13, 2014

Contents

1 Introduction 1

2 Getting Started 2

3 Data 2
3.1 flowSorted Data Example . 2
3.2 Plot distributions . 3

4 Using the quantro() function 5
4.1 Input for quantro() . 5
4.2 Running quantro() . 5
4.3 eSets . 7
4.4 Output from quantro() . 7

5 Assessing the statistical significance 8

6 Visualizing the statistical significance from permutation tests 8

7 SessionInfo 9

1 Introduction

Multi-sample normalization techniques such as quantile normalization [1, 2] have become a standard and essential part of
analysis pipelines for high-throughput data. Although it was originally developed for gene expression microarrays, it is now
used across many different high-throughput applications including genotyping arrays, DNA Methylation, RNA Sequencing
(RNA-Seq) and Chromatin Immunoprecipitation Sequencing (ChIP-Seq). These techniques transform the original raw
data to remove unwanted technical variation. However, quantile normalization and other global normalization methods
rely on assumptions about the data generation process that are not appropriate in some context. Until now, it has been
left to the researcher to check for the appropriateness of these assumptions.

Quantile normalization assumes that the statistical distribution of each sample is the same. Normalization is achieved
by forcing the observed distributions to be the same and the average distribution, obtained by taking the average of
each quantile across samples, is used as the reference. This method has worked very well in practice but note that when
the assumptions are not met, global changes in distribution, that may be of biological interest, will be wiped out and
features that are not different across samples can be artificially induced. These types of assumptions are justified in many

1

The quantro user’s guide 2

biomedical applications, for example in gene expression studies in which only a minority of genes are expected to be
differentially expressed. However, if, for example, a substantially higher percentage of genes are expected to be expressed
in only one group of samples, it may not be appropriate to use global adjustment methods.

The quantro R-package can be used to test for global differences between groups of distributions which asses whether
global normalization methods such as quantile normalization should be applied. Our method uses the raw unprocessed
high-throughput data to test for global differences in the distributions across a set of groups. The main function
quantro() will perform two tests:

1. An ANOVA to test if the medians of the distributions are different across groups. Differences across groups could
be attributed to unwanted technical variation (such as batch effects) or real global biological variation. This is a
helpful step for the user to verify if there is any technical variation unaccounted for.

2. A test for global differences between the distributions across groups which returns a test statistic called quantroStat.
This test statistic is a ratio of two variances and is similar to the idea of ANOVA. The main idea is to compare the
variability of distributions within groups relative to between groups. If the variability between groups is sufficiently
larger than the variability within groups, then this suggests global adjustment methods may not be appropriate. As
a default, we perform this test on the median normalized data, but the user may change this option.

2 Getting Started

Load the package in R

library(quantro)

3 Data

3.1 flowSorted Data Example

To explore how to use quantro(), we use the FlowSorted.DLPFC.450k data package in Bioconductor [3]. This data set
contains raw data objects of 58 Illumina 450K DNA methylation microarrays, formatted as RGset objects. The samples
represent two different cellular populations of brain tissues on the same 29 individuals extracted using flow sorting. For
more information on this data set, please see the FlowSorted.DLPFC.450k User’s Guide. For the purposes of this vignette,
a MethylSet object from the minfi Bioconductor package [4] was created which is a subset of the rows from the original
FlowSorted.DLPFC.450k data set. This MethylSet object is found in the /data folder and the script to create the
object is found in /inst.

Here we will explore the distributions of these two cellular populations of brain tissue (NeuN_pos and NeuN_neg) and
then test if there are global differences in the distributions across groups. First, load the MethylSet object (flowSorted)
and compute the Beta values using the function getBeta() in the minfi Bioconductor package. We use an offset of
100 as this is the default used by Illumina.

library(quantro)

library(minfi)

data(flowSorted)

p <- getBeta(flowSorted, offset = 100)

pd <- pData(flowSorted)

dim(p)

The quantro user’s guide 3

[1] 10000 58

head(pd)

Sample_Name SampleID CellType Sentrix.Barcode Sample.Section diag sex

813_N 813_N 813 NeuN_pos 7766130090 R02C01 Control Female

1740_N 1740_N 1740 NeuN_pos 7766130090 R02C02 Control Female

1740_G 1740_G 1740 NeuN_neg 7766130090 R04C01 Control Female

1228_G 1228_G 1228 NeuN_neg 7766130090 R04C02 Control Male

813_G 813_G 813 NeuN_neg 7766130090 R06C01 Control Female

1228_N 1228_N 1228 NeuN_pos 7766130090 R06C02 Control Male

ethnicity age PMI

813_N Caucasian 30 14

1740_N African 13 17

1740_G African 13 17

1228_G Caucasian 47 13

813_G Caucasian 30 14

1228_N Caucasian 47 13

BasePath

813_N /dcs01/lieber/ajaffe/450k/Zack_450k/IDAT/7766130090/7766130090_R02C01

1740_N /dcs01/lieber/ajaffe/450k/Zack_450k/IDAT/7766130090/7766130090_R02C02

1740_G /dcs01/lieber/ajaffe/450k/Zack_450k/IDAT/7766130090/7766130090_R04C01

1228_G /dcs01/lieber/ajaffe/450k/Zack_450k/IDAT/7766130090/7766130090_R04C02

813_G /dcs01/lieber/ajaffe/450k/Zack_450k/IDAT/7766130090/7766130090_R06C01

1228_N /dcs01/lieber/ajaffe/450k/Zack_450k/IDAT/7766130090/7766130090_R06C02

3.2 Plot distributions

quantro contains two functions to view the distributions of the samples of interest: matdensity() and matboxplot().
matdensity() computes the density for each sample (columns) and uses the matplot() function to plot all the densities.
matboxplot() orders and colors the samples by a group level variable.

The distributions of the two groups of cellular populations are shown here. The NeuN_neg samples are colored in red
and the NeuN_pos are colored in green.

matdensity(p, groupFactor = pd$CellType, col = c(2,3), xlab = " ",

ylab = "density", main = "Beta Values")

legend('top', c("NeuN_neg", "NeuN_pos"), col = c(2,3), lty= 1, lwd = 3)

The quantro user’s guide 4

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

1.
0

1.
5

2.
0

2.
5

Beta Values

de
ns

ity

NeuN_neg
NeuN_pos

matboxplot(p, groupFactor = pd$CellType, col = c(2,3), xaxt = "n",

main = "Beta Values")

The quantro user’s guide 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Beta Values

4 Using the quantro() function

4.1 Input for quantro()

The quantro() function must have two objects as input:

� an object which is a data frame or matrix with observations (e.g. probes or genes) on the rows and samples as
the columns.

� a groupFactor which represents the group level information about each sample. For example if the samples
represent tumor and normal samples, provide quantro() with a factor representing which columns in the object

are normal and tumor samples.

4.2 Running quantro()

In this example, the groups we are interested in comparing are contained in the CellType column in the pd dataset.
To run the quantro() function, input the data object and the object containing the phenotypic data. Here we use the
flowSorted data set as an example.

The quantro user’s guide 6

qtest <- quantro(object = p, groupFactor = pd$CellType)

[quantro] Average medians of the distributions are

not equal across groups.

[quantro] Calculating the quantro test statistic.

[quantro] No permutation testing performed.

Use B > 0 for permutation testing.

qtest

quantro: Test for global differences in distributions

nGroups: 2

nTotSamples: 58

nSamplesinGroups: 29 29

anovaPval: 0.01206

quantroStat: 8.80735

quantroPvalPerm: Use B > 0 for permutation testing.

The details related to the experiment can be extracted using the summary accessor function:

summary(qtest)

$nGroups

[1] 2

##

$nTotSamples

[1] 58

##

$nSamplesinGroups

NeuN_neg NeuN_pos

29 29

To asssess if the medians of the distributions different across groups, we perform an ANOVA on the medians from the
samples. Those results can be found using anova:

anova(qtest)

Analysis of Variance Table

##

Response: objectMedians

Df Sum Sq Mean Sq F value Pr(>F)

groupFactor 1 0.006919 0.0069194 6.7327 0.01206 *

Residuals 56 0.057553 0.0010277

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The full output can be seen The test statistic produced from quantro() testing for global differences between distributions
is given by quantroStat:

quantroStat(qtest)

[1] 8.807348

The quantro user’s guide 7

4.3 eSets

quantro() also can accept objects that inherit eSets such as an ExpressionSet or MethylSet. The groupFactor

must still be provided.

is(flowSorted, "MethylSet")

[1] TRUE

qtest <- quantro(flowSorted, groupFactor = pData(flowSorted)$CellType)

[quantro] Average medians of the distributions are

not equal across groups.

[quantro] Calculating the quantro test statistic.

[quantro] No permutation testing performed.

Use B > 0 for permutation testing.

qtest

quantro: Test for global differences in distributions

nGroups: 2

nTotSamples: 58

nSamplesinGroups: 29 29

anovaPval: 0.01206

quantroStat: 8.80735

quantroPvalPerm: Use B > 0 for permutation testing.

4.4 Output from quantro()

Elements in the S4 object from quantro() include:

Element Description
summary Returns a list of three elements related to a summary of the experiment:

nGroups: number of groups
nTotSamples: total number of samples
nSamplesinGroups: number of samples in each group

anova Results from an ANOVA to test if the average medians of the distributions are
different across groups

MSbetween Mean squared error between groups
MSwithin Mean squared error within groups

quantroStat A test statistic which is a ratio of the mean squared error between groups of
distributions (MSbetween) to the mean squared error within groups of distri-
butions (MSwithin)

quantroStatPerm If B is not equal to 0, then a permutation test was performed to assess the
statistical significance of quantroStat. These are the test statistics resulting
from the permuted samples

quantroPvalPerm If B is not equal to 0, then this is the p-value associated with the proportion of
times the test statistics resulting from the permuted samples were larger than
quantroStat

The quantro user’s guide 8

5 Assessing the statistical significance

To assess statistical significance of the test statistic, we use permutation testing. We use the foreach package which
distribute the computations across multiple cross in a single machine or across multiple machines in a cluster. The user
must pick how many permutations to perform where B is the number of permutations. At each permutation of the
samples, a test statistic is calculated. The proportion of test statistics (quantroStatPerm) that are larger than the
quantroStat is reported as the quantroPvalPerm. To use the foreach package, we first register a backend, in this
case a machine with 4 cores.

library(doParallel)

registerDoParallel(cores=4)

qtestPerm <- quantro(p, groupFactor = pd$CellType, B = 1000)

[quantro] Average medians of the distributions are

not equal across groups.

[quantro] Calculating the quantro test statistic.

[quantro] Starting permutation testing.

[quantro] Parallelizing using 4 workers/cores

(backend: doParallelSNOW, version: 1.0.8).

qtestPerm

quantro: Test for global differences in distributions

nGroups: 2

nTotSamples: 58

nSamplesinGroups: 29 29

anovaPval: 0.01206

quantroStat: 8.80735

quantroPvalPerm: 0.001

6 Visualizing the statistical significance from permutation tests

If permutation testing was used (i.e. specifying B> 0), then there is a second function in the package called quantroPlot()

which will plot the test statistics of the permuted samples. The plot is a histogram of the null test statistics quantroStatPerm
from quantro() and the red line is the observed test statistic quantroStat from quantro().

quantroPlot(qtestPerm)

The quantro user’s guide 9

0

100

200

300

0.0 2.5 5.0 7.5 10.0
Histogram of test statistics

 from permutation
 test with B = 1000

de
ns

ity

quantroStat = 8.807, quantroPvalPerm = 0.001

Additional options in the quantroPlot() function include:

Element Description
xLab the x-axis label
yLab the y-axis label

mainLab title of the histogram
binWidth change the binwidth

7 SessionInfo

sessionInfo()

R version 3.1.1 Patched (2014-09-24 r66678)

Platform: i386-w64-mingw32/i386 (32-bit)

##

locale:

[1] LC_COLLATE=C LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

##

attached base packages:

The quantro user’s guide 10

[1] stats4 parallel stats graphics grDevices utils datasets methods

[9] base

##

other attached packages:

[1] doParallel_1.0.8 minfi_1.12.0 bumphunter_1.6.0 locfit_1.5-9.1

[5] iterators_1.0.7 foreach_1.4.2 Biostrings_2.34.0 XVector_0.6.0

[9] GenomicRanges_1.18.0 GenomeInfoDb_1.2.0 IRanges_2.0.0 S4Vectors_0.4.0

[13] lattice_0.20-29 Biobase_2.26.0 BiocGenerics_0.12.0 quantro_1.0.0

##

loaded via a namespace (and not attached):

[1] AnnotationDbi_1.28.0 BiocStyle_1.4.0 DBI_0.3.1

[4] MASS_7.3-35 R.methodsS3_1.6.1 RColorBrewer_1.0-5

[7] RSQLite_0.11.4 Rcpp_0.11.3 XML_3.98-1.1

[10] annotate_1.44.0 base64_1.1 beanplot_1.2

[13] codetools_0.2-9 colorspace_1.2-4 compiler_3.1.1

[16] digest_0.6.4 doRNG_1.6 evaluate_0.5.5

[19] formatR_1.0 genefilter_1.48.0 ggplot2_1.0.0

[22] grid_3.1.1 gtable_0.1.2 highr_0.3

[25] illuminaio_0.8.0 knitr_1.7 labeling_0.3

[28] limma_3.22.0 matrixStats_0.10.0 mclust_4.4

[31] multtest_2.22.0 munsell_0.4.2 nlme_3.1-118

[34] nor1mix_1.2-0 pkgmaker_0.22 plyr_1.8.1

[37] preprocessCore_1.28.0 proto_0.3-10 quadprog_1.5-5

[40] registry_0.2 reshape_0.8.5 reshape2_1.4

[43] rngtools_1.2.4 scales_0.2.4 siggenes_1.40.0

[46] splines_3.1.1 stringr_0.6.2 survival_2.37-7

[49] tools_3.1.1 xtable_1.7-4 zlibbioc_1.12.0

References

[1] B M Bolstad, R A Irizarry, M Astrand, and T P Speed. A comparison of normalization methods for high density
oligonucleotide array data based on variance and bias. Bioinformatics, 19(2):185–93, Jan 2003.

[2] Rafael A Irizarry, Bridget Hobbs, Francois Collin, Yasmin D Beazer-Barclay, Kristen J Antonellis, Uwe Scherf, and
Terence P Speed. Exploration, normalization, and summaries of high density oligonucleotide array probe level data.
Biostatistics, 4(2):249–64, Apr 2003. doi:10.1093/biostatistics/4.2.249.

[3] A J Jaffe and Z A Kaminsky. FlowSorted.DLPFC.450k: Illumina HumanMethylation data on sorted frontal cortex
cell populations, r package version 1.0.0 edition.

[4] Martin J Aryee, Andrew E Jaffe, Hector Corrada-Bravo, Christine Ladd-Acosta, Andrew P Feinberg, Kasper D
Hansen, and Rafael A Irizarry. Minfi: a flexible and comprehensive bioconductor package for the analysis of infinium
dna methylation microarrays. Bioinformatics, 30(10):1363–9, May 2014. doi:10.1093/bioinformatics/btu049.

http://dx.doi.org/10.1093/biostatistics/4.2.249
http://dx.doi.org/10.1093/bioinformatics/btu049

	1 Introduction
	2 Getting Started
	3 Data
	3.1 flowSorted Data Example
	3.2 Plot distributions

	4 Using the quantro() function
	4.1 Input for quantro()
	4.2 Running quantro()
	4.3 eSets
	4.4 Output from quantro()

	5 Assessing the statistical significance
	6 Visualizing the statistical significance from permutation tests
	7 SessionInfo

