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1 Introduction

The characterization of molecular changes in diseased tissues can provide crucial information about pathophysiological
mechanisms and is important for the development of targeted drugs and therapies. However, many disease processes are
accompanied by changes of cell populations due to cell migration, proliferation or death. Identification of key molecular
events can thus be overshadowed by confounding changes in tissue composition.

To address the issue of confounding between cell population composition and cellular expression changes, we developed
Population-Specific Expression Analysis (PSEA) [1, 2]. This method works by exploiting linear regression modeling of
queried expression levels to the abundance of each cell population. Since a direct measure of population size is often
unobtainable (e.g. from human clinical or autopsy samples), PSEA instead tracks relative cell population size via levels
of mRNAs expressed in a single population only. Thus, a reference measure is constructed for each cell population by
averaging expression data for cell-type-specific mRNAs derived from the same expression profile.

Here we will demonstrate some of the functionalities in the PSEA package. We will first generate reference signals and
deconvolve individual transcripts to illustrate the method. We will then show how to apply PSEA to entire expression
profiles. Let us start by loading the package

> library(PSEA)

We have included expression data obtained from brain samples of 41 individuals as well as their phenotypes, i.e. control
and Huntington’s disease (HD) (the full data is deposited at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE3790)

> data(example)

The example data contains the variable expression, a matrix with the expression levels of 23 transcripts and the variable
groups, a vector with phenotypic information encoded as 0 and 1 (indicating control and disease, respectively). Detailed
information about the data is provided in the corresponding manual pages (see ?expression and ?groups).
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> expression[1:5,1:3]

GSM86787.cel.gz GSM86789.cel.gz GSM86791.cel.gz

200850_s_at 4654.3390 6093.9529 2914.7702

201313_at 953.4176 1649.3578 2447.6300

201667_at 4529.0839 5857.4259 2672.2444

202429_s_at 1729.1979 3641.1434 5706.2037

203416_at 432.0814 682.8519 393.8298

> groups

[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

2 Reference signals

We previously found that neurons, astrocytes, oligodendrocytes and microglia were the four neural cell populations that
mostly contributed expression in these brain samples [1]. For each cell population, we then identified several probesets
corresponding to mRNAs expressed in that cell type only, that can be used to monitor the abundance of the cell population.
For neurons, we selected the following probe sets (see Supplementary Table 5 in [1])

> neuron_probesets <- list(c("221805_at", "221801_x_at", "221916_at"), "201313_at",

+ "210040_at", "205737_at", "210432_s_at")

Note that they are assigned to a list where each item can contain one or more probesets measuring expression of the same
gene. Here, the first three probesets measure expression of NEFL, and four additional genes are measured by one probeset
each. The list structure allows us to average expression over probesets measuring the same transcript (for instance the
first three probesets that measure NEFL transcripts) before averaging over several genes. This is what is achieved by the
function marker, resulting in a neuronal ”reference signal”

> neuron_reference <- marker(expression, neuron_probesets)

We also define marker probesets and calculate reference signals for the three other cell populations

> astro_probesets <- list("203540_at", c("210068_s_at", "210906_x_at"), "201667_at")

> astro_reference <- marker(expression, astro_probesets)

> oligo_probesets <- list(c("211836_s_at", "214650_x_at"), "216617_s_at", "207659_s_at",

+ c("207323_s_at", "209072_at"))

> oligo_reference <- marker(expression, oligo_probesets)

> micro_probesets <- list("204192_at", "203416_at")

> micro_reference <- marker(expression, micro_probesets)

In addition, we will need a group indicator variable that codes controls as 0s and HD subjects as 1s. It is included in the
example data, as explained above

> groups

[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

The indicator variable is used to generate an interaction regressor that will allow us to test for differences in cell population-
specific expression across groups (HD versus control). For neurons, the interaction regressor is defined as

> neuron_difference <- groups * neuron_reference

We create similar interaction regressors for the other three populations

> astro_difference <- groups * astro_reference

> oligo_difference <- groups * oligo_reference

> micro_difference <- groups * micro_reference
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Figure 1: Component-plus-residual plots showing deconvolved neuronal, astrocytic, oligodendrocytic and mi-
croglial expression of Calcineurin A in control samples.

3 Principle of PSEA

To illustrate how PSEA works, we will deconvolve the expression of Calcineurin A (or PPP3CA, measured by probeset
202429 s at), a gene whose product was previously shown to be decreased in the striatum of HD patients. In PSEA, we
use linear regression and model the expression of Calcineurin A in the control samples as a linear combination of the four
reference signals

> model1 <- lm(expression["202429_s_at",] ~ neuron_reference + astro_reference +

+ oligo_reference + micro_reference, subset=which(groups==0))

The dependence of expression on each reference signal can be visualized as follows

> par(mfrow=c(2,2), mex=0.8)

> crplot(model1, "neuron_reference", newplot=FALSE)

> crplot(model1, "astro_reference", newplot=FALSE)

> crplot(model1, "oligo_reference", newplot=FALSE)

> crplot(model1, "micro_reference", newplot=FALSE)
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The plots show the strong and specific dependence of Calcineurin A expression on the neuronal reference signal (Figure
1). The fit summary provides further useful information on the model

> summary(model1)

Call:

lm(formula = expression["202429_s_at", ] ~ neuron_reference +

astro_reference + oligo_reference + micro_reference, subset = which(groups ==

0))

Residuals:

Min 1Q Median 3Q Max

-713.9 -364.4 -128.0 351.6 1019.3

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 103.60 918.19 0.113 0.911

neuron_reference 4604.72 505.05 9.117 2.89e-09 ***

astro_reference -21.35 385.48 -0.055 0.956

oligo_reference -267.37 276.29 -0.968 0.343

micro_reference -288.05 491.12 -0.587 0.563

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 483.2 on 24 degrees of freedom

Multiple R-squared: 0.818, Adjusted R-squared: 0.7877

F-statistic: 26.97 on 4 and 24 DF, p-value: 1.428e-08

There is indeed a strong correlation between the expression of Calcineurin A and the neuronal reference signal (neu-
ron reference), as indicated by the highly significant (p = 2.89 ∗ 10−9) coefficient of this reference signal. This reflects
the fact that Calcineurin A is expressed in neurons. The coefficient of the neuronal reference signal (4605) represents the
normalized neuron-specific expression of this gene. It is the slope of the regression line in the first panel of Figure 1.

Next, we test for a difference in neuron-specific expression in HD versus control samples and model the expression
of Calcineurin A as a combination of the neuronal reference signal and the neuron-specific group difference (neuronal
interaction regressor)

> model2 <- lm(expression["202429_s_at",] ~ neuron_reference + neuron_difference)

The fitted model is visualized as follows

> crplot(model2, "neuron_reference", g="neuron_difference")

It shows that neuronal expression of Calcineurin A is decreased in HD (red) compared to control (black) samples, as
indicated by the smaller slope of the regression line for HD samples (Figure 2). The fit summary

> summary(model2)

Call:

lm(formula = expression["202429_s_at", ] ~ neuron_reference +

neuron_difference)

Residuals:

Min 1Q Median 3Q Max

-757.06 -317.30 -49.51 324.19 1109.58

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -387.8 379.6 -1.021 0.313490
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Figure 2: Component-plus-residual plot showing deconvolved neuron-specific expression in controls (black) and
HD subjects (red).

neuron_reference 4548.5 345.5 13.165 9.82e-16 ***

neuron_difference -831.5 215.5 -3.859 0.000428 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 435.6 on 38 degrees of freedom

Multiple R-squared: 0.8953, Adjusted R-squared: 0.8898

F-statistic: 162.5 on 2 and 38 DF, p-value: < 2.2e-16

reveals that the coefficient of the group-specific difference is negative (-831) and highly significant (0.0004). This reflects
the fact that Calcineurin A expression is downregulated in neurons of HD patients. Normalized neuron-specific expression
in the control group is given by the coefficient of the neuronal reference signal (4548) and normalized neuron-specific
expression in HD is given by the sum of both coefficients (4548 - 831 = 3117). These two coefficients are the slopes
of the regression lines in Figure 2. The fold change in neuronal expression can thus be easily calculated using the fitted
coefficients

> foldchange <- (model2$coefficients[2] + model2$coefficients[3]) / model2$coefficients[2]

Finally, note that the model fit is excellent (adjusted R2 = 0.89) which means that most of the variations in Calcineurin
A expression across samples is explained by the variation in neuronal abundance (as measured by the neuronal reference
signal) and the group-specific difference between HD and control samples.

4 Deconvolution of expression profiles

An important aspect of PSEA (and statistical model building in general) is how to choose the parameters to include
in the model. Indeed, adding more parameters will always result in a better overall fit (and increase the coefficient of
determination R2) but will not necessarily result in a more informative or predictive expression model. The goal thus is
to reach a balance between the number of parameters in the model and how much of the data it can account for.
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The stepwise method is a classical approach to model selection. It can be applied to model building for PSEA (as in
[2]) and swlm provides a simple wrapper function that performs stepwise model selection on every transcript in turn (see
?swlm for details). However, it might not be computationally efficient when considering a large number of transcripts and
might lack flexibility in model specification. Here we will illustrate the ”all-subset” approach used in [1] in more details.

We will restrict the statistical models under consideration to those that provide appropriate gene expression models. In the
present case, the small number of samples also makes it unlikely to robustly fit highly complex expression models and we
might want to exclude models containing several parameters coding for expression changes in different cell populations.
The function lmfitst efficiently fits a set of models to every transcript in an expression profile and selects the best
model for each transcript.

We first need to define a model matrix containing all possible parameters as columns (including an intercept as the first
column)

> model_matrix <- fmm(cbind(neuron_reference, astro_reference,

+ oligo_reference, micro_reference), groups)

We then specify the subset of models that we want to fit as a list. Each list item represents a model by specifying
the included parameters (as their column indices in the model matrix). The function em_quantvg enumerates models
automatically

> model_subset <- em_quantvg(c(2,3,4,5), tnv=4, ng=2)

For instance, the 17th model in the list,

> model_subset[[17]]

[1] 1 2 6

represents an expression model containing an intercept (column 1 in model_matrix), the neuronal reference signal
(column 2) and the neuron-specific expression change (column 6).

We can then fit each probeset in the expression profile with all models in the subset and for each probeset select the best
expression model (using AIC as a criterion)

> models <- lmfitst(t(expression), model_matrix, model_subset)

The function lmfitst returns two lists. The first contains the identity of the best and next best models for each
transcript. The second contains details of the (fitted) best model for each transcript. For PPP3CA, for instance, the
selected expression model contains the parameters corresponding to neuronal expression and neuron-specific expression
change (as we previously manually worked out)

> summary(models[[2]][["202429_s_at"]])

Call:

lm(formula = y[, x] ~ ., data = data.frame(fmdlm[, st[[wcrto1[x]]][-1]]))

Residuals:

Min 1Q Median 3Q Max

-757.06 -317.30 -49.51 324.19 1109.58

Coefficients:

Estimate Std. Error t value Pr(>|t|)

1 -387.8 379.6 -1.021 0.313490

2 4548.5 345.5 13.165 9.82e-16 ***

6 -831.5 215.5 -3.859 0.000428 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 435.6 on 38 degrees of freedom
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Multiple R-squared: 0.8953, Adjusted R-squared: 0.8898

F-statistic: 162.5 on 2 and 38 DF, p-value: < 2.2e-16

We can then check that the selected models provide appropriate expression models and focus on transcripts with features
of interest like e.g. expression in a particular cell population or significant population-specific expression change. To this
end, we extract the coefficients, p-values and adjusted R2 for the selected models using a few ad hoc functions

> regressor_names <- as.character(1:9)

> coefficients <- coefmat(models[[2]], regressor_names)

> pvalues <- pvalmat(models[[2]], regressor_names)

> models_summary <- lapply(models[[2]], summary)

> adjusted_R2 <- slt(models_summary, 'adj.r.squared')

We use specific criteria to filter satisfactory expression models (e.g. sufficient R2 and small intercept, see [1] for more
details)

> average_expression <- apply(expression, 1, mean)

> filter <- adjusted_R2 > 0.6 & coefficients[,1] / average_expression < 0.5

We can now list transcripts that we would like to focus on (excluding transcripts used to construct reference signals).
Here we for instance identify transcripts with significant expression in oligodendrocytes (corresponding to column 4 in
model_matrix). There is one such transcript in our small example dataset

> filter[match(unlist(c(neuron_probesets, astro_probesets, oligo_probesets, micro_probesets)),

+ rownames(expression))] <- FALSE

> select <- which(filter & pvalues[, 4] < 0.05)

> coefficients[select,]

coef.1 coef.2 coef.3 coef.4 coef.5 coef.6 coef.7 coef.8 coef.9

19.38714 NA NA 69.27515 NA NA NA 33.26382 NA

5 Session Information

The version number of R and packages loaded for generating the vignette were:

R version 3.1.1 Patched (2014-09-24 r66678)

Platform: i386-w64-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=C LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] PSEA_1.0.0

loaded via a namespace (and not attached):

[1] Biobase_2.26.0 BiocGenerics_0.12.0 BiocStyle_1.4.0 MASS_7.3-35

[5] parallel_3.1.1 tools_3.1.1
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