
MSnbase input/output capabilities

Laurent Gatto∗

Computational Proteomics Unit

University of Cambridge, UK

March 22, 2015

This vignette describes MSnbase’s input and output capabilities.

Keywords : Mass Spectrometry (MS), proteomics, infrastructure, IO.

Foreword

MSnbase is under active developed; current functionality is evolving and new features

will be added. This software is free and open-source software. If you use it, please

support the project by citing it in publications:

Laurent Gatto and Kathryn S. Lilley. MSnbase - an R/Bioconductor

package for isobaric tagged mass spectrometry data visualization, pro-

cessing and quantitation. Bioinformatics 28, 288-289 (2011).

Questions and bugs

You are welcome to contact me directly about MSnbase. For bugs, typos, suggestions

or other questions, please file an issue in our tracking system1 providing as much

information as possible as well as the output of sessionInfo().

If you wish to reach a broader audience for general questions about proteomics

analysis using R, you may want to use the Bioconductor mailing list2.

∗lg390@cam.ac.uk
1https://github.com/lgatto/MSnbase/issues
2https://stat.ethz.ch/mailman/listinfo/bioconductor

1

mailto:lg390@cam.ac.uk
https://github.com/lgatto/MSnbase/issues
https://stat.ethz.ch/mailman/listinfo/bioconductor


1 Overview

MSnbase’s aims are to facilitate the reproducible analysis of mass spectrometry data

within the R environment, from raw data import and processing, feature quantifica-

tion, quantification and statistical analysis of the results (Gatto and Lilley, 2012).

Data import functions for several formats are provided and intermediate or final

results can also be saved or exported. These capabilities are presented below.

2 Data input

Raw data Data stored in one of the published XML-based formats. i.e. mzXML

(Pedrioli et al., 2004), mzData (Orchard et al., 2007) or mzML (Martens et al., 2010),

can be imported with the readMSData method, which makes use of the mzR package

to create MSnExp objects. The files can be in profile or centroided mode. See

?readMSData for details.

Peak lists Peak lists in the mgf format3 can be imported using the readMgfData.

In this case, the peak data has generally been pre-processed by other software. See

?readMgfData for details.

Quantitation data Third party software can be used to generate quantitative data

and exported as a spreadsheet (generally comma or tab separated format). This data

as well as any additional meta-data can be imported with the readMSnSet function.

See ?readMSnSet for details.

MSnbase also supports the mzTab format4, a light-weight, tab-delimited file format

for proteomics data developed within the Proteomics Standards Initiative (PSI).

mzTab files can be read into R with readMzTabData to create and MSnSet instance.

3 Data output

RData files R objects can most easily be stored on disk with the save function. It

creates compressed binary images of the data representation that can later be read

back from the file with the load function.

Peak lists MSnExp instances as well as individual spectra can be written as mgf

files with the writeMgfData method. Note that the meta-data in the original R

object can not be included in the file. See ?writeMgfData for details.

3http://www.matrixscience.com/help/data_file_help.html#GEN
4http://code.google.com/p/mztab/

2

http://www.matrixscience.com/help/data_file_help.html#GEN
http://code.google.com/p/mztab/


Raw data
in an open
XML format

readMSData

Peak list in
mgf format

readMgfData

Quantitation
data as a

spreadsheet

mzTab format

readMSnSet

readMzTabData

MSnExp

MSnSet

quantify

Figure 1: Illustration of MSnbase input capabilities. The white and red boxes represent
R functions/methods and objects respectively. The blue boxes represent different disk
storage formats.

Quantitation data Quantitation data can be exported to spreadsheet files with the

write.exprs method. Feature meta-data can be appended to the feature intensity

values. See ?writeMgfData for details.

MSnSet instances can also be exported to mzTab files using the writeMzTabData

function.

3



Raw data
in an open
XML format

Peak list in
mgf format

writeMgfData

Quantitation
data as a

spreadsheet

mzTab format

write.exprs

writeMzTabData

MSnExp

MSnSet

quantify

Figure 2: Illustration of MSnbase output capabilities. The white and red boxes represent
R functions/methods and objects respectively. The blue boxes represent different disk
storage formats.

4



4 Creating MSnSet from text spread sheets

This section describes the generation of MSnSet objects using data available in a

text-based spreadsheet. This entry point into R and MSnbase allows to import

data processed by any of the third party mass-spectrometry processing software

available and proceed with data exploration, normalisation and statistical analysis

using functions available in R and the numerous Bioconductor packages.

4.1 A complete work flow

The following section describes a work flow that uses three input files to create

the MSnSet. These files respectively describe the quantitative expression data, the

sample meta-data and the feature meta-data. It is taken from the pRoloc tutorial

and uses example files from the pRolocdata package.

4.1.1 The original data file

We start by describing the csv to be used as input using the read.csv function.

> ## The original data for replicate 1, available

> ## from the pRolocdata package

> f0 <- dir(system.file("extdata", package = "pRolocdata"),

+ full.names = TRUE,

+ pattern = "pr800866n_si_004-rep1.csv")

> csv <- read.csv(f0)

The three first lines of the original spreadsheet, containing the data for replicate

one, are illustrated below (using the function head). It contains 888 rows (proteins)

and 16 columns, including protein identifiers, database accession numbers, gene sym-

bols, reporter ion quantitation values, information related to protein identification,

. . .

> head(csv, n=3)

Protein.ID FBgn Flybase.Symbol No..peptide.IDs Mascot.score

1 CG10060 FBgn0001104 G-ialpha65A 3 179.86

2 CG10067 FBgn0000044 Act57B 5 222.40

3 CG10077 FBgn0035720 CG10077 5 219.65

No..peptides.quantified area.114 area.115 area.116 area.117

1 1 0.379000 0.281000 0.225000 0.114000

2 9 0.420000 0.209667 0.206111 0.163889

5



3 3 0.187333 0.167333 0.169667 0.476000

PLS.DA.classification Peptide.sequence Precursor.ion.mass

1 PM

2 PM

3

Precursor.ion.charge pd.2013 pd.markers

1 PM unknown

2 PM unknown

3 unknown unknown

Below read in turn the spread sheets that contain the quantitation data (exprsFile.csv),

feature meta-data (fdataFile.csv) and sample meta-data (pdataFile.csv).

> ## The quantitation data, from the original data

> f1 <- dir(system.file("extdata", package = "pRolocdata"),

+ full.names = TRUE, pattern = "exprsFile.csv")

> exprsCsv <- read.csv(f1)

> ## Feature meta-data, from the original data

> f2 <- dir(system.file("extdata", package = "pRolocdata"),

+ full.names = TRUE, pattern = "fdataFile.csv")

> fdataCsv <- read.csv(f2)

> ## Sample meta-data, a new file

> f3 <- dir(system.file("extdata", package = "pRolocdata"),

+ full.names = TRUE, pattern = "pdataFile.csv")

> pdataCsv <- read.csv(f3)

exprsFile.csv containing the quantitation (expression) data for the 888 proteins

and 4 reporter tags.

> head(exprsCsv, n=3)

FBgn X114 X115 X116 X117

1 FBgn0001104 0.379000 0.281000 0.225000 0.114000

2 FBgn0000044 0.420000 0.209667 0.206111 0.163889

3 FBgn0035720 0.187333 0.167333 0.169667 0.476000

fdataFile.csv containing meta-data for the 888 features (here proteins).

6



> head(fdataCsv, n=3)

FBgn ProteinID FlybaseSymbol NoPeptideIDs MascotScore

1 FBgn0001104 CG10060 G-ialpha65A 3 179.86

2 FBgn0000044 CG10067 Act57B 5 222.40

3 FBgn0035720 CG10077 CG10077 5 219.65

NoPeptidesQuantified PLSDA

1 1 PM

2 9 PM

3 3

pdataFile.csv containing samples (here fractions) meta-data. This simple file has

been created manually.

> pdataCsv

sampleNames Fractions

1 X114 4/5

2 X115 12/13

3 X116 19

4 X117 21

The self-contained MSnSet can now easily be generated using the readMSnSet

constructor, providing the respective csv file names shown above and specifying

that the data is comma-separated (with sep = ","). Below, we call that object res

and display its content.

> library("MSnbase")

> res <- readMSnSet(exprsFile = f1,

+ featureDataFile = f2,

+ phenoDataFile = f3,

+ sep = ",")

> res

MSnSet (storageMode: lockedEnvironment)

assayData: 888 features, 4 samples

element names: exprs

protocolData: none

phenoData

7



sampleNames: X114 X115 X116 X117

varLabels: Fractions

varMetadata: labelDescription

featureData

featureNames: FBgn0001104 FBgn0000044 ... FBgn0001215 (888

total)

fvarLabels: ProteinID FlybaseSymbol ... PLSDA (6 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation:

- - - Processing information - - -

MSnbase version: 1.14.2

4.1.2 The MSnSet class

Although there are additional specific sub-containers for additional meta-data (for

instance to make the object MIAPE compliant), the feature (the sub-container, or

slot featureData) and sample (the phenoData slot) are the most important ones.

They need to meet the following validity requirements (see figure 3):

� the number of row in the expression/quantitation data and feature data must

be equal and the row names must match exactly, and

� the number of columns in the expression/quantitation data and number of

row in the sample meta-data must be equal and the column/row names must

match exactly.

A detailed description of the MSnSet class is available by typing ?MSnSet in the

R console.

The individual parts of this data object can be accessed with their respective

accessor methods:

� the quantitation data can be retrieved with exprs(res),

� the feature meta-data with fData(res) and

� the sample meta-data with pData(res).

4.2 A shorter work flow

The readMSnSet2 function provides a simplified import workforce. It takes a single

spreadsheet as input (default is csv) and extract the columns identified by ecol to

8



Figure 3: Dimension requirements for the respective expression, feature and sample
meta-data slots.

create the expression data, while the others are used as feature meta-data. ecol can

be a character with the respective column labels or a numeric with their indices. In

the former case, it is important to make sure that the names match exactly. Special

characters like ’-’ or ’(’ will be transformed by R into ’.’ when the csv file is

read in. Optionally, one can also specify a column to be used as feature names.

Note that these must be unique to guarantee the final object validity.

> ecol <- paste("area", 114:117, sep = ".")

> fname <- "Protein.ID"

> eset <- readMSnSet2(f0, ecol, fname)

> eset

MSnSet (storageMode: lockedEnvironment)

assayData: 888 features, 4 samples

element names: exprs

protocolData: none

phenoData: none

featureData

featureNames: CG10060 CG10067 ... CG9983 (888 total)

fvarLabels: Protein.ID FBgn ... pd.markers (12 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation:

- - - Processing information - - -

MSnbase version: 1.14.2

The ecol columns can also be queried interactively from R using the getEcols

and grepEcols function. The former return a character with all column names,

9



given a splitting character, i.e. the separation value of the spreadsheet (typically

"," for csv, "�" for tsv, ...). The latter can be used to grep a pattern of interest to

obtain the relevant column indices.

> getEcols(f0, ",")

[1] "\"Protein ID\"" "\"FBgn\""

[3] "\"Flybase Symbol\"" "\"No. peptide IDs\""

[5] "\"Mascot score\"" "\"No. peptides quantified\""

[7] "\"area 114\"" "\"area 115\""

[9] "\"area 116\"" "\"area 117\""

[11] "\"PLS-DA classification\"" "\"Peptide sequence\""

[13] "\"Precursor ion mass\"" "\"Precursor ion charge\""

[15] "\"pd.2013\"" "\"pd.markers\""

> grepEcols(f0, "area", ",")

[1] 7 8 9 10

> e <- grepEcols(f0, "area", ",")

> readMSnSet2(f0, e)

MSnSet (storageMode: lockedEnvironment)

assayData: 888 features, 4 samples

element names: exprs

protocolData: none

phenoData: none

featureData

featureNames: 1 2 ... 888 (888 total)

fvarLabels: Protein.ID FBgn ... pd.markers (12 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation:

- - - Processing information - - -

MSnbase version: 1.14.2

The phenoData slot can now be updated accordingly using the replacement func-

tions phenoData<- orpData<- (see ?MSnSet for details).

10



5 Session information

� R version 3.1.3 (2015-03-09), i386-w64-mingw32

� Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,

LC_MONETARY=English_United States.1252, LC_NUMERIC=C,

LC_TIME=English_United States.1252

� Base packages: base, datasets, grDevices, graphics, grid, methods, parallel,

stats, stats4, utils

� Other packages: AnnotationDbi 1.28.2, Biobase 2.26.0, BiocGenerics 0.12.1,

BiocParallel 1.0.3, GenomeInfoDb 1.2.4, IRanges 2.0.1, MLInterfaces 1.46.0,

MSnbase 1.14.2, Rcpp 0.11.5, RcppClassic 0.9.6, Rdisop 1.26.0,

S4Vectors 0.4.0, XML 3.98-1.1, annotate 1.44.0, cluster 2.0.1, ggplot2 1.0.1,

knitr 1.9, mzR 2.0.0, pRoloc 1.6.2, pRolocdata 1.4.1, reshape2 1.4.1,

zoo 1.7-12

� Loaded via a namespace (and not attached): BBmisc 1.9, BatchJobs 1.6,

BiocInstaller 1.16.2, BradleyTerry2 1.0-6, DBI 0.3.1, FNN 1.1,

MALDIquant 1.11, MASS 7.3-40, Matrix 1.1-5, RColorBrewer 1.1-2,

RSQLite 1.0.0, SparseM 1.6, affy 1.44.0, affyio 1.34.0, base64enc 0.1-2,

brew 1.0-6, brglm 0.5-9, car 2.0-25, caret 6.0-41, checkmate 1.5.2,

class 7.3-12, codetools 0.2-11, colorspace 1.2-6, digest 0.6.8, doParallel 1.0.8,

e1071 1.6-4, evaluate 0.5.5, fail 1.2, foreach 1.4.2, formatR 1.0, gdata 2.13.3,

genefilter 1.48.1, gtable 0.1.2, gtools 3.4.1, highr 0.4, impute 1.40.0,

iterators 1.0.7, kernlab 0.9-20, labeling 0.3, lattice 0.20-30, limma 3.22.7,

lme4 1.1-7, lpSolve 5.6.10, mclust 4.4, mgcv 1.8-5, minqa 1.2.4, munsell 0.4.2,

mvtnorm 1.0-2, mzID 1.4.1, nlme 3.1-120, nloptr 1.0.4, nnet 7.3-9,

pbkrtest 0.4-2, pcaMethods 1.56.0, pls 2.4-3, plyr 1.8.1,

preprocessCore 1.28.0, proto 0.3-10, proxy 0.4-14, quantreg 5.11,

randomForest 4.6-10, rda 1.0.2-2, rpart 4.1-9, sampling 2.6, scales 0.2.4,

sendmailR 1.2-1, sfsmisc 1.0-27, splines 3.1.3, stringr 0.6.2, survival 2.38-1,

tools 3.1.3, vsn 3.34.0, xtable 1.7-4, zlibbioc 1.12.0

References

Laurent Gatto and Kathryn S Lilley. MSnbase – an R/Bioconductor package for iso-

baric tagged mass spectrometry data visualization, processing and quantitation.

Bioinformatics, 28(2):288–9, Jan 2012. doi: 10.1093/bioinformatics/btr645.

11



Lennart Martens, Matthew Chambers, Marc Sturm, Darren Kes sner, Fredrik Levan-

der, Jim Shofstahl, Wilfred H Tang, Andreas Ro mpp, Steffen Neumann, An-

gel D Pizarro, Lu isa Montecchi-Palazzi, Natalie Tasman, Mike Coleman, Florian

Reisinger, Pune et Souda, Henning Hermjakob, Pierre-Alain Binz, and Eric W

Deutsch. mzml - a community standard for mass spectrometry data. Molecular

& Cellular Proteomics : MCP, 2010. doi: 10.1074/mcp.R110.000133.

Sandra Orchard, Luisa Montechi-Palazzi, Eric W Deutsch, Pierre-Alain Binz, An-

drew R Jones, Norman Paton, Angel Pizarro, David M Creasy, Jérôme Wojcik,

and Henning Hermjakob. Five years of progress in the standardization of pro-

teomics data 4th annual spring workshop of the hupo-proteomics standards ini-

tiative april 23-25, 2007 ecole nationale supérieure (ens), lyon, france. Proteomics,

7(19):3436–40, 2007. doi: 10.1002/pmic.200700658.

Patrick G A Pedrioli, Jimmy K Eng, Robert Hubley, Mathijs Vogelzang, Eric W

Deutsch, Brian Raught, Brian Pratt, Erik Nilsson, Ruth H Angeletti, Rolf Ap-

weiler, Kei Cheung, Catherine E Costello, Henning Hermjakob, Sequin Huang,

Randall K Julian, Eugene Kapp, Mark E McComb, Stephen G Oliver, Gilbert

Omenn, Norman W Paton, Richard Simpson, Richard Smith, Chris F Taylor,

Weimin Zhu, and Ruedi Aebersold. A common open representation of mass spec-

trometry data and its application to proteomics research. Nat. Biotechnol., 22

(11):1459–66, 2004. doi: 10.1038/nbt1031.

12


	1 Overview
	2 Data input
	3 Data output
	4 Creating MSnSet from text spread sheets
	4.1 A complete work flow
	4.1.1 The original data file
	4.1.2 The MSnSet class

	4.2 A shorter work flow

	5 Session information

