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Abstract

This vignette introduces the use of the Bioconductor package DSS (Dispersion Shrinkage for Sequencing

data), which is designed for differential analysis based on high-throughput sequencing data. It performs

differential expression analyses for RNA-seq, and differential methylation analyses for bisulfite sequencing

(BS-seq) data. The core of DSS is a new procedure to estimate and shrink gene- or CpG site-specific

dispersions, then conduct Wald tests for differential expression/methylation. Compared with existing

methods, DSS provides excellent statistical and computational performance.

1 Introduction

Recent advances in high-throughput sequencing technology have revolutionized genomic research. For ex-

ample, RNA-seq is a new technology for measuring the abundance of RNA products. Compared to gene

expression microarrays, it provides a better dynamic range and lower signal-to-noise ratio. Bisulfite sequenc-

ing (BS-seq) is a new technology for measuring DNA methylation. Compared to capture-based methods

such as MeDIP-seq, it provides single-base resolution and eliminates biases associated with CpG density.
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Fundamental questions for RNA-seq or BS-seq data analyses are whether gene expression regulation or

DNA methylation dynamics vary under different biological contexts. Identifying sites or regions exhibiting

differential expression (DE) or differential methylation (DM) are thus key tasks in functional genomics

research.

RNA- or BS-seq experiments typically have a limited number of biological replicates due to cost con-

straints. This can lead to unstable estimation of within group variance, and subsequently undesirable results

from hypothesis testing. Variance shrinkage methods have been widely used in DE analyses based on mi-

croarray data. The methods are typically based on a Bayesian hierarchical model, with a prior imposed on

the gene-specific variances to provide a basis for information sharing across all genes/CpG sites. In these

models, shrinkage is achieved for variance estimation. Using shrunk variance in hypothesis tests has been

shown to provide better results.

A distinct feature of RNA-seq or BS-seq data is that the measurements are in the form of counts.

These data are often assumed to be from the Poisson (for RNA-seq) or Binomial (for BS-seq) distributions.

Unlike continuous distributions such as the Gaussian distribution, the variances depend on means in these

discrete distributions. This implies that the sample variances do not account for biological variation between

replicates, and shrinkage cannot be applied on variances directly.

In contrast, we assume that our count data come from the Gamma-Poisson (RNA-seq) or Beta-Binomial

(BS-seq) distribution. These distributions can be parameterized by a mean and an over dispersion parameter.

The over dispersion parameters, which represent the biological variation for replicates within a treatment

group, play a central role in the differential analyses.

Here we present a new DE/DM detection algorithm, where shrinkage is performed on the dispersion

parameters. We first impose a log-normal prior on the dispersions, and then combine data from all genes/CpG

sites to shrink dispersions through a penalized likelihood approach. Finally, we construct Wald tests to test

each gene/site for differential expression/methylation. Our results show that the new method provides

excellent performance compared to existing methods, especially when the overall dispersion level is high or

the number of replicates is small.

Currently DSS only supports comparison of expression or methylation from two treatment groups. Meth-

ods for more advanced study designs are under development and will be implemented soon.

2 Using DSS for differential expression analysis

2.1 Single factor experiment

Required inputs for DSS are (1) gene expression values as a matrix of integers, rows are for genes and columns

are for samples; and (2) a vector representing experimental designs. The length of the design vector must

match the number of columns of input counts. Optionally, normalization factors or additional annotation

for genes can be supplied.

The basic data container in the package is SeqCountSet class, which is directly inherited from Expres-

sionSet class defined in Biobase. An object of the class contains all necessary information for a DE analysis:

gene expression values, experimental designs, and additional annotations.

A typical DE analysis contains the following simple steps.

1. Create a SeqCountSet object using newSeqCountSet.
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2. Estimate normalization factor using estNormFactors.

3. Estimate and shrink gene-wise dispersion using estDispersion

4. Two-group comparison using waldTest.

The usage of DSS is demonstrated in the simple simulation below.

1. First load in the library, and make a SeqCountSet object from some counts for 2000 genes and 6

samples.

> library(DSS)

> counts1=matrix(rnbinom(300, mu=10, size=10), ncol=3)

> counts2=matrix(rnbinom(300, mu=50, size=10), ncol=3)

> X1=cbind(counts1, counts2) ## these are 100 DE genes

> X2=matrix(rnbinom(11400, mu=10, size=10), ncol=6)

> X=rbind(X1,X2)

> designs=c(0,0,0,1,1,1)

> seqData=newSeqCountSet(X, designs)

> seqData

SeqCountSet (storageMode: lockedEnvironment)

assayData: 2000 features, 6 samples

element names: exprs

protocolData: none

phenoData

sampleNames: 1 2 ... 6 (6 total)

varLabels: designs

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

Annotation:

2. Estimate normalization factor.

> seqData=estNormFactors(seqData)

3. Estimate and shrink gene-wise dispersions

> seqData=estDispersion(seqData)

4. With the normalization factors and dispersions ready, the two-group comparison can be conducted via

a Wald test:

> result=waldTest(seqData, 0, 1)

> head(result,5)
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geneIndex muA muB lfc difExpr stats pval

43 43 5.289084 54.51620 -2.251654 -49.22711 -5.508994 3.608908e-08

67 67 5.307657 46.83916 -2.098161 -41.53151 -5.456709 4.850415e-08

39 39 9.577661 68.87188 -1.929160 -59.29422 -5.449715 5.045067e-08

44 44 5.639703 47.55559 -2.057582 -41.91589 -5.382811 7.333152e-08

16 16 9.264189 63.09849 -1.873868 -53.83430 -5.265595 1.397357e-07

local.fdr fdr

43 3.788291e-05 3.788291e-05

67 3.954985e-05 3.788291e-05

39 4.047783e-05 3.788291e-05

44 4.959428e-05 4.344899e-05

16 7.107785e-05 5.844922e-05

2.2 Multifactor experiment

DSS provides functionalities for dispersion shrinkage for multifactor experimental designs. Downstream model

fitting (through genearlized linear model) and hypothesis testing can be performed using other packages such

as edgeR, with the dispersions estimated from DSS.

Below is an example, based a simple simulation, to illustrate the DE analysis of a crossed design.

1. First simulate data for a 2x2 crossed experiments. Note the counts are randomly generated.

> library(DSS)

> library(edgeR)

> counts=matrix(rpois(800, 10), ncol=8)

> design=data.frame(gender=c(rep("M",4), rep("F",4)), strain=rep(c("WT", "Mutant"),4))

> X=model.matrix(~gender+strain, data=design)

2. make SeqCountSet, then estimate size factors and dispersion

> seqData=newSeqCountSet(counts, as.data.frame(X))

> seqData=estNormFactors(seqData)

> seqData=estDispersion(seqData)

3. Using edgeR’s function to do glm model fitting, but plugging in the estimated size factors and dispersion

from DSS.

> fit.edgeR <- glmFit(counts, X, lib.size=normalizationFactor(seqData),

+ dispersion=dispersion(seqData))

4. Using edgeR’s function to do hypothesis testing on the second parameter of the model (gender).

> lrt.edgeR <- glmLRT(fit.edgeR, coef=2)

> head(lrt.edgeR$table)

logFC logCPM LR PValue

1 0.32189652 21.44463 0.87140653 0.3505662
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2 -0.04099660 21.10755 0.01238082 0.9114029

3 0.13690278 21.24299 0.15174994 0.6968686

4 0.40337412 21.25798 1.26526497 0.2606569

5 -0.32024782 21.13847 0.74521684 0.3879948

6 -0.03841011 21.34055 0.01245888 0.9111252

3 Using DSS for differential methylation analysis

For BS-seq experiments, after sequence alignment and proper processing, the BS-seq data can be summarized

with following information for each C position (mostly CpG sites, with the occasional CH): chromosome

number, genomic coordinate, total number of reads covering the position, and number of reads showing

methylation at this position. For a sample, this information needs to be saved in a simple text file, with each

row representing a CpG site.

DML detection using DSS starts from several such text files. A typical DML detection contains two simple

steps. Below we will use files distributed with the package to illustrate the usage of the package.

1. Load in library. Read in text files and create BSseq objects for two conditions. This step requires

bsseq Bioconductor package. BSseq class is defined in that package.

> library(DSS)

> require(bsseq)

> path <- file.path(system.file(package="DSS"), "extdata")

> dat1.1 <- read.table(file.path(path, "cond1_1.txt"), header=TRUE)

> dat1.2 <- read.table(file.path(path, "cond1_2.txt"), header=TRUE)

> dat2.1 <- read.table(file.path(path, "cond2_1.txt"), header=TRUE)

> dat2.2 <- read.table(file.path(path, "cond2_2.txt"), header=TRUE)

> BS1 <- makeBSseqData( list(dat1.1, dat1.2), paste("cond1",1:2,sep=".") )

> BS2 <- makeBSseqData( list(dat2.1, dat2.2), paste("cond2",1:2,sep=".") )

> BS1

An object of type 'BSseq' with

28913 methylation loci

2 samples

has not been smoothed

2. Detect DML by calling callDML function.

> dmls <- callDML(BS1, BS2)

> head(dmls)

chr pos mu1 mu2 diff diff.se stat

6528 chr18 3014904 0.5056818 0.4696970 0.035984848 0.23057082 0.15606853

6576 chr18 3031032 0.3400000 0.1590909 0.180909091 0.11940500 1.51508807

6577 chr18 3031044 0.3445946 0.3409091 0.003685504 0.13275390 0.02776192
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6578 chr18 3031065 0.4353448 0.3723404 0.063004402 0.10426725 0.60425879

6579 chr18 3031069 0.3000000 0.5370370 -0.237037037 0.14105165 -1.68049812

6580 chr18 3031082 0.3506787 0.3950000 -0.044321267 0.07838165 -0.56545463

pval fdr

6528 0.87597900 1.0000000

6576 0.12975010 0.8169241

6577 0.97785203 1.0000000

6578 0.54567160 1.0000000

6579 0.09286044 0.6882329

6580 0.57176458 1.0000000

3. Based on the DML results, detect DMR by calling callDMR function.

> dmrs <- callDMR(dmls, p.threshold=0.001)

> head(dmrs)

chr start end length nCG meanMethy1 meanMethy2 diff.Methy

77 chr18 32719368 32719501 134 13 0.9701046 0.39415782 0.5759467

102 chr18 36447232 36447337 106 10 0.8870297 0.06843556 0.8185942

124 chr18 38115895 38115970 76 4 0.6443536 0.12561822 0.5187354

For differentially methylated loci (DML) detection, a hypothesis test is conducted at each CpG site, and

the tests are performed independently. The differentially methylated region (DMR) detection is based on the

DML test results. Regions will CpG sites being statistically significant are detected as DMRs. Nearby DMRs

are merged into longer ones. Some restrictions including the minimum length, minimum number of CpG

sites, etc. are applied. Note that this function doesn’t consider the spatial correlation among nearby CpG

sites, which is an important aspect in the whole genome BS-seq data. This will be in the future development

plan.

4 Session Info

> sessionInfo()

R version 3.1.2 (2014-10-31)

Platform: i386-w64-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:
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[1] stats4 splines parallel stats graphics grDevices utils

[8] datasets methods base

other attached packages:

[1] bsseq_1.2.0 matrixStats_0.10.3 GenomicRanges_1.18.1

[4] GenomeInfoDb_1.2.2 IRanges_2.0.0 S4Vectors_0.4.0

[7] edgeR_3.8.2 limma_3.22.1 DSS_2.4.1

[10] Biobase_2.26.0 BiocGenerics_0.12.0

loaded via a namespace (and not attached):

[1] R.methodsS3_1.6.1 Rcpp_0.11.3 XVector_0.6.0 colorspace_1.2-4

[5] grid_3.1.2 lattice_0.20-29 locfit_1.5-9.1 munsell_0.4.2

[9] plyr_1.8.1 scales_0.2.4 tools_3.1.2
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