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1 Introduction

DNA microarrays and other high-throughput omics technologies provide large datasets that
often include patterns of correlation between genes reflecting the complex processes that
underlie cellular processes. The challenge in analyzing large-scale expression data has been
to extract biologically meaningful inferences regarding these processes – often represented as
networks – in an environment where the datasets are complex and noisy. Although many
techniques have been developed in an attempt to address these issues, to date their ability to
extract meaningful and predictive network relationships has been limited.

In this vignette we introduce a platform developed in John Quackenbush’s lab, which
enables inference of predictive gene interaction networks from prior biological knowledge, in
the form of biomedical literature and structured databases, and from gene expression data.
Using real data, we will show the benefit of using prior biological knowledge to infer networks
and how to quantitatively assess the quality of such networks.

Getting started

After starting R, the package should be loaded using the following command:

> library(predictionet)

This will load predictionet as well as its dependencies. In this vignette we will use two
example datasets included in the predictionet package, namely expO.colon.ras and joris-

sen.colon.ras.
The vignette describes in detail all the necessary steps to infer a gene interaction network

combining prior biological knowledge and gene expression data.

Our approach is the following:

1. Select a gene expression dataset and a list of genes of interest.

2. Extract priors from the biomedical literature and public structured databases using the
Predictive Networks web application.

3. Use the predictionet R package to infer a gene interaction network from priors and gene
expression data.

(a) Infer a network using the main function netinf.

(b) Explore and display the topology of the resulting network.

(c) Assess the stability of the network inference in cross-validation (function net-

inf.cv).

(d) Assess quantitatively the predictive ability of the network in cross-validation (func-
tion netinf.cv).

(e) Assess quantitatively the predictive ability of the network in a fully independent
dataset (functions netinf.predict and pred.score).

4. Use predictionet to statistically compare multiple gene interaction networks.

Using two colon cancer gene expression datasets as examples (see Section 2) we go step
by step and provide all the R code necessary to perform the entire analysis.
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2 Biology and Data

Let’s focus on colon cancer and more specifically the RAS signaling pathway.

2.1 RAS signaling pathway

A series of alterations in the cellular genome affecting the expression or function of genes
controlling cell growth and differentiation is considered to be the main cause of cancer.
These mutational events include activation of oncogenes and inactivation of tumor suppressor
genes. The elucidation of human cancer at the molecular level allows the design of rational,
mechanism-based therapeutic agents that antagonize the specific activity of biochemical pro-
cesses that are essential to the malignant phenotype of cancer cells. Because the frequency of
RAS mutations is among the highest for any gene in human cancers, development of inhibitors
of the Ras-mitogen-activated protein kinase (RAS/MAPK) pathway as potential anticancer
agents is a very promising pharmacologic strategy [Reuter et al., 2000].

Bild et al. identified a list of genes being differentially expressed between colorectal cancer
cell lines carrying the RAS mutation and those with the wild-type RAS gene [Bild et al., 2006].
This gene list is provided in files/bild2006_ras_signature_348.csv and will serve as the
core set of genes involved in the RAS pathway.

2.2 Colon cancer gene expression data

We use two large gene expression datasets of primary colon tumors collected before any adju-
vant therapy. The first dataset, provided in the predictionet package (see ?expO.colon.ras),
was published by the expO project1 and consists of 292 colon tumors hybridized on the
Affymetrix GeneChip HG-U133PLUS2, composed of 54,675 probesets. The second dataset,
also provided in the predictionet package (see ?jorissen.colon.ras) was published in [Joris-
sen et al., 2009] and consists of 290 colon tumors hybridized on the same Affymetrix GeneChip
(HG-U133PLUS2). The raw data have been collected from GEO2, series accession numbers
GSE2109 and GSE14333 for the first and the second dataset respectively

Data preprocessing The raw files (*.CEL) have been normalized using frma [McCall et al.,
2010].

Then only a subset of the gene expressions has been kept for further analysis of the RAS
signaling pathway by selecting the probesets in Bild’s RAS signature (see files/bild2006_ras_signature_348.csv)
which represent a unique gene. When multiple probesets represented the same gene, the most
variant has ben selected. The final datasets contain 259 genes and are stored in the predic-
tionet package (see ?expO.colon.ras and ?jorissen.colon.ras).

2.3 Known gene interactions extracted from the biomedical literature and
public structured databases

In order to extract previously published gene interactions, Prof John Quackenbush initi-
ated the development of the Predictive Networks web application [https://compbio.dfci.
harvard.edu/predictivenetworks/] implemented by Dr Christopher Bouton and his team

1http://www.intgen.org/expo/
2http://www.ncbi.nlm.nih.gov/geo/
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at Entagen3. This tool enables users to easily retrieve a large number of high quality gene in-
teractions reported in the biomedical literature (full-text open-access PubMed articles and/or
MEDLINE abstracts) and/or structured biological databases (e.g., Pathway Commons) by
focussing on a core set of genes (referred to as gene list).

One can use the Predictive Networks web application (Figure 1) to retrieve a list of interac-
tions involving at least one gene included in our list of RAS-related genes. To do so, one has to
first create an account to login to the webapp. Then go to ”My Page”and create a new gene list
by cutting-and-pasting the gene symbols4 included in files/bild2006_ras_signature_348.csv.
Lastly, we have to export all the resulting triples (e.g., ”genea regulates geneb ”represented
by the interaction genea → geneb) in a CSV file, priors_ras_bild2006_pnwebapp.csv, by
clicking on ”View Triples” and then ”Download w/ Sentences As”. One can use R to read
this file and count how many times a gene interaction has been observed in the biomedical
literature and reported structured biological databases.

Figure 1: Screenshot of the Predictive Networks web application where one searches known
interactions for HRAS.

Thanks to PN a directed graph can be efficiently constructed from known gene interactions
which is represented by the matrix Pm×m where m is the number of genes in the network and
Pij contains the number of times the interaction Xi → Xj between the two genes Xi and Xj

has been reported in the biomedical literature and structured biological databases. The prior

3http://www.entagen.com
4Be extremely careful if you use Microsoft Excel since it will automatically interpret SEPT6, that is gene

”SEPTIN 6”, as the 6th of September!
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counts in P are then rescaled into {−1, 1} where Pij = 0 represents no prior information about
interaction ij, Pij = 1 represents strong evidence for interaction ij and Pij = −1 represents
strong evidence for the absence of interaction between genes i and j. Such a directed graph
constructed from priors will be later combined with a directed graph inferred from genomic
data (Figure 2; see Section 3).

Let’s read the newly generated priors, priors_ras_bild2006_pnwebapp.csv, into a R
session.

> ## RAS-related genes

> genes.ras <- colnames(data.ras)

> ## read priors generated by the Predictive Networks web application

> pn.priors <- read.csv(system.file(file.path("extdata", "priors_ras_bild2006_pnwebapp.csv"), package="predictionet"), stringsAsFactors=FALSE)

> ## the column names should be: subject, predicate, object, direction, evidence, sentence, article, network

>

> ## remove special characters in the gene symbols

> pn.priors[ ,"subject"] <- gsub(pattern="[-]|[+]|[*]|[%]|[$]|[#]|[{]|[}]|[[]|[]]|[|]|[\\^]", replacement=".", x=pn.priors[ ,"subject"])

> pn.priors[ ,"object"] <- gsub(pattern="[-]|[+]|[*]|[%]|[$]|[#]|[{]|[}]|[[]|[]]|[|]|[\\^]", replacement=".", x=pn.priors[ ,"object"])

> genes.ras <- gsub(pattern="[-]|[+]|[*]|[%]|[$]|[#]|[{]|[}]|[[]|[]]|[|]|[\\^]", replacement=".", x=genes.ras)

> ## missing values

> pn.priors[!is.na(pn.priors) & (pn.priors == "" | pn.priors == " " | pn.priors == "N/A")] <- NA

> ## select only the interactions in which the genes are comprised in our gene expression dataset

> myx <- is.element(pn.priors[ , "subject"], genes.ras) & is.element(pn.priors[ , "object"], genes.ras)

> pn.priors <- pn.priors[myx, , drop=FALSE]

The R object pn.priors is a matrix that contains the triples genea → geneb that have been
reported in the literature and the structured biological databases.

> print(head(pn.priors))

X subject predicate object direction evidence

2709 10289 FOSL1 interacts with JUNB right positive

838 33995 STX1A interacts with PLXNA2 right positive

2149 38411 SKP2 does not affect SKP2 right negative

1938 24386 STX1A reacts with STX1A right positive

1460 28822 TUBA4A interacts with MLL3 right positive

422 35640 LYN interacts with TUBA4A right positive

sentence

2709 <NA>

838 <NA>

2149 A conservative change from Asp to Glu at position 331 of Skp2 does not affect Skp2-Cks1 interaction.

1938 <NA>

1460 <NA>

422 <NA>

article network

2709 <NA> Pathway Commons

838 <NA> Pathway Commons

2149 PubMed:12813041 Medline Abstracts

1938 <NA> Pathway Commons
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1460 <NA> Pathway Commons

422 <NA> Pathway Commons

As we will see later it is convenient to transform this long list of triples in a square matrix
of counts containing the number of times an interaction genea → geneb has been reported in
the literature and the structured biological databases.

> ## build prior counts

> pn.priors.counts <- matrix(0, nrow=length(genes.ras), ncol=length(genes.ras), dimnames=list(genes.ras, genes.ras))

> for(i in 1:nrow(pn.priors)) {

+ switch(tolower(pn.priors[i, "direction"]),

+ "right"={ pn.priors.counts[pn.priors[i, "subject"], pn.priors[i, "object"]] <- pn.priors.counts[pn.priors[i, "subject"], pn.priors[i, "object"]] + ifelse(!is.na(pn.priors[i, "evidence"]), ifelse(tolower(pn.priors[i, "evidence"]) == "positive", +1, -1), 0) },

+ "left"={ pn.priors.counts[pn.priors[i, "object"], pn.priors[i, "subject"]] <- pn.priors.counts[pn.priors[i, "object"], pn.priors[i, "subject"]] + ifelse(!is.na(pn.priors[i, "evidence"]), ifelse(tolower(pn.priors[i, "evidence"]) == "positive", +1, -1), 0) },

+ { pn.priors.counts[pn.priors[i, "subject"], pn.priors[i, "object"]] <- pn.priors.counts[pn.priors[i, "subject"], pn.priors[i, "object"]] + ifelse(!is.na(pn.priors[i, "evidence"]), ifelse(tolower(pn.priors[i, "evidence"]) == "positive", +1, -1), 0)

+ if(pn.priors[i, "object"] != pn.priors[i, "subject"]) { pn.priors.counts[pn.priors[i, "object"], pn.priors[i, "subject"]] <- pn.priors.counts[pn.priors[i, "object"], pn.priors[i, "subject"]] + ifelse(!is.na(pn.priors[i, "evidence"]), ifelse(tolower(pn.priors[i, "evidence"]) == "positive", +1, -1), 0) } })

+ }

> ## negative count represent evidence for ABSENCE of an interaction, positive otherwise

In this example, few interactions have been previously reported.

> print(table(pn.priors.counts))

pn.priors.counts

-1 0 1

1 67042 38

2.4 Predictionet package

All these function implemented in predictionet are listed in the documentation of the package
itself.

> library(help=predictionet)

Looking at the help page of expO.colon.ras and jorissen.colon.ras will give the
details about the data that we will use during this course.

> help(expO.colon.ras)

> help(jorissen.colon.ras)

expO.colon.ras and jorissen.colon.ras contain three R objects:

data*.ras matrix of gene expression data; tumors in rows, probes in columns.

annot*.ras data frame of probe annotations; probes in rows, annotations in columns.

demo*.ras data frame of clinical information of the colon cancer patients; patients in rows,
clinical variables in columns.

priors*.ras matrix of prior information about the gene interactions; parents/sources in
rows, children:targets in columns.
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Although the objects data*.ras, and demo*.ras are specific to each dataset, the objects
data*.ras and data*.ras are common in the two datasets under study because the same
microarray technology has been used to generate them and we extracted the same genes, and
subsequently the same known gene interactions (priors). In this tutorial, we will not used the
object priors.ras but we will use pn.priors.counts instead.

3 Network inference from priors and gene expression data

Many methods have been developed for network inference: Bayesian networks, nested q-
partial graphs, information-theoretic networks, regression-based networks,. . . These methods
differ greatly in their way of dealing with the potentially high dimensionality of the problem,
handling missing values, learning from observations and/or interventions, combining genomic
data and prior knowledge, assessing the quality of fitted networks, and their ability to make
predictions.

In this course, I present a regression-based network inference approach we specifically
developed

• to deal efficiently with large number of genes (potentially ≥ 100),

• to avoid discretization of the input values,

• to combine prior knowledge and gene expression data,

• to infer stable gene interaction networks,

• to make predictions about the expression of genes of interest in independent data.

3.1 Methodology

The design of our regression-based approach for network inference is illustrated in Figure 2.
The extraction of prior knowledge about gene interactions has been explained in Section 2.3.
In order to infer a directed graph from gene expression data we first build an undirected graph
using the maximum relevance minimum redundancy (MRMR) feature selection technique
[Ding and Peng, 2005, Meyer et al., 2007] and we then infer causality [Cheng et al., 2002, Olsen
et al., 2009]. The network topology is determined by combining the directed graphs inferred
from priors and gene expression data. Using the resulting topology, we can fit regression
models in order to assess the predictive ability of the network model.

MRMR

To infer an undirected graph from gene expression data, we use the maximum relevance
minimum redundancy (MRMR) feature selection technique [Ding and Peng, 2005, Meyer
et al., 2007]. For this iterative forward selection technique, at each step a different gene is
used as the target gene XT . The algorithm then selects the genes that exhibit the highest
difference between mutual information with the target gene XT and redundancy with the
previously selected genes (referred to as XS). This difference acts as a score for the possible
interactions.

In the first step of the feature selection procedure, the gene Xj which has the highest
mutual information with the target gene XT is selected, so at this stage XS = {Xj}. In the
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Figure 2: Design of the regression-based network inference approach.

next steps, given a set XS of selected variables, the criterion updates XS by adding the gene
Xk that maximizes the score

sk = I(Xk, XT )− 1

|XS |
∑

Xi∈XS

I(Xk, Xi)

where |XS | is the number of variables previously selected in set XS . The feature selection
procedure stops when the size of XS , the number of genes connected to the target XT , is
equal to the maximum number of parents allowed by the user.

Note that the resulting undirected graph is locally acyclic since the target gene cannot be
selected.

Causality inference

Once the undirected graph is built with the genes included in XS , we have to perform the
arc orientation. Based on previous works on causality (see [neo, 2003] for a review), we can
actually infer causality by using the ”explaining away effect” which states that a common
effect creates a dependency between two variables (this can be graphically represented by the
v-structure, where the value of the collider is conditioned upon). In [Ding and Peng, 2005,
Meyer, 2008] this effect has been related to the property

I(Xi, Xk|Xj) > I(Xi, Xk)⇔ C(Xi, Xj , Xk) < 0 (1)
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where Xi and Xk are potential causes of Xj , I(Xi, Xk) is the mutual information of Xi and
Xk, I(Xi, Xk|Xj) is the mutual information of Xi and Xk given Xj , and C(Xi, Xj , Xk) is the
interaction information of Xi, Xj and Xk such that

C(Xi, Xj , Xk) = I(Xi, Xk)− I(Xi, Xk|Xj)

The interaction information has been introduced in [McGill, 1954] as an extension of mutual
information taking into account sets of variables instead of only pairwise relations.

If the undirected (acyclic) graph is given, then for every triple of variables Xi − Xj − Xk

the property (1) corresponds to a v-structure Xi → Xj ← Xk. On the contrary, knowing only
that the interaction information is less than zero does not help when inferring the network
because the three possible colliders exhibit all the same interaction information, that is the
difference between mutual information and conditional mutual information. Thus, it is not
evident which variable should be the collider.

In this work we use property (1) to rank the genes selected in XS based on their degree
of causality for the target gene XT . More specifically the genes selected in XS are ranked by
a causality score

qk = max
Xi∈XS

{−C(Xi, XT , Xk)},

where for each gene Xk, the score qk is determined by the maximal negative interaction
information between the target gene XT , Xk and any other variable Xi ∈ XS forming a
possible v-structure Xi → XT ← Xk. The causality score qk for Xk ∈ XS lays in {−1, 1}.

For each target gene XT , the selected genes Xk ∈ XS are ranked by their causality score
qk while the genes which are not selected, Xj /∈ XS , are assigned the minimum causality
score of −1. The matrix Qm×m is then populated such that Qij is the causality score of the
interaction between genes Xi → Xj . Depending on the data, we can now identify some of the
genes as parents.

Combination with priors

To infer the final network topology, we combine for each interaction between gene Xi and gene
Xj , the score based on priors (Pij) and MRMR+causality inference (Qij). We let users control
the weight put on the priors, which represents their confidence on their prior knowledge (either
gathered with the PN web application or another source), using the following combination
schema

gij = wPij + (1− w)Qij (2)

where gij is the combined topological score for the interaction Xi → Xj and w ∈ [0, 1]. To
ensure sparsity of the inferred network only the n interactions with the largest gij > 0 are
considered in the network topology. In this case n is less or equal to the maximum number
of parents allowed by the user. The choice of 0 as cutoff for the interaction score enables to
focus on the genes for which causality is supported by the data and/or the priors.

Note that our schema for combining scores computed from priors and genomic data (Equa-
tion (2)) allows users to easily infer networks using prior knowledge only (w = 1) or using
genomic data only (w = 0), or a combination of priors and genomic data.
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4 Predictive ability of the network model

In the last step of our network inference approach we use the network topology to build a
predictive model. Such a predictive network model should be able to make one- and multi-step
predictions. One-step prediction refers (i) to prediction the expression of a gene of interest
from the expression of its parents only or (ii) to prediction of the effect of a gene perturbation
on its direct children. Multi-step prediction refers to prediction of the state of some missing
genes in the network or the direct and indirect effect of a perturbation.

With the inferred topology and genomic data in hands we can use different methods to
make our network model predictive. If the data can be discretized in a biological meaningful
way, we can compute conditional probability tables for all genes and use then to make one-
step prediction, and subsequently compute the marginal probabilities to make multi-step
predictions. If the data are continuous, we can fit local (linear) regression models for all
genes, using parent genes as predictors, and then use these models to make one- and multi-
step predictions.

In this work we fitted traditional linear regression model for each gene (target gene XT )
in the network by using only the parent genes (XP) as predictors

XT = β0 +
∑

Xi∈XP

βiXi (3)

where β are the coefficients estimated via the ordinary least squares method.

This novel approach is implemented in the predictionet package and is also integrated in
the Predictive Networks web application (see ”Analysis” panel). Even if the package is not
yet available from Bioconductor5, a public Git repository is accessible from https://github.

com/bhaibeka/predictionet; any non-violent and constructive feedback is welcome. ,

4.1 Network inference with predictionet

Let’s infer our first network and go through the main options of the package. The main
function of the predictionet package is netinf with the following key parameters: .

data Matrix of continuous or categorical values with observations in rows and features in
columns.

categories If this parameter missing, data should be already discretized; otherwise either
a single integer or a vector of integers specifying the number of categories used to
discretize each variable (data are then discretized using equal-frequency bins) or a list
of cutoffs to use to discretize each of the variables in data matrix. If method=’bayesnet’
and categories is missing, data should contain categorical values and the number of
categories will determine from the data.

perturbations Matrix of {0, 1} specifying whether a gene has been perturbed (e.g., knock-
down, over-expression) in some experiments. Dimensions should be the same than data.

priors Matrix of prior information available for gene-gene interaction (parents in rows, chil-
dren in columns). Values may be probabilities or any other weights (citations count for

5http://www.bioconductor.org
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instance). if priors counts are used the parameter priors.count should be TRUE so
the priors are scaled accordingly.

predn Indices or names of variables to fit during network inference. If missing, all the
variables will be used for network inference. Note that for bayesian network inference
(method=’bayesnet’) this parameter is ignored and a network will be generated using
all the variables.

priors.count TRUE if priors specified by the user are number of citations (count) for each
interaction, FALSE if probabilities or any other weight in [0,1] are reported instead.

priors.weight Real value in [0,1] specifying the weight to put on the priors (0=only the
data are used, 1=only the priors are used to infer the topology of the network).

maxparents Maximum number of parents allowed for each gene.

subset Vector of indices to select only subset of the observations.

method ’bayesnet’ for Bayesian network inference with the catnet package (not imple-
mented yet), ’regrnet’ for regression-based network inference.

causal TRUE if the causality should be inferred from the data, FALSE otherwise

seed Set the seed to make the network inference deterministic.

You can easily access this description by consulting the help page of the netinf

> help(netinf)

The netinf function returns a list containing the names of the method used for network
inference, the network topology and a list of local regression models.
You can infer a gene interaction network using the expO dataset data.ras, by equally bal-
ancing the importance of priors and data in the network inference process (priors.weight
= 0.5).

To reduce the computational time, we will focus on the top 15 genes which are the most
differentially expressed between RAS mutated and wild type cell lines:

> ## number of genes to select for the analysis

> genen <- 30

> ## select only the top genes

> goi <- dimnames(annot.ras)[[1]][order(abs(log2(annot.ras[ ,"fold.change"])), decreasing=TRUE)[1:genen]]

Now run the network inference on the reduced expO.colon.ras dataset:

> mynet <- netinf(data=data.ras[ ,goi], priors=pn.priors.counts[goi,goi], priors.count=TRUE, priors.weight=0.5, maxparents=4, method="regrnet", seed=54321)

Now let’s display the topology of the network we just inferred (see Figure 3) using the plot

function of the network package.
Unfortunately, such kind of plots are not interactive and we cannot change the position of
the genes as we would like. There exist other packages to display networks in R, some of
them are interactive: igraph, Graphviz ,. . . To enable interactive manipulation of the network
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> ## network topology

> mytopoglobal <- mynet$topology

> library(network)

> xnet <- network(x=mytopoglobal, matrix.type="adjacency", directed=TRUE, loops=FALSE, vertex.attrnames=dimnames(mytopoglobal)[[1]])

> mynetlayout <- plot.network(x=xnet, displayisolates=TRUE, displaylabels=TRUE, boxed.labels=FALSE, label.pos=0, arrowhead.cex=1.5, vertex.cex=2, vertex.col="royalblue", jitter=FALSE, pad=0.6)
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Figure 3: Directed graph representing the topology of the network inferred from priors and
gene expression data.

topology we choose another approach that is to export the network object in .gml file which
could be imported in external software such as Cytoscape6 [Smoot et al., 2011]. We will see
later how to use the function netinf2gml from the predictionet package to export a .gml file
and import it to Cytoscape (see Section 4.4).

A quick look at the topology in Figure 3 allows us to identify IL13RA2 as a highly connected
gene. By searching for these two genes in GeneSigDB7, a manually curated database of
published gene signatures developed by Dr Aedin Culhane, we can see that IL13RA2, in
addition to be included in the RAS signature published in [Bild et al., 2006], is also part

6http://www.cytoscape.org/
7http://compbio.dfci.harvard.edu/genesigdb/
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of other signatures published in colon, leukemia, ovarian and stomach cancers. Receptors
for interleukin-13 (IL-13R) are over-expressed on several types of solid cancers; it is not
only associated with colon cancer, but also with many other cancers including colon cancer
[Niranjan et al., 2008].

We could also highlight the interactions that were already known (blue), the new in-
teractions supported by the gene expression (green) and the interactions both known and
supported by the data (red), see Figure 4.

> ## preparing colors

> mycols <- c("blue", "green", "red")

> names(mycols) <- c("prior", "data", "both")

> myedgecols <- matrix("white", nrow=nrow(mytopoglobal), ncol=ncol(mytopoglobal), dimnames=dimnames(mytopoglobal))

> ## prior only

> myedgecols[mytopoglobal == 0 & pn.priors.counts[goi,goi] >= 1] <- mycols["prior"]

> ## data only

> myedgecols[mytopoglobal == 1 & pn.priors.counts[goi,goi] < 1] <- mycols["data"]

> ## both in priors and data

> myedgecols[mytopoglobal == 1 & pn.priors.counts[goi,goi] >= 1] <- mycols["both"]

In Figure 4 we can see that all the interactions included in the priors have been also supported
by the data (red) and have been inferred in the final network; only the self loops (blue), which
are not allowed by our regression-based network inference method, have been discarded. Many
new interactions (green) have been inferred from the gene expression data.

Although of interest, the topology does not tell us much about the quality of the network
inference. Therefore we implemented two statistics to help us focus on the gene interactions
that are well supported by the data:

• edge-specific stability,

• gene-specific prediction score.

The idea is to use a cross-validation procedure8 to infer multiple networks from different
training datasets to assess both the stability of the inference and its predictive ability. The
function netinf.cv, although computationally intensive, is doing all the work for us. The vast
majority of the parameters are the same than for the netinf function, with some additions
such as nfold that is the number of folds for the cross-validation procedure.

> myres.cv <- netinf.cv(data=data.ras[ ,goi], categories=3, priors=pn.priors.counts[goi,goi], maxparents=4, priors.weight=0.5, method="regrnet", nfold=10, seed=54321)

The object myres.cv contains a lot of information related to the network inference process:

> print(str(myres.cv, 1))

List of 8

$ method : chr "regrnet"

$ topology : num [1:30, 1:30] 0 0 0 0 1 0 0 0 0 0 ...

..- attr(*, "dimnames")=List of 2

8http://en.wikipedia.org/wiki/Cross-validation_(statistics)
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> mytopoglobal2 <- (myedgecols != "white") + 0

> ## network topology

> xnet2 <- network(x=mytopoglobal2, matrix.type="adjacency", directed=TRUE, loops=TRUE, vertex.attrnames=dimnames(mytopoglobal2)[[1]])

> plot.network(x=xnet2, displayisolates=TRUE, displaylabels=TRUE, boxed.labels=FALSE, label.pos=0, arrowhead.cex=1.5, vertex.cex=2, vertex.col="royalblue", jitter=FALSE, pad=0.5, edge.col=myedgecols, coord=mynetlayout)
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Figure 4: Network topology where the edges are colored according to their source of evidence:
blue for edges supported by the priors only, green for edges supported by the data only, and
red for edges supported by both the priors and the data.

$ topology.cv :List of 10

$ prediction.score.cv:List of 3

$ edge.stability : num [1:30, 1:30] 0 0 0 0 1 0 0 0 0 0 ...

..- attr(*, "dimnames")=List of 2

$ edge.stability.cv : num [1:30, 1:30] 0 0 0 0 1 0 0.2 0 0 0 ...

..- attr(*, "dimnames")=List of 2

$ edge.relevance : num [1:30, 1:30] 0 0 0 0 0.542 ...

..- attr(*, "dimnames")=List of 2

$ edge.relevance.cv :List of 10

NULL
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where

net Model object of the network inferred using the entire dataset.

net.cv List of models network models fitted at each fold of the cross-validation.

topology Topology of the model inferred using the entire dataset.

topology.coeff coefficients of each local linear regression model fitted using the entire
dataset.

topology.cv Topology of the networks inferred at each fold of the cross-validation.

topology.coeff coefficients of each local linear regression model fitted at each fold of the
cross-validation.

prediction.score.cv List of prediction scores (R2, NRMSE, MCC) computed at each fold
of the cross-validation.

edge.stability Stability of the edges inferred during cross-validation; only the stability of
the edges present in the network inferred using the entire dataset is reported.

edge.stability.cv Stability of the edges inferred during cross-validation.

We can now extract these statistics to better quantify the robustness of the network inference.

4.2 Edge-specific stability

At each fold of the cross-validation, a network is inferred using a slightly different dataset.
This variation in the set of observations used to fit the network model induces some variation
at the level of the inference. Some edges may be poorly supported by the data and therefore
their inference strongly depends on the training dataset and is not generalizable. Since we
performed a 10-fold cross-validation, we can calculate for each edge the frequency of its
presence in the inferred networks, the most robust edge being inferred 10 times, the less
robust ones only once or twice.

Let’s display the topology of the network inferred from the entire dataset where the edges are
colored according to their stability (Figure 5).

> ## preparing colors

> ii <- 0:10

> mycols <- c("#BEBEBE", rev(rainbow(10, v=0.8, alpha=0.5)))

> names(mycols) <- as.character(ii/10)

> myedgecols <- matrix("#00000000", nrow=nrow(mytopoglobal), ncol=ncol(mytopoglobal), dimnames=dimnames(mytopoglobal))

> for(k in 1:length(mycols)) { myedgecols[myres.cv$edge.stability == names(mycols)[k]] <- mycols[k] }

> myedgecols[!mytopoglobal] <- "#00000000"

> def.par <- par(no.readonly=TRUE)

> layout(rbind(1,2), heights=rbind(8,1))

> par(mar=c(1,1,1,1))

> ## network topology

> xnet3 <- network(x=mytopoglobal, matrix.type="adjacency", directed=TRUE, loops=FALSE, vertex.attrnames=dimnames(mytopoglobal)[[1]])
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> plot.network(x=xnet3, displayisolates=TRUE, displaylabels=TRUE, boxed.labels=FALSE, label.pos=0, arrowhead.cex=1.5, vertex.cex=2, vertex.col="royalblue", jitter=FALSE, pad=0.5, edge.col=myedgecols, coord=mynetlayout)

> par(mar=c(0,3,1,3))

> plot(ii+1, ii+10/6+1, bty="n", type="n", yaxt="n", xaxt="n", ylab="", xlab ="", main="Stability scale", cex.main=1)

> rect(xleft=ii+0.5, ybottom=3, xright=ii+1.4, ytop=10+3, col=mycols, border="grey")

> text(ii+1, y=2.4, labels=names(mycols), pos=3, cex=1)

> par(def.par)
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Figure 5: Network topology where the edges are colored according to their stability.

As can be seen, the inference of more than half of the edges is very stable, especially around
the highly connected genes, that are IL13RA2, PLAUR, PTGS2, FOS. However the inference
of the interactions with PPBP is unstable.

4.3 Gene-specific prediction score

Since our regression-based network inference approach actually fits local regression models to
assess the dependence between the parent genes and the target/child gene, we can actually
quantify the strength of this dependence by assessing the predictive ability of the network
model for each individual gene. Several performance criteria have been implemented so far:
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• R2: proportion of variance of the target/child gene explained by the regression model.
The value lies in {0, 1}, the larger, the better.

• NRMSE: normalized root mean squared error of the regression model. The values are
> 0, the lower, the better.

• MCC: Matthews correlation coefficient (also called multi-class correlation). This is
a performance criterion widely used in the classification framework so it requires first
a discretization of the gene expression data in classes (this is done implicitly by the
functions netinf.cv and pred.score). The value lies in {0, 1}, the larger, the better.

Let’s focus on R2 and MCC. We can easily display the topology by coloring nodes according
to the predictive ability of the network estimated by R2 (Figure 6) and MCC (Figure 7).
Here is the code for generating the plot reporting the R2 estimations:

> myr2 <- apply(myres.cv$prediction.score.cv$r2, 2, mean, na.rm=TRUE)

> myr2 <- round(myr2*10)/10

> ## preparing colors

> ii <- 0:10

> mycols <- c("#BEBEBE", rev(rainbow(10, v=0.8, alpha=0.5)))

> names(mycols) <- as.character(ii/10)

> myvertexcols <- mycols[match(myr2, names(mycols))]

> names(myvertexcols) <- names(myr2)

> def.par <- par(no.readonly=TRUE)

> layout(rbind(1,2), heights=rbind(8,1))

> par(mar=c(1,1,1,1))

> ## network topology

> xnet3 <- network(x=mytopoglobal, matrix.type="adjacency", directed=TRUE, loops=FALSE, vertex.attrnames=dimnames(mytopoglobal)[[1]])

> plot.network(x=xnet3, displayisolates=TRUE, displaylabels=TRUE, boxed.labels=FALSE, label.pos=0, arrowhead.cex=1.5, vertex.cex=2, vertex.col=myvertexcols, jitter=FALSE, pad=0.5, edge.col="black", coord=mynetlayout)

> par(mar=c(0,3,1,3))

> plot(ii+1, ii+10/6+1, bty="n", type="n", yaxt="n", xaxt="n", ylab="", xlab ="", main="$R^2$", cex.main=1)

> rect(xleft=ii+0.5, ybottom=3, xright=ii+1.4, ytop=10+3, col=mycols, border="grey")

> text(ii+1, y=2.4, labels=names(mycols), pos=3, cex=1)

> par(def.par)

A similar piece of code could be used to generate the plot reporting the MCC estimations.

> def.par <- par(no.readonly=TRUE)

> layout(rbind(1,2), heights=rbind(8,1))

> par(mar=c(1,1,1,1))

> ## network topology

> xnet3 <- network(x=mytopoglobal, matrix.type="adjacency", directed=TRUE, loops=FALSE, vertex.attrnames=dimnames(mytopoglobal)[[1]])

> plot.network(x=xnet3, displayisolates=TRUE, displaylabels=TRUE, boxed.labels=FALSE, label.pos=0, arrowhead.cex=1.5, vertex.cex=2, vertex.col=myvertexcols, jitter=FALSE, pad=0.5, edge.col="black", coord=mynetlayout)

> par(mar=c(0,3,1,3))

> plot(ii+1, ii+10/6+1, bty="n", type="n", yaxt="n", xaxt="n", ylab="", xlab ="", main="$MCC$", cex.main=1)

> rect(xleft=ii+0.5, ybottom=3, xright=ii+1.4, ytop=10+3, col=mycols, border="grey")

> text(ii+1, y=2.4, labels=names(mycols), pos=3, cex=1)

> par(def.par)
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Figure 6: Network topology where the genes are colored according to the predictive perfor-
mance of the network measure by R2 in cross-validation.

As can be seen in Figures 6 and 7, the local predictive ability we get with the inferred network
is quite low. This may be due to the small number of genes we consider in the RAS pathway
what provide us with little information about causality of many genes (a majority of them
are unconnected or have no parents). If we look at the genes with the best prediction we
can see that the assessment of the network predictive ability is concordant with its stability
analysis: the genes around PLAUR

”
IL13RA and PTGS2 are quite well predicted while the

genes connected with unstable edges are poorly predicted.

Validation Even though we used a proper cross-validation procedure to get an unbiased
estimate of the predictive ability of the model, it is of interest to validate our network model
in a fully independent dataset. The task is challenging because of the various biases that are
inevitably present in a dataset generated from a different population of colon cancer patients
and in a different lab. Although the resulting hidden batch effects might dramatically drive
down the performance of a model, this additional validation step is necessary to assess the
quality of the model in a real word situation where we cannot control for all the batch effects.

In this course, we use our second dataset of colon cancer patients to validate the perfor-
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Figure 7: Network topology where the genes are colored according to the predictive perfor-
mance of the network measured by MCC in cross-validation.

mance of the network model inferred from the first dataset. we can actually compute the
predictions and the corresponding R2 and MCC estimates using the following piece of code
and then display the network using the same code than before (see Figures 8 and 9 for the
R2 and MCC respectively).

> ## make the network model predictive

> mynet <- net2pred(net=mynet, data=data.ras[ ,goi], method="linear")

> ## compute predictions

> mynet.test.pred <- netinf.predict(net=mynet, data=data2.ras[ ,goi])

> ## performance estimation: R2

> mynet.test.r2 <- pred.score(data=data2.ras[ ,goi], pred=mynet.test.pred, method="r2")

> ## performance estimation: MCC

> mynet.test.mcc <- pred.score(data=data2.ras[ ,goi], categories=3, pred=mynet.test.pred, method="mcc")

> def.par <- par(no.readonly=TRUE)

> layout(rbind(1,2), heights=rbind(8,1))

> par(mar=c(1,1,1,1))
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> ## network topology

> xnet3 <- network(x=mytopoglobal, matrix.type="adjacency", directed=TRUE, loops=FALSE, vertex.attrnames=dimnames(mytopoglobal)[[1]])

> plot.network(x=xnet3, displayisolates=TRUE, displaylabels=TRUE, boxed.labels=FALSE, label.pos=0, arrowhead.cex=1.5, vertex.cex=2, vertex.col=myvertexcols, jitter=FALSE, pad=0.5, edge.col="black", coord=mynetlayout)

> par(mar=c(0,3,1,3))

> plot(ii+1, ii+10/6+1, bty="n", type="n", yaxt="n", xaxt="n", ylab="", xlab ="", main="$R^2$", cex.main=1)

> rect(xleft=ii+0.5, ybottom=3, xright=ii+1.4, ytop=10+3, col=mycols, border="grey")

> text(ii+1, y=2.4, labels=names(mycols), pos=3, cex=1)

> par(def.par)
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Figure 8: Network topology where the genes are colored according to the predictive perfor-
mance of the network measured by R2 in a fully independent dataset.

> def.par <- par(no.readonly=TRUE)

> layout(rbind(1,2), heights=rbind(8,1))

> par(mar=c(1,1,1,1))

> ## network topology

> xnet3 <- network(x=mytopoglobal, matrix.type="adjacency", directed=TRUE, loops=FALSE, vertex.attrnames=dimnames(mytopoglobal)[[1]])

> plot.network(x=xnet3, displayisolates=TRUE, displaylabels=TRUE, boxed.labels=FALSE, label.pos=0, arrowhead.cex=1.5, vertex.cex=2, vertex.col=myvertexcols, jitter=FALSE, pad=0.5, edge.col="black", coord=mynetlayout)

> par(mar=c(0,3,1,3))
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> plot(ii+1, ii+10/6+1, bty="n", type="n", yaxt="n", xaxt="n", ylab="", xlab ="", main="$MCC$", cex.main=1)

> rect(xleft=ii+0.5, ybottom=3, xright=ii+1.4, ytop=10+3, col=mycols, border="grey")

> text(ii+1, y=2.4, labels=names(mycols), pos=3, cex=1)

> par(def.par)

FOS

CCL20

PPBP

HRAS

DUSP1

GAS1

CXCL3

IL13RA2

PTGS2

TFPI2

BMP2

NAV3

HBEGF

HIST1H1E

ARHGAP27

TGFA

EREG

IER3

ODC1

IL23A

PLAUR

FERMT1

LAMA3

SERPINB2

TMTC3

ANGPTL4

MEG3

HPSE

SLC25A37

FOSL1

$MCC$

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure 9: Network topology where the genes are colored according to the predictive perfor-
mance of the network measured by MCC in a fully independent dataset.

As expected, the performance of our model slightly decreased but the vast majority of our
observations remain true.

4.4 Predictionet and Cytoscape

When large network are inferred (> 50 variables), any plot will be extremely busy and com-
plicated to interpret, This is the reason why the function netinf2gml has been implemented
in the predictionet package in order to allow to export any networks inferred from the netinf

or netinf.cv functions in a file that is readable in many third-party software. Let’s export
a gml file containing all the information about the network model we just inferred from the
netinf.cv function.
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> netinf2gml(object=myres.cv, file="regrnet_expO_cv")

A GML file called regrnet_expO_cv.gml and a Vizmap Property file egrnet_expO_cv.props
are then created in the working directory, You can import the GML into Cytoscape and load
the corresponding Vizmap property file. You can move vertices, filter them based on predic-
tion scores, color the edges based on stability, and so on.

Figure 10: Screenshot of a network inferred by predictionet and imported into Cytoscape with
the Vizmap Property file predictionet vizmap2. Size of each vertex (gene) is proportional to
their prediction score; color of the edges report the edge-specific stability where gray→ green
→ orange → red colors represent edges with low to high stability.

5 Comparison of network inference with respect to the priors

Based on our approach to quantify the stability and predictive ability of a gene interaction
network, we are now able to statistically compare the performance of two or more networks.
This network model selection could help us optimize a parameter such as the weight of the
priors during the network inference (priors.weight) or identify the best method of network
inference (Bayesian vs regression-based network inference for instance).

Let’s infer and compare the prediction scores (estimated in cross-validation) of five networks
with priors.weight = 0, 0.25, 0.5, 0.75 and 1.
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> ## priors.weight 0

> myres.cv.pw0 <- netinf.cv(data=data.ras[ ,goi], categories=3, priors=pn.priors.counts[goi,goi], maxparents=4, priors.weight=0, method="regrnet", nfold=10, seed=54321)

> ## priors.weight 0.25

> myres.cv.pw025 <- netinf.cv(data=data.ras[ ,goi], categories=3, priors=pn.priors.counts[goi,goi], maxparents=4, priors.weight=0.25, method="regrnet", nfold=10, seed=54321)

> ## priors.weight 0.5

> myres.cv.pw050 <- myres.cv

> ## priors.weight 0.75

> myres.cv.pw075 <- netinf.cv(data=data.ras[ ,goi], categories=3, priors=pn.priors.counts[goi,goi], maxparents=4, priors.weight=0.75, method="regrnet", nfold=10, seed=54321)

> ## priors.weight 0

> myres.cv.pw1 <- netinf.cv(data=data.ras[ ,goi], categories=3, priors=pn.priors.counts[goi,goi], maxparents=4, priors.weight=1, method="regrnet", nfold=10, seed=54321)

Now let’s display the topology of the networks we just inferred by varying the weight we put
on the priors (see Figure 11).

> def.par <- par(no.readonly=TRUE)

> layout(mat=matrix(1:4, nrow=2, ncol=2, byrow=TRUE))

> ## priors.weight 0

> mytopot <- myres.cv.pw0$topology

> xnett <- network(x=mytopot, matrix.type="adjacency", directed=TRUE, loops=FALSE, vertex.attrnames=dimnames(mytopot)[[1]])

> plot.network(x=xnett, displayisolates=TRUE, displaylabels=FALSE, boxed.labels=FALSE, label.pos=0, arrowhead.cex=1.5, vertex.cex=2, vertex.col="royalblue", jitter=FALSE, pad=0.5, edge.col="black", coord=mynetlayout, main="Priors weight = 0 (data only)")

> ## priors.weight 0.25

> mytopot <- myres.cv.pw025$topology

> xnett <- network(x=mytopot, matrix.type="adjacency", directed=TRUE, loops=FALSE, vertex.attrnames=dimnames(mytopot)[[1]])

> plot.network(x=xnett, displayisolates=TRUE, displaylabels=FALSE, boxed.labels=FALSE, label.pos=0, arrowhead.cex=1.5, vertex.cex=2, vertex.col="royalblue", jitter=FALSE, pad=0.5, edge.col="black", coord=mynetlayout, main="Priors weight = 0.25")

> ## priors.weight 0.75

> mytopot <- myres.cv.pw075$topology

> xnett <- network(x=mytopot, matrix.type="adjacency", directed=TRUE, loops=FALSE, vertex.attrnames=dimnames(mytopot)[[1]])

> plot.network(x=xnett, displayisolates=TRUE, displaylabels=FALSE, boxed.labels=FALSE, label.pos=0, arrowhead.cex=1.5, vertex.cex=2, vertex.col="royalblue", jitter=FALSE, pad=0.5, edge.col="black", coord=mynetlayout, main="Priors weight = 0.75")

> ## priors.weight 1

> mytopot <- myres.cv.pw1$topology

> xnett <- network(x=mytopot, matrix.type="adjacency", directed=TRUE, loops=FALSE, vertex.attrnames=dimnames(mytopot)[[1]])

> plot.network(x=xnett, displayisolates=TRUE, displaylabels=FALSE, boxed.labels=FALSE, label.pos=0, arrowhead.cex=1.5, vertex.cex=2, vertex.col="royalblue", jitter=FALSE, pad=0.5, edge.col="black", coord=mynetlayout, main="Priors weight = 1 (priors only)")

> par(def.par)

As can be seen in Figure 11, the networks generated from data only (priors.weight = 0)
and from priors only (priors.weight = 1) are very sparse, and the combination of priors
and data enables the identification of more gene interactions. But a denser topology does not
imply that all the inferred interactions are well supported by the data. In order to select the
best network(s) we can statistically compare their stability and predictive ability.

5.1 Comparison of edge-specific prediction scores

In order to compare the stability of the network inference, we can draw a boxplot representing
the edge-specific stability of the network inference with respect to the weight put on the
priors (Figure 12). As expected, the network inferred from priors only is perfectly stable (the
inference does not depend on the data anymore) but what is interesting is the gain in stability
when the priors are used as compared to networks inferred from data alone.
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Figure 11: Directed graph representing the topology of the networks inferred from priors and
gene expression data with varying prior weight.

5.2 Comparison of gene-specific prediction score

In terms of predictive ability, the boxplot representing the gene-specific R2 scores computed
in cross-validation, for network models with different prior weights (Figure 13), suggests that
a combination of both data and priors yield better predictive ability.
A rigorous statistical comparison does not allow us to claim that a network model inferred
from data+priors yields always significantly better predictive ability than networks inferred
from data or priors only. The Friedman test tells us that at least one of the network models
yielded significantly different predictive ability; the pairwise Wilcoxon Rank Sum tests suggest
that the model using the priors only (priors.weight = 1) is significantly less predictive than
all the other network models; however the model inferred from data only does not yield
statistically different predictive ability (although the p-value is close to significance)9.

> ## Friedman test to test whether at least one of the networks gives statstically different predictive ability

> print(friedman.test(y=myr2.cv.pw))

9An analysis involving more genes and better priors could show that network inferred from a combination
of priors and data always lead to significantly more predictive models.
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> gg <- c("0", "0.25", "0.50", "0.75", "1")

> mystab.cv.pw <- list(myres.cv.pw0$edge.stability[myres.cv.pw0$topology == 1], myres.cv.pw025$edge.stability[myres.cv.pw025$topology == 1], myres.cv.pw050$edge.stability[myres.cv.pw050$topology == 1], myres.cv.pw075$edge.stability[myres.cv.pw075$topology == 1], myres.cv.pw1$edge.stability[myres.cv.pw1$topology == 1])

> names(mystab.cv.pw) <- gg

> boxplot(mystab.cv.pw, xlab="priors.weight", ylim=c(0, 1), ylab="Edge stability", border="grey", col="lightgrey", outline=FALSE)

> points(x=jitter(x=rep(1:length(mystab.cv.pw), times=sapply(mystab.cv.pw, length)), amount=0.15), y=unlist(mystab.cv.pw), cex=0.55, pch=16, col="royalblue")
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Figure 12: Boxplot of the edge-specific stability computed in cross-validation, for network
models with different prior weight.

Friedman rank sum test

data: myr2.cv.pw

Friedman chi-squared = 90.7246, df = 4, p-value < 2.2e-16

> ## Pairwise Wilcoxon Rank Sum tests

> print(pairwise.wilcox.test(x=as.vector(myr2.cv.pw), g=gg, paired=TRUE, exact=FALSE, alternative="two.sided", p.adjust.method="holm"))

Pairwise comparisons using Wilcoxon signed rank test

data: as.vector(myr2.cv.pw) and gg
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> gg <- c("0", "0.25", "0.50", "0.75", "1")

> myr2.cv.pw <- cbind(apply(myres.cv.pw0$prediction.score.cv$r2, 2, mean, na.rm=TRUE), apply(myres.cv.pw025$prediction.score.cv$r2, 2, mean, na.rm=TRUE), apply(myres.cv.pw050$prediction.score.cv$r2, 2, mean, na.rm=TRUE), apply(myres.cv.pw075$prediction.score.cv$r2, 2, mean, na.rm=TRUE), apply(myres.cv.pw1$prediction.score.cv$r2, 2, mean, na.rm=TRUE))

> colnames(myr2.cv.pw) <- gg

> gg <- factor(rep(gg, each=genen), levels=gg)

> boxplot(myr2.cv.pw, xlab="priors.weight", ylim=c(0, 1), ylab="$R^2$", border="grey", col="lightgrey", outline=FALSE)

> points(x=jitter(x=rep(1:ncol(myr2.cv.pw), times=nrow(myr2.cv.pw)), amount=0.15), y=as.vector(t(myr2.cv.pw)), cex=0.55, pch=16, col="royalblue")
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Figure 13: Boxplot of the gene-specific R2 scores computed in cross-validation, for network
models with different prior weight.

0 0.25 0.50 0.75

0.25 1.00000 - - -

0.50 1.00000 1.00000 - -

0.75 1.00000 1.00000 1.00000 -

1 0.00022 8.8e-05 8.8e-05 8.8e-05

P value adjustment method: holm

Similar conclusions can be drawn by computing the MCC.
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6 Comparison of network inference with respect to the train-
ing data

To identify the parts of the networks where interactions are well supported by the data we
estimated in cross-validation edge-specific stabilities and gene-specific prediction scores of a
given network model. Ultimately these statistics should help us identify the parts of the
network that are generalizable, whose inference does not strongly depend on the dataset used
as training set.

Inference of generalizable network models is a challenging task because of the various
biases that are inevitably present in datasets generated from different populations of cancer
patients and in different labs. Therefore the resulting hidden batch effects might dramatically
affect the inference of a network model.

Let’s use expO.colon.ras dataset as training set to infer our network model (use data only
for inference, priors.weight=0). Now we will use our second dataset, jorissen.colon.ras,
to infer another network model (use data only for inference, priors.weight=0) and compare
them to test whether the network inference strongly depend on the training set or not.

First infer a network from expO.colon.ras and jerissen.colon.ras datasets separately.

> ## expO

> myres21.cv <- netinf.cv(data=data.ras[ ,goi], categories=3, priors=priors2.ras[goi,goi], maxparents=4, priors.weight=0, method="regrnet", nfold=10, seed=54321)

> ## jorissen

> myres22.cv <- netinf.cv(data=data2.ras[ ,goi], categories=3, priors=priors2.ras[goi,goi], maxparents=4, priors.weight=0, method="regrnet", nfold=10, seed=54321)

Let’s display the topologies of the networks inferred from these two datasets. As can be
seen in Figure 14, approximately half of the interactions are inferred in both datasets.

We could now ask the question whether the interactions inferred from both datasets are
also the ones with high stability and/or involve genes with high prediction scores. We first
compared the stability of interactions which are inferred only in one dataset and those which
are inferred in both datasets (Figure 15). As can be seen, the interactions common to both
datasets tend to have a higher stability.

> def.par <- par(no.readonly=TRUE)

> layout(mat=matrix(1:2, nrow=1, ncol=2, byrow=TRUE))

> ## expO

> stab2 <- list("specific"=myres21.cv$edge.stability[(topo1 == 1 & topo2 == 0)], "common"=myres21.cv$edge.stability[topo1 == 1 & topo2 == 1])

> wt <- wilcox.test(x=stab2$specific, y=stab2$common)

> boxplot(stab2, ylab="Stability", ylim=c(0, 1), xlab="", border="grey", col="lightgrey", outline=FALSE, sub=sprintf("Wilcoxon test p-value = %.1E", wt$p.value), main="Dataset: expO.colon.ras")

> points(x=jitter(x=rep(1:length(stab2), times=sapply(stab2, length)), amount=0.15), y=unlist(stab2), cex=0.55, pch=16, col="royalblue")

> ## jorissen

> stab2 <- list("specific"=myres22.cv$edge.stability[(topo1 == 0 & topo2 == 1)], "common"=myres22.cv$edge.stability[topo1 == 1 & topo2 == 1])

> wt <- wilcox.test(x=stab2$specific, y=stab2$common)

> boxplot(stab2, ylab="Stability", ylim=c(0, 1), xlab="", border="grey", col="lightgrey", outline=FALSE, sub=sprintf("Wilcoxon test p-value = %.1E", wt$p.value), main="Dataset: jorissen.colon.ras")

> points(x=jitter(x=rep(1:length(stab2), times=sapply(stab2, length)), amount=0.15), y=unlist(stab2), cex=0.55, pch=16, col="royalblue")

> par(def.par)

We can also compare the prediction scores in the networks inferred from the two different
datasets. As illustrated in Figure 16, there is a weak correlation between the prediction
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Dataset: expO.colon.ras Dataset: jorissen.colon.ras

Figure 14: Directed graph representing the topology of the networks inferred from two dif-
ferent datasets, expO.colon.ras and jerissen.colon.ras. The orange edges represent in-
teractions that are both supported by the data and the priors during network inference; the
red edges represent the interactions that are supported only by the gene expression data and
inferred in both networks; the gray edges represent interactions identified only in one dataset
but not the other.
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Figure 15: Boxplots reporting the stability of edges which are inferred only in one dataset
and those which are inferred in both datasets.

scores (R2) computed in the two datasets. So a gene with high prediction score in one dataset
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may have a low score in another dataset, what makes this statistic not a good surrogate for
generalization in network inference. This observation holds true for MCC.

> pred2 <- list("expO"=apply(myres21.cv$prediction.score.cv$r2, 2, mean, na.rm=TRUE), "jorissen"=apply(myres22.cv$prediction.score.cv$r2, 2, mean, na.rm=TRUE))

> plot(x=pred2$expO, y=pred2$jorissen, xlim=c(0, 0.6), ylim=c(0, 0.6), pch=16, col="royalblue", xlab="Prediction scores in expO.colon.ras", ylab="Prediction scores in jorissen.colon.ras")

> legend(x="bottomright", legend=sprintf("cor = %.2g", cor(pred2$expO, pred2$jorissen, method="spearman", use="complete.obs")), bty="n")
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Figure 16: Prediction scores estimated in expO.colon.ras and jorissen.colon.ras and
their corresponding Spearman correlation coefficient.
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Session Info

• R version 3.1.1 Patched (2014-09-25 r66681), x86_64-apple-darwin13.1.0

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils

• Other packages: catnet 1.14.3, igraph 0.7.1, network 1.10.2, predictionet 1.12.0

• Loaded via a namespace (and not attached): BiocGenerics 0.12.0, MASS 7.3-35,
RBGL 1.42.0, graph 1.44.0, parallel 3.1.1, penalized 0.9-42, splines 3.1.1, stats4 3.1.1,
survival 2.37-7, tools 3.1.1
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