
Using the SRAdb Package to Query the Sequence Read
Archive

Jack Zhu∗and Sean Davis†

Genetics Branch, Center for Cancer Research,
National Cancer Institute,

National Institutes of Health

March 23, 2015

1 Introduction

High throughput sequencing technologies have very rapidly become standard tools in biology.
The data that these machines generate are large, extremely rich. As such, the Sequence
Read Archives (SRA) have been set up at NCBI in the United States, EMBL in Europe,
and DDBJ in Japan to capture these data in public repositories in much the same spirit as
MIAME-compliant microarray databases like NCBI GEO and EBI ArrayExpress.

Accessing data in SRA requires finding it first. This R package provides a convenient and
powerful framework to do just that. In addition, SRAdb features functionality to determine
availability of sequence files and to download files of interest.

SRA currently store aligned reads or other processed data that relies on alignment to a ref-
erence genome. Please refer to the SRA handbook (http://www.ncbi.nlm.nih.gov/books/NBK47537/)
for details. NCBI GEO also often contain aligned reads for sequencing experiments and the
SRAdb package can help to provide links to these data as well. In combination with the
GEOmetadb and GEOquery packages, these data are also, then, accessible.

2 Getting Started

Since SRA is a continuously growing repository, the SRAdb SQLite file is updated regularly.
The first step, then, is to get the SRAdb SQLite file from the online location. The download
and uncompress steps are done automatically with a single command, getSRAdbFile.

∗zhujack@mail.nih.gov
†sdavis2@mail.nih.gov

1

Figure 1: A graphical representation (sometimes called an Entity-Relationship Diagram) of
the relationships between the main tables in the SRAdb package.

2

> library(SRAdb)

> sqlfile <- 'SRAmetadb.sqlite'
> if(!file.exists('SRAmetadb.sqlite')) sqlfile <<- getSRAdbFile()

The default storage location is in the current working directory and the default filename
is “SRAmetadb.sqlite”; it is best to leave the name unchanged unless there is a pressing
reason to change it. Note: the above downloading and uncompressing steps could take quite
a fews moments due to file size, depdending on your network bandwidth. If interested, it
can be timed using the following commands:

> timeStart <- proc.time()

> sqlfile <- getSRAdbFile()

> proc.time() - timeStart

Since this SQLite file is of key importance in SRAdb, it is perhaps of some interest to
know some details about the file itself.

> file.info('SRAmetadb.sqlite')

size isdir mode

SRAmetadb.sqlite 11710134272 FALSE 644

mtime

SRAmetadb.sqlite 2015-03-23 19:00:01

ctime

SRAmetadb.sqlite 2015-03-23 19:00:01

atime uid gid

SRAmetadb.sqlite 2015-03-23 19:00:01 501 20

uname grname

SRAmetadb.sqlite biocbuild staff

Then, create a connection for later queries. The standard DBI functionality as imple-
mented in RSQLite function dbConnect makes the connection to the database. The dbDis-

connect function disconnects the connection.

> sra_con <- dbConnect(SQLite(),sqlfile)

For further details, at this time see help(’SRAdb-package’).

3 Using the SRAdb package

3.1 Interacting with the database

The functionality covered in this section is covered in much more detail in the DBI and
RSQLite package documentation. We cover enough here only to be useful. The dbListTables
function lists all the tables in the SQLite database handled by the connection object sra_con
created in the previous section. A simplified illustration of the relationship between the SRA
main data types is shown in the Figure 1.

3

> sra_tables <- dbListTables(sra_con)

> sra_tables

[1] "col_desc" "experiment"

[3] "fastq" "metaInfo"

[5] "run" "sample"

[7] "sra" "sra_ft"

[9] "sra_ft_content" "sra_ft_segdir"

[11] "sra_ft_segments" "study"

[13] "submission"

There is also the dbListFields function that can list database fields associated with a
table.

> dbListFields(sra_con,"study")

[1] "study_ID" "study_alias"

[3] "study_accession" "study_title"

[5] "study_type" "study_abstract"

[7] "broker_name" "center_name"

[9] "center_project_name" "study_description"

[11] "related_studies" "primary_study"

[13] "sra_link" "study_url_link"

[15] "xref_link" "study_entrez_link"

[17] "ddbj_link" "ena_link"

[19] "study_attribute" "submission_accession"

[21] "sradb_updated"

Sometimes it is useful to get the actual SQL schema associated with a table. Here, we
get the table schema for the study table:

> dbGetQuery(sra_con,'PRAGMA TABLE_INFO(study)')

cid name type notnull

1 0 study_ID REAL 0

2 1 study_alias TEXT 0

3 2 study_accession TEXT 0

4 3 study_title TEXT 0

5 4 study_type TEXT 0

6 5 study_abstract TEXT 0

7 6 broker_name TEXT 0

8 7 center_name TEXT 0

9 8 center_project_name TEXT 0

10 9 study_description TEXT 0

4

11 10 related_studies TEXT 0

12 11 primary_study TEXT 0

13 12 sra_link TEXT 0

14 13 study_url_link TEXT 0

15 14 xref_link TEXT 0

16 15 study_entrez_link TEXT 0

17 16 ddbj_link TEXT 0

18 17 ena_link TEXT 0

19 18 study_attribute TEXT 0

20 19 submission_accession TEXT 0

21 20 sradb_updated TEXT 0

dflt_value pk

1 <NA> 0

2 <NA> 0

3 <NA> 0

4 <NA> 0

5 <NA> 0

6 <NA> 0

7 <NA> 0

8 <NA> 0

9 <NA> 0

10 <NA> 0

11 <NA> 0

12 <NA> 0

13 <NA> 0

14 <NA> 0

15 <NA> 0

16 <NA> 0

17 <NA> 0

18 <NA> 0

19 <NA> 0

20 <NA> 0

21 <NA> 0

The table ”col desc” contains information of filed name, type, descritption and default
values:

> colDesc <- colDescriptions(sra_con=sra_con)[1:5,]

> colDesc[, 1:4]

col_desc_ID table_name field_name

1 1 submission ID

2 2 submission accession

3 3 submission alias

5

4 4 submission submission_comment

5 5 submission files

type

1 int

2 varchar

3 varchar

4 text

5 text

3.2 Writing SQL queries and getting results

Select 3 records from the study table and show the first 5 columns:

> rs <- dbGetQuery(sra_con,"select * from study limit 3")

> rs[, 1:3]

study_ID study_alias study_accession

1 1 DRP000001 DRP000001

2 2 DRP000002 DRP000002

3 3 DRP000003 DRP000003

Get the SRA study accessions and titles from SRA study that study type contains “Tran-
scriptome”. The “%” sign is used in combination with the “like” operator to do a “wildcard”
search for the term “Transcriptome” with any number of characters after it.

> rs <- dbGetQuery(sra_con, paste("select study_accession,

+ study_title from study where",

+ "study_description like 'Transcriptome%'",sep=" "))

> rs[1:3,]

study_accession

1 ERP000233

2 ERP000350

3 ERP000527

study_title

1 Identification of the expression profile of Staphylococcus aureus grown in the presence or absence of a fatty acid.

2 RNA sequencing in E. coli K12

3 Transcriptome Analysis of the potato (genotype RH89-039-16)

Of course, we can combine programming and data access. A simple sapply example
shows how to query each of the tables for number of records.

> getTableCounts <- function(tableName,conn) {

+ sql <- sprintf("select count(*) from %s",tableName)

6

+ return(dbGetQuery(conn,sql)[1,1])

+ }

> do.call(rbind,sapply(sra_tables[c(2,4,5,11,12)],

+ getTableCounts, sra_con, simplify=FALSE))

[,1]

experiment 1044035

metaInfo 2

run 1411313

sra_ft_segments 368432

study 51680

Get some high-level statistics could be to helpful to get overall idea about what data are
availble in the SRA database. List all study types and number of studies contained for each
of the type:

> rs <- dbGetQuery(sra_con, paste("SELECT study_type AS StudyType,

+ count(*) AS Number FROM `study` GROUP BY study_type order

+ by Number DESC ", sep=""))

> rs

StudyType Number

1 Whole Genome Sequencing 26121

2 Other 11282

3 Transcriptome Analysis 6622

4 Metagenomics 4144

5 Epigenetics 2064

6 Population Genomics 680

7 <NA> 510

8 Exome Sequencing 135

9 Cancer Genomics 73

10 Pooled Clone Sequencing 32

11 Synthetic Genomics 9

12 RNASeq 8

List all Instrument Models and number of experiments for each of the Instrument Models:

> rs <- dbGetQuery(sra_con, paste("SELECT instrument_model AS

+ 'Instrument Model', count(*) AS Experiments FROM `experiment`
+ GROUP BY instrument_model order by Experiments DESC", sep=""))

> rs

Instrument Model

1 Illumina HiSeq 2000

7

2 Illumina MiSeq

3 454 GS FLX Titanium

4 Illumina Genome Analyzer II

5 Illumina Genome Analyzer IIx

6 Illumina HiSeq 2500

7 unspecified

8 454 GS FLX

9 Illumina Genome Analyzer

10 <NA>

11 454 GS Junior

12 AB SOLiD 4 System

13 PacBio RS II

14 Ion Torrent PGM

15 Illumina HiSeq 1000

16 454 GS FLX+

17 Helicos HeliScope

18 Complete Genomics

19 PacBio RS

20 AB SOLiD System 3.0

21 AB 5500xl Genetic Analyzer

22 AB 5500 Genetic Analyzer

23 Illumina HiScanSQ

24 454 GS 20

25 Illumina HiSeq 1500

26 454 GS

27 AB SOLiD System 2.0

28 AB SOLiD System

29 Ion Torrent Proton

30 AB 3730xL Genetic Analyzer

31 HiSeq X Ten

32 AB SOLiD 4hq System

33 AB SOLiD 3 Plus System

34 NextSeq 500

35 MinION

36 AB 5500xl-W Genetic Analysis System

37 454 GS FLX

38 AB 3500xL Genetic Analyzer

39 AB 3730 Genetic Analyzer

40 Illumina NextSeq 500

41 AB 3130xL Genetic Analyzer

42 AB SOLiD PI System

43 AB 310 Genetic Analyzer

8

44 AB 3500 Genetic Analyzer

45 Illumina HiSeq 4000

Experiments

1 576428

2 81112

3 79416

4 74743

5 42277

6 40181

7 31765

8 25955

9 16617

10 14054

11 11120

12 9464

13 5616

14 5469

15 5060

16 3806

17 3777

18 3056

19 2934

20 2377

21 1804

22 1622

23 1142

24 891

25 840

26 503

27 464

28 378

29 270

30 199

31 179

32 158

33 138

34 126

35 39

36 22

37 10

38 6

39 5

9

40 4

41 3

42 2

43 1

44 1

45 1

List all types of library strategies and number of runs for each of them:

> rs <- dbGetQuery(sra_con, paste("SELECT library_strategy AS

+ 'Library Strategy', count(*) AS Runs FROM `experiment`
+ GROUP BY library_strategy order by Runs DESC", sep=""))

> rs

Library Strategy Runs

1 WGS 375890

2 AMPLICON 176811

3 WXS 167794

4 RNA-Seq 148720

5 OTHER 79598

6 ChIP-Seq 36579

7 <NA> 14054

8 POOLCLONE 8240

9 Bisulfite-Seq 6635

10 WGA 5320

11 CLONE 4636

12 miRNA-Seq 4437

13 EST 3328

14 VALIDATION 3266

15 FL-cDNA 1303

16 MeDIP-Seq 1255

17 DNase-Hypersensitivity 1218

18 MNase-Seq 861

19 Tn-Seq 792

20 MBD-Seq 712

21 MRE-Seq 565

22 RAD-Seq 539

23 ncRNA-Seq 482

24 RIP-Seq 354

25 WCS 328

26 CTS 104

27 FAIRE-seq 94

28 CLONEEND 51

29 SELEX 32

10

30 FINISHING 20

31 ChIA-PET 10

32 Synthetic-Long-Read 7

3.3 Conversion of SRA entity types

Large-scale consumers of SRA data might want to convert SRA entity type from one to
others, e.g. finding all experiment accessions (SRX, ERX or DRX) and run accessions (SRR,
ERR or DRR) associated with ”SRP001007” and ”SRP000931”. Function sraConvert does
the conversion with a very fast mapping between entity types.

Covert ”SRP001007” and ”SRP000931” to other possible types in the SRAmetadb.sqlite:

> conversion <- sraConvert(c('SRP001007','SRP000931'), sra_con = sra_con)

> conversion[1:3,]

study submission sample experiment

1 SRP000931 SRA009053 SRS003457 SRX006126

2 SRP000931 SRA009053 SRS003456 SRX006125

3 SRP000931 SRA009053 SRS003455 SRX006124

run

1 SRR018260

2 SRR018259

3 SRR018258

Check what SRA types and how many entities for each type:

> apply(conversion, 2, unique)

$study

[1] "SRP000931" "SRP001007"

$submission

[1] "SRA009053" "SRA009276"

$sample

[1] "SRS003457" "SRS003456" "SRS003455"

[4] "SRS003453" "SRS003458" "SRS003461"

[7] "SRS003462" "SRS003454" "SRS003460"

[10] "SRS003463" "SRS003459" "SRS003464"

[13] "SRS004650"

$experiment

[1] "SRX006126" "SRX006125" "SRX006124"

[4] "SRX006130" "SRX006129" "SRX006122"

11

[7] "SRX006127" "SRX006132" "SRX006133"

[10] "SRX006123" "SRX006131" "SRX006134"

[13] "SRX006128" "SRX006135" "SRX007396"

$run

[1] "SRR018260" "SRR018259" "SRR018258"

[4] "SRR018264" "SRR018263" "SRR018256"

[7] "SRR018261" "SRR018266" "SRR018267"

[10] "SRR018257" "SRR018265" "SRR018268"

[13] "SRR018262" "SRR018269" "SRR020740"

[16] "SRR020739"

3.4 Full text search

Searching by regular table and field specific SQL commands can be very powerful and if
you are familiar with SQL language and the table structure. If not, SQLite has a very
handy module called Full text search (fts3), which allow users to do Google like search with
terms and operators. The function getSRA does Full text search against all fields in a fts3
table with terms constructed with the Standard Query Syntax and Enhanced Query Syntax.
Please see http://www.sqlite.org/fts3.html for detail.

Find all run and study combined records in which any given fields has ”breast” and
”cancer” words, including ”breast” and ”cancer” are not next to each other:

> rs <- getSRA(search_terms = "breast cancer",

+ out_types = c('run','study'), sra_con)

> dim(rs)

[1] 10269 23

> rs <- getSRA(search_terms = "breast cancer",

+ out_types = c("submission", "study", "sample",

+ "experiment", "run"), sra_con)

> # get counts for some information interested

> apply(rs[, c('run','sample','study_type','platform',
+ 'instrument_model')], 2, function(x)

+ {length(unique(x))})

run sample

10269 7269

study_type platform

9 6

instrument_model

23

12

>

If you only want SRA records containing exact phrase of ”breast cancer”, in which ”breast”
and ”cancer” do not have other characters between other than a space:

> rs <- getSRA (search_terms ='"breast cancer"',
+ out_types=c('run','study'), sra_con)

> dim(rs)

[1] 9021 23

Find all sample records containing words of either ”MCF7” or ”MCF-7”:

> rs <- getSRA(search_terms ='MCF7 OR "MCF-7"',
+ out_types = c('sample'), sra_con)

> dim(rs)

[1] 1796 10

Find all submissions by GEO:

> rs <- getSRA(search_terms ='submission_center: GEO',
+ out_types = c('submission'), sra_con)

> dim(rs)

[1] 7371 6

Find study records containing a word beginning with ’Carcino’:

> rs <- getSRA(search_terms ='Carcino*',
+ out_types = c('study'), sra_con=sra_con)

> dim(rs)

[1] 423 12

3.5 Download SRA data files

List ftp addresses of the fastq files associated with ”SRX000122”:

> rs = listSRAfile(c("SRX000122"), sra_con, fileType = 'sra')

The above function does not check file availability, size and date of the sra data files on
the server, but the function getSRAinfo does this, which is good to know if you are preparing
to download them:

> rs = getSRAinfo (c("SRX000122"), sra_con, sraType = "sra")

> rs[1:3,]

13

ftp

1 ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/sra/SRX/SRX000/SRX000122/SRR000648/SRR000648.sra

2 ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/sra/SRX/SRX000/SRX000122/SRR000649/SRR000649.sra

3 ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/sra/SRX/SRX000/SRX000122/SRR000650/SRR000650.sra

experiment study sample run

1 SRX000122 SRP000098 SRS000290 SRR000648

2 SRX000122 SRP000098 SRS000290 SRR000649

3 SRX000122 SRP000098 SRS000290 SRR000650

size(KB) date

1 281 Jan 19 2012

2 130940 Jan 19 2012

3 844 Jan 19 2012

Next you might want to download sra data files from the ftp site. The getSRAfile function
will download all available sra data files associated with ”SRR000648”and ”SRR000657” from
the NCBI SRA ftp site to the current directory:

> getSRAfile(c("SRR000648","SRR000657"), sra_con, fileType = 'sra')

run study sample experiment

1 SRR000648 SRP000098 SRS000290 SRX000122

2 SRR000657 SRP000098 SRS000290 SRX000122

ftp

1 ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/sra/SRX/SRX000/SRX000122/SRR000648/SRR000648.sra

2 ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/sra/SRX/SRX000/SRX000122/SRR000657/SRR000657.sra

Then downloaded sra data files can be easily converted into fastq files using fastq-dump
in SRA Toolkit (http://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software):

> ## system ("fastq-dump SRR000648.lite.sra")

Or directly download fastq files from EBI using ftp protocol:

> getFASTQinfo(c("SRR000648","SRR000657"), srcType = 'ftp')

> getSRAfile(c("SRR000648","SRR000657"), sra_con, fileType = 'fastq')

3.6 Download SRA data files using fasp protocol

Curretly both NCBI and EBI supports fasp protocol for downloading SRA data files, which
has several advantages over ftp protocol, including high-speed transfering large files over long
distance. Please check EBI or NCBI web site or Aspera (http://www.asperasoft.com/) for
details. SRAdb has indcluded two wraper functions for using ascp command line program
(fasp protocol) to download SRA data files frm either the NCBI or EBI, which is included
in in Aspera Connect software. But, due to complexity of installaton of the software and
options within it, the funcitons develpped here ask users to supply main ascp comands.

Download fastq files from EBI ftp siteusing fasp protocol:

14

> ## List fasp addresses for associated fastq files:

> listSRAfile (c("SRX000122"), sra_con, fileType = 'fastq', srcType='fasp')
> ## get fasp addresses for associated fastq files:

> getFASTQinfo(c("SRX000122"), srcType = 'fasp')

> ## download fastq files using fasp protocol:

> # the following ascpCMD needs to be constructed according custom

> # system configuration

> # common ascp installation in a Linux system:

> ascpCMD <- 'ascp -QT -l 300m -i

+ /usr/local/aspera/connect/etc/asperaweb_id_dsa.putty'
> ## common ascpCMD for a Mac OS X system:

> # ascpCMD <- "'/Applications/Aspera Connect.app/Contents/

> # Resources/ascp' -QT -l 300m -i '/Applications/
> # Aspera Connect.app/Contents/Resources/asperaweb_id_dsa.putty'"
>

> getSRAfile(c("SRX000122"), sra_con, fileType = 'fastq',
+ srcType = 'fasp', ascpCMD = ascpCMD)

Download sra files from NCBI using fasp protocol:

> ## List fasp addresses of sra files associated with "SRX000122"

> listSRAfile(c("SRX000122"), sra_con, fileType = 'sra', srcType='fasp')
> ## download sra files using fasp protocol

> getSRAfile(c("SRX000122"), sra_con, fileType = 'sra',
+ srcType = 'fasp', ascpCMD = ascpCMD)

The downloading messege will show signigicant faster downloading speed than the ftp
protocol:

’ SRR000658.sra 100Completed: 159492K bytes transferred in 5 seconds (249247K bits/sec),
in 1 file. ... ’

4 Interactive views of sequence data

Working with sequence data is often best done interactively in a genome browser, a task
not easily done from R itself. We have found the Integrative Genomics Viewer (IGV) a
high-performance visualization tool for interactive exploration of large, integrated datasets,
increasing usefully for visualizing sequence alignments. In SRAdb, functions startIGV,
load2IGV and load2newIGV provide convenient functionality for R to interact with IGV.
Note that for some OS, these functions might not work or work well.

Launch IGV with 2 GB maximum usable memory support:

> startIGV("mm")

15

IGV offers a remort control port that allows R to communicate with IGV. The current
command set is fairly limited, but it does allow for some IGV operations to be performed in
the R console. To utilize this functionality, be sure that IGV is set to allow communication via
the “enable port” option in IGV preferences. To load BAM files to IGV and then manipulate
the window:

> exampleBams = file.path(system.file('extdata',package='SRAdb'),
+ dir(system.file('extdata',package='SRAdb'),pattern='bam$'))
> sock <- IGVsocket()

> IGVgenome(sock, 'hg18')
> IGVload(sock, exampleBams)

> IGVgoto(sock, 'chr1:1-1000')
> IGVsnapshot(sock)

5 Graphic view of SRA entities

Due to the nature of SRA data and its design, sometimes it is hard to get a whole picture of
the relationship between a set of SRA entities. Functions of entityGraph and sraGraph in
this package generate graphNEL objects with edgemode=’directed’ from input data.frame
or directly from search terms, and then the plot function can easily draw a diagram.

Create a graphNEL object directly from full text search results of terms ’primary thyroid
cell line’

> library(SRAdb)

> library(Rgraphviz)

> g <- sraGraph('primary thyroid cell line', sra_con)

> attrs <- getDefaultAttrs(list(node=list(

+ fillcolor='lightblue', shape='ellipse')))
> plot(g, attrs=attrs)

> ## similiar search as the above, returned much larger data.frame and graph is too clouded

> g <- sraGraph('Ewing Sarcoma', sra_con)

> plot(g)

>

Please see the Figure 2 for an example diagram.
It’s considered good practise to explicitely disconnect from the database once we are done

with it:

> dbDisconnect(sra_con)

[1] TRUE

16

Figure 2: A graphical representation of the relationships between the SRA entities.

17

6 Example use case

This sesection will use the functionalities in the SRAdb package to explore data from the
1000 genomes project. Mainly,

1. Get some statistics of meta data and data files from the 1000 genomes project using
the SRAdb 2. Download data files 3. Load bam files into the IGV from R 4. Create some
snapshoots programmtically from R

> library(SRAdb)

> setwd('1000g')
> if(! file.exists('SRAmetadb.sqlite')) {

+ sqlfile <- getSRAdbFile()

+ } else {

+ sqlfile <- 'SRAmetadb.sqlite'
+ }

> sra_con <- dbConnect(SQLite(),sqlfile)

> ## get all related accessions

> rs <- getSRA(search_terms = '"1000 Genomes Project"',
+ sra_con=sra_con, acc_only=TRUE)

> dim(rs)

> head(rs)

> ## get counts for each data types

> apply(rs, 2, function(x) {length(unique(x))})

After you decided what data from the 1000 Genomes, you would like to download data
files from the SRA. But, it might be helpful to know file size before downloading them:

> runs <- tail(rs$run)

> fs <- getSRAinfo(runs, sra_con, sraType = "sra")

Now you can download the files through ftp protocol:

> getSRAfile(runs, sra_con, fileType ='sra', srcType = "ftp")

Or, you can download them through fasp protocol:

> ascpCMD <- "'/Applications/Aspera Connect.app/Contents/Resources/ascp' -QT -l 300m -i '/Applications/Aspera Connect.app/Contents/Resources/asperaweb_id_dsa.putty'"
> sra_files = getSRAfile(runs, sra_con, fileType ='sra', srcType = "fasp", ascpCMD = ascpCMD)

Next you might want to convert the downloaded sra files into fastq files:

> for(fq in basename(sra_files$fasp)) {

+ system ("fastq-dump SRR000648.lite.sra")

+ }

... to be compeleted.

18

7 sessionInfo

• R version 3.1.3 (2015-03-09), x86_64-apple-darwin10.8.0

• Locale: en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

• Base packages: base, datasets, graphics, grDevices, methods, stats, utils

• Other packages: bitops 1.0-6, DBI 0.3.1, graph 1.44.1, RCurl 1.95-4.5, RSQLite 1.0.0,
SRAdb 1.20.13

• Loaded via a namespace (and not attached): Biobase 2.26.0, BiocGenerics 0.12.1,
GEOquery 2.32.0, parallel 3.1.3, stats4 3.1.3, tools 3.1.3, XML 3.98-1.1

19

	Introduction
	Getting Started
	Using the SRAdb package
	Interacting with the database
	Writing SQL queries and getting results
	Conversion of SRA entity types
	Full text search
	Download SRA data files
	Download SRA data files using fasp protocol

	Interactive views of sequence data
	Graphic view of SRA entities
	Example use case
	sessionInfo

