
rtracklayer
March 24, 2012

Bed15TrackLine-class
Class "Bed15TrackLine"

Description

A UCSC track line for graphical tracks.

Objects from the Class

Objects can be created by calls of the form new("Bed15TrackLine", ...) or parsed from
a character vector track line with as(text, "Bed15TrackLine").

Slots

expStep: A "numeric" scalar indicating the step size for the heatmap color gradient.

expScale: A positive "numeric" scalar indicating the range of the data to be [-expScale,
expScale] for determining the heatmap color gradient.

expNames: A "character" vector naming the the experimental samples.

name: Object of class "character" specifying the name of the track.

description: Object of class "character" describing the track.

visibility: Object of class "character" indicating the default visible mode of the track,
see UCSCTrackModes.

color: Object of class "integer" representing the track color (as from col2rgb).

priority: Object of class "numeric" specifying the rank of this track.

Extends

Class "TrackLine", directly.

Methods

as(object, "character") Export line to its string representation.

Author(s)

Michael Lawrence

1

2 BigWigFile-class

References

Official documentation: http://genomewiki.ucsc.edu/index.php/Microarray_track.

See Also

export.bed15 for exporting bed15 tracks.

BigWigFile-class BigWigFile objects

Description

A BigWigFile object is a reference to a BigWig file. It exists to support methods with behavior
particular to BigWig files.

Accessor Methods

In the code snippets below, x represents a BigWigFile object.

seqinfo(x): Gets the Seqinfo object indicating the lengths of the sequences for the intervals
in the file. No circularity or genome information is available.

Import

import.bw(con, selection = BigWigSelection(ranges, ...), ranges = con,
...): Imports the intervals from a big wig file con, according to selection, a RangedS-
election object indicating the intervals to retrieve from a bigWig file. Supported types of con
include a BigWigFile and a file name. Note that this retrieval is very efficient, due to the
indexing of the bigWig format.

Utilities

summary(ranges = as(seqinfo(object), "GenomicRanges"), size = 1L, type
= c("mean", "min", "max", "coverage", "sd"), defaultValue = NA_real_):
Aggregates the intervals in the file that fall into ranges, which should be something coercible
to GRanges. The aggregation essentially compresses each sequence to a length of size. The
algorithm is specified by type; available algorithms include the mean, min, max, coverage
(percent sequence covered by at least one feature), and standard deviation. When a window
contains no features, defaultValue is assumed. The result is an RleList, with an ele-
ment for each element in ranges. The driving use case for this is visualization of coverage
when the screen space is small compared to the viewed portion of the sequence. The operation
is very fast, as it leverages cached multi-level summaries present in every BigWig file.

Author(s)

Michael Lawrence

See Also

import.bw and export.bw for reading and writing BigWig files, respectively.

http://genomewiki.ucsc.edu/index.php/Microarray_track

BigWigSelection-class 3

Examples

bwf <- BigWigFile(system.file("tests", "test.bw", package = "rtracklayer"))
seqinfo(bwf)
track <- import.bw(bwf, asRangedData = FALSE)
summary(bwf) # for each sequence, average all values into one
summary(bwf, range(head(track))) # just average the first few features
summary(bwf, size = GenomicRanges::seqlengths(bwf) / 10) # 10X reduction
summary(bwf, type = "min") # min instead of mean

BigWigSelection-class
Selection of ranges and columns

Description

A BigWigSelection represents a query against a BigWig file, see import.bw. It is simply a
RangedSelection that requires its colnames parameter to be "score", if non-empty, as that is the
only column supported by BigWig.

Constructor

BigWigSelection(ranges = GRanges(), colnames = "score"): Constructs a
BigWigSelectionwith the given ranges and colnames. ranges can be either some-
thing coercible to a RangesList, a character identifying a genome (see GenomicSelection),
or a BigWigFile, in which case the ranges are derived from the bounds of its sequences.

Coercion

as(from, "BigWigSelection"): Coerces from to a BigWigSelection object. Typi-
cally, from is a GRanges or a RangesList, the ranges of which become the ranges in the
new BigWigSelection.

Author(s)

Michael Lawrence

Examples

rl <- IRanges::RangesList(chr1 = IRanges::IRanges(c(1, 5), c(3, 6)))

BigWigSelection(rl)
as(rl, "BigWigSelection") # same as above

do not select the 'score' column
BigWigSelection(rl, character())

4 Chain-class

BrowserViewList-class
Lists of BrowserView

Description

A formal list of BrowserView objects. Extends and inherits all its methods from Vector. Usu-
ally generated by passing multiple ranges to the browserView function.

Constructor

BrowserViewList(...): Concatenates the BrowserView objects in ... into a new
BrowserViewList. This is rarely called by the user.

Author(s)

Michael Lawrence

Chain-class Chain objects

Description

A Chain object represents a UCSC chain alignment, typically imported from a chain file, and is
essentially a list of ChainBlock objects. Each ChainBlock has a corresponding chromosome
(its name in the list) and is a run-length encoded alignment, mapping a set of intervals on that
chromosome to intervals on the same or other chromosomes.

Accessor Methods

In the code snippets below, x and object are ChainBlock objects.

ranges(x): Get the Ranges object holding the starts and ends of the "from" ranges. Each
range is a contiguous block of positions aligned without gaps to the other sequence.

offset(x): Integer offset from the "from" start to the "end" start (which could be in another
chromosome).

score(x): The score for each mapping.

space(x): The space (chromosome) of the "to" range.

reversed(x): Whether the mapping inverts the region, i.e., the alignment is between different
strands.

Import

import.chain(con, exclude = "_", ...): Imports a chain file named con as a Chain
object, a list of ChainBlocks. Alignments for chromosomes matching the exclude pat-
tern are not imported.

GRangesForUCSCGenome 5

Note

A chain file essentially details many local alignments, so it is possible for the "from" ranges to map
to overlapping regions in the other sequence. The "from" ranges are guaranteed to be disjoint (but
do not necessarily cover the entire "from" sequence).

Author(s)

Michael Lawrence

See Also

liftOver for performing lift overs using a chain alignment

GRangesForUCSCGenome
GRanges for a Genome

Description

These functions assist in the creation of GRanges in the context of a genome.

Usage

GRangesForUCSCGenome(genome, chrom = NULL, ranges = NULL, ...)
GRangesForBSGenome(genome, chrom = NULL, ranges = NULL, ...)

Arguments

genome A string identifying a genome, usually one assigned by UCSC, like "hg19".

chrom A character vector of chromosome names, or NULL.

ranges A Ranges object with the intervals.

... Additional arguments to pass to the GRanges constructor.

Details

The genome ID is stored in the metadata of the ranges and is retrievable via the genome function.
The sequence lengths are also properly initialized for the genome. This mitigates the possibility of
accidentally storing intervals for the wrong genome.

GRangesForUCSCGenome obtains sequence information from the UCSC website, while GRangesForBSGenome
looks for it in an installed BSGenome package. Using the latter is more efficient in the long-run,
but requires downloading and installing a potentially large genome package, or creating one from
scratch if it does not yet exist for the genome of interest.

Value

A GRanges object, with the appropriate seqlengths and genome ID.

Author(s)

Michael Lawrence

6 Quickload-class

GenomicSelection Genomic data selection

Description

Convenience constructor of a RangedSelection object for selecting a data on a per-chromosome
basis for a given genome.

Usage

GenomicSelection(genome, chrom = NULL, colnames = character(0))

Arguments

genome A string identifying a genome. Should match the end of a BSgenome package
name, e.g. "hg19".

chrom Character vector naming chromosomes to select.

colnames The column names to select from the dataset.

Value

A RangedSelection object, selecting entire chromosomes

Author(s)

Michael Lawrence

See Also

RangedSelection, BigWigSelection

Examples

every chromosome from hg19
GenomicSelection("hg19")
chr1 and 2 from hg19, with a score column
GenomicSelection("hg19", c("chr1", "chr2"), "score")

Quickload-class Quickload Access

Description

The Quickload class represents a Quickload data source, essentially directory layout separating
tracks and sequences by genome, along with a few metadata files. This interface abstracts those
details and provides access to a Quickload at any URL supported by R (HTTP, FTP, and local files).
This is an easy way to make data accessible to the Integrated Genome Browser (IGB).

QuickloadGenome-class 7

Constructor

Quickload(uri = "quickload", create = FALSE): Constructs a new Quickload
object, representing a repository at uri. If create is TRUE, and uri is writeable (i.e., lo-
cal), the repository is created if it does not already exist. If it does exist, then a message is
emitted to indicate that the repository was not recreated.

Accessor Methods

In the code snippets below, x represents a Quickload object.

x$genome, x[["genome"]]: Get the QuickloadGenome object for the genome named
genome. This is where all the data is stored.

length(x): number of genomes in the repository

uri(x): Get the URI pointing to the Quickload repository.

genome(x): Get the identifiers of the genomes present in the repository.

Author(s)

Michael Lawrence

Examples

ql <- Quickload(system.file("tests", "quickload", package = "rtracklayer"))
uri(ql)
genome(ql)
ql$T_species_Oct_2011

QuickloadGenome-class
Quickload Genome Access

Description

A Quickload data source is a collection of tracks and sequences, separated by genome. This class,
QuickloadGenome provides direct access to the data for one particular genome.

Constructor

QuickloadGenome(quickload, genome, create = FALSE, seqinfo = seqinfo(genome),
title = toString(genome)): Constructs a new QuickloadGenome object, repre-
senting genome in the repository quickload (a URI string or a Quickload object).
The genome argument can be an ID corresponding to a genome (potentially) in quickload
or an installed BSgenome package. It can also be any instance of a class which has methods
for organism and releaseDate. A good example is BSgenome or any other deriva-
tive of GenomeDescription. Those items are necessary for constructing the canonical
Quickload genome string (G_Species_Month_Year).
If create is TRUE, and the genome does not already exist, the genome will be created,
using seqinfo for the sequence lengths and title for the display name of the genome in
a UI. Creation only works if the repository is local and writeable. Reasonable defaults are
used for seqinfo and title when the necessary methods are available (and they are for
BSgenome).

8 QuickloadGenome-class

Accessor Methods

In the code snippets below, x represents a Quickload object.

seqinfo(x), seqinfo(x) <- value: Gets or sets the Seqinfo object indicating the
lengths of the sequences in the genome. No circularity information or genome identifier is
stored.

quickload(x): Get the Quickload object that contains this genome.

uri(x): Get the uri pointing to the genome directory in the Quickload repository

genome(x): Get the name of the genome, e.g. “H_sapiens_Feb_2009”.

releaseDate(x): Get the release portion of the genome name, e.g., “Feb_2009”.

organism(x): Get the organism portion of the genome name, e.g., “H sapiens”.

Data Access

length(x): number of datasets

names(x), trackNames(x): names of the datasets

elementMetadata(x): merged metadata on the datasets

track(x, name), x$name: get the track called name

track(x, name, format = bestFileFormat(value), ...) <- value, x$name
<- value: store the track value under name. Note that track storing is only supported for
local repositories, i.e., those with a file:// URI scheme.
Currently, supported value types include a GenomicRanges, GRangesList, or a file
name (copied to the repository). If not a file name, value is written in format. For generic
interval data, this means a BigWig file (if there is a numeric “score” column) or a BED file
otherwise. An RleList (e.g., coverage) is output as BigWig. For UCSCData values, the
format is chosen according to the type of track line. For RsamtoolsFile objects, the file
and its index are copied.
The arguments in ... become attributes in the XML metadata. The “description” attribute is
standard and is a blurb for describing the track in a UI. For the rest, the interpretation is up to
the client. IGB supports an ever-growing list; please see its documentation.

referenceSequence(x): Get the reference sequence, as a DNAStringSet.

referenceSequence(x) <- value: Set the reference sequence, as a DNAStringSet.
It is written as a 2bit file. This only works on local repositories.

Author(s)

Michael Lawrence

Examples

tests_dir <- system.file("tests", package = "rtracklayer")
ql <- Quickload(file.path(tests_dir, "quickload"))
qlg <- QuickloadGenome(ql, "T_species_Oct_2011")
seqinfo(qlg)
organism(qlg)
releaseDate(qlg)
names(qlg)
elementMetadata(qlg)
qlg$bedData

RTLFile-class 9

Not run:
populating the test repository
ql <- Quickload(file.path(tests_dir, "quickload")), create = TRUE)
reference_seq <- import(file.path(tests_dir, "test.2bit"))
names(reference_seq) <- "test"
qlg <- QuickloadGenome(ql, "T_species_Oct_2011", create = TRUE,

seqinfo = seqinfo(reference_seq))
referenceSequence(qlg) <- reference_seq
test_bed <- import(file.path(tests_dir, "test.bed"))
names(test_bed) <- "test"
qlg$bedData <- test_bed
test_bedGraph <- import(file.path(tests_dir, "test.bedGraph"))
names(test_bedGraph) <- "test"
start(test_bedGraph) <- seq(1, 90, 10)
width(test_bedGraph) <- 10
track(qlg, "bedGraphData", format = "bw") <- test_bedGraph

End(Not run)

RTLFile-class RTLFile objects

Description

A RTLFile object is the base class for classes representing files accessible with rtracklayer. It
currently stores a path and provides a few utilities.

Accessor Methods

In the code snippets below, x represents a RTLFile object.

path(x): Gets the path, as a character vector, to the file represented by the RTLFile object.

Author(s)

Michael Lawrence

See Also

Implementing classes like BigWigFile and TwoBitFile

RangedData-methods Data on a Genome

Description

The rtracklayer package adds convenience methods on top of RangedData and GenomicRanges
to manipulate data on genomic ranges. For RangedData the spaces are now called chromosomes
(but could still refer to some other type of sequence). Similarly the universe refers to the genome.

10 RangedData-methods

Accessors

In the code snippets below, x is a RangedData or GenomicRanges object.

chrom(x), chrom(x) <- value: Gets or sets the chromosome names for x. The length
of value should equal the length of x. This is an alias for names(x).

seqinfo(x), seqinfo(x) <- value: Gets or sets the sequence information as a Seqinfo
object. This is just a wrapper on top of seqinfo for ranges(x).

score(x): Gets the “score” column from the element metadata of a GenomicRanges or
GRangesList. Many track formats have a score column, so this is often used during export.
The IRanges package defines a method for RangedData. The ANY fallback for this method
simply returns NULL.

Constructor

GenomicData(ranges, ..., strand = NULL, chrom = NULL, genome = NULL,
asRangedData = TRUE): If asRangedData is TRUE, constructs a RangedData in-
stance with the given ranges and variables in ... (see the RangedData constructor).
If asRangedData is FALSE, constructs a GRanges instance with the given ranges and
variables in
If non-NULL, the strand argument specifies the strand of each range. It should be a character
vector or factor of length equal to that of ranges. All values should be either -, +, * or NA.
(The NA code for strand is only acceptable when asRangedData is TRUE.) To get the
levels for strand, call levels(strand()).
chrom argument is analogous to space in the RangedData and seqnames in GRanges
constructors.
The genome argument should be a scalar string and is treated as the RangedData universe.
See the examples.
If ranges is not a Ranges object, this function calls as(ranges, "RangedData")
and returns the result if successful. As a special case, the “chrom” column in a data.frame-
like object is renamed to “space”, for convenience. Thus, one could pass a data.framewith
columns “start”, “end” and, optionally, “chrom”.

Author(s)

Michael Lawrence and Patrick Aboyoun

Examples

range1 <- IRanges::IRanges(start=c(1,2,3), end=c(5,2,8))

just ranges
RangedData instance
rd <- GenomicData(range1)
GRanges instance
gr <- GenomicData(range1, asRangedData = FALSE)

with a genome (universe)
RangedData instance
rd <- GenomicData(range1, genome = "hg18")
genome(rd) ## "hg18"
GRanges instance
gr <- GenomicData(range1, genome = "hg18", asRangedData = FALSE)
genome(gr) ## "hg18"

RangesList-methods 11

with some data
filter <- c(1L, 0L, 1L)
score <- c(10L, 2L, NA)
strand <- factor(c("+", NA, "-"), levels = levels(strand()))
RangedData instance
rd <- GenomicData(range1, score, genome = "hg18")
rd[["score"]]
strand(rd) ## all NA
rd <- GenomicData(range1, score, filt = filter, strand = strand)
rd[["filt"]]
strand(rd) ## equal to 'strand'
GRanges instance
gr <- GenomicData(range1, score, genome = "hg18", asRangedData = FALSE)
values(gr)[["score"]]
strand(gr) ## all '*'
gr <- GenomicData(range1, score, filt = filter, strand = strand,

asRangedData = FALSE)
values(gr)[["filt"]]
strand(gr) ## equal to 'strand'

multiple chromosomes
range2 <- IRanges::IRanges(start=c(15,45,20,1), end=c(15,100,80,5))
ranges <- c(range1, range2)
score <- c(score, c(0L, 3L, NA, 22L))
chrom <- paste("chr", rep(c(1,2), c(length(range1), length(range2))), sep="")
RangedData instance
rd <- GenomicData(ranges, score, chrom = chrom, genome = "hg18")
chrom(rd) # equal to 'chrom'
rd[["score"]] # unlists over the chromosomes
score(rd)
rd[1][["score"]] # equal to score[1:3]
GRanges instance
gr <- GenomicData(ranges, score, chrom = chrom, genome = "hg18",

asRangedData = FALSE)
chrom(gr) # equal to 'chrom'
values(gr)[["score"]]
values(gr[chrom(gr) == "chr1"])[["score"]]

coercion from data.frame
df <- as.data.frame(rd)
GenomicData(df)
GenomicData(df, asRangedData = FALSE)

RangesList-methods Ranges on a Genome

Description

Genomic coordinates are often specified in terms of a genome identifier, chromosome name, start
position and end position. RangedData represents this with a RangesList instance, and
the rtracklayer package adds convenience methods to RangesList for the manipulation
of genomic ranges. The spaces (or names) of RangesList are the chromosome names. The
universe slot indicates the genome, usually as given by UCSC (e.g. “hg18”).

12 TrackDb-class

Accessors

In the code snippets below, x is a RangesList object.

chrom(x), chrom(x) <- value: Gets or sets the chromosome names for x. This is an
alias for names(x).

seqinfo(x), seqinfo(x) <- value: Gets or sets the sequence information as a Seqinfo
object. If this has not been set explicitly, it tries to come up with a reasonable default. First, it
assumes the universe on x is a genome identifier and attempts to look up the correspond-
ing metadata an installed BSgenome package or, if that fails, via UCSC. If that fails, it uses
names(x) as the seqnames and end(range(x)) as the seqlengths.

Author(s)

Michael Lawrence

TrackDb-class Track Databases

Description

The TrackDb class is an abstraction around a database of tracks. Implementations include BrowserSession
derivatives and QuickloadGenome. Here, a track is defined as an interval dataset.

Accessor Methods

Every implementation should support these methods:

length(x): number of tracks

names(x), trackNames(x): names of the tracks

elementMetadata(x): merged metadata on the tracks

track(x, name), x$name, x[[name]]: get the track called name

track(x, name) <- value, x$name <- value, x[[name]] <- value: store the
track value under name. Different implementations will support different types for value.
Generally, an interval data structure like GenomicRanges.

Author(s)

Michael Lawrence

TwoBitFile-class 13

TwoBitFile-class 2bit Files

Description

The export.2bit and import.2bit support the export and import, respectively, of the UCSC 2bit
compressed sequence format. The main advantage is speed of subsequence retrieval, as it only loads
the sequence in the requested intervals. Compared to the FA format supported by Rsamtools, 2bit
offers the additional feature of masking and also has better support in Java (and thus most genome
browsers). The supporting TwoBitFile class is a reference to a TwoBit file.

Accessor Methods

In the code snippets below, x represents a TwoBitFile object.

seqinfo(x): Gets the Seqinfo object indicating the lengths of the sequences in the file. No
circularity or genome information is available.

Import

import.2bit(con, which = as(seqinfo(con), "GenomicRanges"), ...): Im-
ports sequence from 2bit file con, which can be a string (path or URL) or TwoBitFile
object. The sequence retrieval is restricted to the intervals given by which, which should be
something coercible to a GRanges. The returned DNAStringSet contains a DNAString
for every interval in which.

Export

export.2bit(object, con, which = as(seqinfo(con), "GenomicRanges"),
...): Exports object in the two bit format to con, a path or URL. The object should be
a DNAStringSet (or something coercible to one) or a BSgenome object. If a BSgenome
object, the arguments in ... are passed to bsapply during the export of each sequence.

Author(s)

Michael Lawrence

Examples

tbf <- TwoBitFile(system.file("tests", "test.2bit", package = "rtracklayer"))
seqinfo(tbf)
sequence <- import.2bit(tbf) # the whole file
subrange <- IRanges::resize(as(seqinfo(tbf), "GenomicRanges"), width = 50)
subsequence <- import.2bit(tbf, which = subrange)

14 UCSCSchema-class

UCSCData-class Class "UCSCData"

Description

Each track in UCSC has an associated TrackLine that contains metadata on the track.

Slots

trackLine: Object of class "TrackLine" holding track metadata.

Methods

export.bed(object, con, variant = c("base", "bedGraph", "bed15"), color, trackLine = TRUE, ...)
Exports the track and its track line (if trackLine is TRUE) to con in the Browser Extended
Display (BED) format. The arguments in ... are passed to export.ucsc.

export.bed15(object, con, expNames = NULL, ...) Exports the track and its track
line (if trackLine is TRUE) to con in the Bed15 format. The data is taken from the columns
named in expNames, which defaults to the expNames in the track line, if any, otherwise all
column names. The arguments in ... are passed to export.ucsc.

export.gff(object) Exports the track and its track line (as a comment) to con in the Gen-
eral Feature Format (GFF).

export.ucsc(object, con, subformat, ...) Exports the track and its track line to
con in the UCSC meta-format.

as(object, "UCSCData") Constructs a UCSCData from a RangedData instance, by adding
a default track line and ensuring that the sequence/chromosome names are compliant with
UCSC conventions. If there is a numeric score, the track line type is either "bedGraph" or
"wig", depending on the feature density. Otherwise, "bed" is chosen.

Author(s)

Michael Lawrence

See Also

import and export for reading and writing tracks to and from connections (files), respectively.

UCSCSchema-class UCSC Schema

Description

This is a preliminary class that describes a table in the UCSC database. The description includes the
table name, corresponding genome, row count, and a textual description of the format. In the future,
we could provide more table information, like the links and sample data frame. This is awaiting a
use-case.

UCSCTableQuery-class 15

Accessor methods

In the code snippets below, x/object is a UCSCSchema object.

genome(x): Get the genome for the table.

tableName(x): Get the name of the table.

nrow(x): Get the number of rows in the table.

formatDescription(x): Get a textual description of the table format.

Author(s)

Michael Lawrence

Examples

Not run:
session <- browserSession()
genome(session) <- "mm9"
query <- ucscTableQuery(session, "knownGene")
schema <- ucscSchema(query)
nrow(schema)

End(Not run)

UCSCTableQuery-class
Querying UCSC Tables

Description

The UCSC genome browser is backed by a large database, which is exposed by the Table Browser
web interface. Tracks are stored as tables, so this is also the mechanism for retrieving tracks. The
UCSCTableQuery class represents a query against the Table Browser. Storing the query fields in
a formal class facilitates incremental construction and adjustment of a query.

Details

There are five supported fields for a table query:

session The UCSCSession instance from the tables are retrieved. Although all sessions are based
on the same database, the set of user-uploaded tracks, which are represented as tables, is not
the same, in general.

trackName The name of a track from which to retrieve a table. Each track can have multiple
tables. Many times there is a primary table that is used to display the track, while the other
tables are supplemental. Sometimes, tracks are displayed by aggregating multiple tables.

tableName The name of the specific table to retrieve. May be NULL, in which case the behavior
depends on how the query is executed, see below.

range A genome identifier, a GRanges or a RangesList indicating the portion of the table to
retrieve, in genome coordinates. Simply specifying the genome string is the easiest way to
download data for the entire genome, and GRangesForUCSCGenome facilitates download-
ing data for e.g. an entire chromosome.

16 UCSCTableQuery-class

names Names/accessions of the desired features

A common workflow for querying the UCSC database is to create an instance of UCSCTableQuery
using the ucscTableQuery constructor, invoke tableNames to list the available tables for a
track, and finally to retrieve the desired table either as a data.frame via getTable or as a
RangedData track via track. See the examples.

The reason for a formal query class is to facilitate multiple queries when the differences between the
queries are small. For example, one might want to query multiple tables within the track and/or same
genomic region, or query the same table for multiple regions. The UCSCTableQuery instance
can be incrementally adjusted for each new query. Some caching is also performed, which enhances
performance.

Constructor

ucscTableQuery(x, track, range = genome(x), table = NULL, names = NULL):
Creates a UCSCTableQuery with the UCSCSession given as x and the track name given
by the single string track. range should be a genome string identifier, a GRanges in-
stance or RangesList instance, and it effectively defaults to genome(x). If the genome
is missing, it is taken from the session. The table name is given by table, which may be a
single string or NULL. Feature names, such as gene identifiers, may be passed via names as
a character vector.

Executing Queries

Below, object is a UCSCTableQuery instance.

track(object, asRangedData = TRUE): Retrieves the indicated table as a track, i.e. a
RangedData instance. Note that not all tables are available as tracks. Pass asRangedData
= FALSE to obtain a GRanges object.

getTable(object): Retrieves the indicated table as a data.frame. Note that not all tables
are output in parseable form.

tableNames(object): Gets the names of the tables available for the session, track and range
specified by the query.

Accessor methods

In the code snippets below, x/object is a UCSCTableQuery object.

browserSession(object), browserSession(object) <- value: Get or set the
UCSCSession to query.

trackName(x), trackName(x) <- value: Get or set the single string indicating the track
containing the table of interest.

trackNames(x)List the names of the tracks available for retrieval for the assigned genome.

tableName(x), tableName(x) <- value: Get or set the single string indicating the name
of the table to retrieve. May be NULL, in which case the table is automatically determined.

range(x), range(x) <- value: Get or set the GRanges indicating the portion of the table
to retrieve in genomic coordinates. Any missing information, such as the genome identifier,
is filled in using range(browserSession(x)). It is also possible to set the genome
identifier string or a RangesList.

names(x), names(x) <- value: Get or set the names of the features to retrieve. If NULL,
this filter is disabled.

ucscSchema(x): Get the UCSCSchema object describing the selected table.

activeView-methods 17

Author(s)

Michael Lawrence

Examples

Not run:
session <- browserSession()
genome(session) <- "mm9"
trackNames(session) ## list the track names
choose the Conservation track for a portion of mm9 chr1
query <- ucscTableQuery(session, "Conservation",

GRangesForUCSCGenome("mm9", "chr12",
IRanges(57795963, 57815592))))

list the table names
tableNames(query)
get the phastCons30way track
tableName(query) <- "phastCons30way"
retrieve the track data
track(query)
get a data.frame summarizing the multiple alignment
tableName(query) <- "multiz30waySummary"
getTable(query)

genome(session) <- "hg18"
query <- ucscTableQuery(session, "snp129",

names = c("rs10003974", "rs10087355", "rs10075230"))
ucscSchema(query)
getTable(query)

End(Not run)

activeView-methods Accessing the active view

Description

Get the active view.

Methods

The following methods are defined by rtracklayer.

object = "BrowserSession" activeView(object): Gets the active BrowserView from a
browser session.

activeView(object) <- value: Sets the active BrowserView in a browser ses-
sion.

18 asBED

asBED Coerce to BED structure

Description

Coerce the structure of an object to one following BED-like conventions, i.e., with columns for
blocks and thick regions.

Usage

asBED(x, ...)
S4 method for signature 'GRangesList'
asBED(x)

Arguments

x Generally, a tabular object to structure as BED

... Arguments to pass to methods

Details

The exact behavior depends on the class of object.

GRangesList This treats object as if it were a list of transcripts, i.e., each element contains
the exons of a transcript. The blockStarts and blockSizes columns are derived from
the ranges in each element. Also, add name column from names(object).

Value

A GRangesList like object, with the columns name, blockStarts and blockSizes
added.

Author(s)

Michael Lawrence

Examples

Not run:
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
exons <- exonsBy(TxDb_Hsapiens_UCSC_hg19_knownGene)
values(asBED(exons))

End(Not run)

BasicTrackLine-class 19

BasicTrackLine-class
Class "BasicTrackLine"

Description

The type of UCSC track line used to annotate most types of tracks (every type except Wiggle).

Objects from the Class

Objects can be created by calls of the form new("BasicTrackLine", ...) or parsed from a
character vector track line with as(text, "BasicTrackLine") or converted from a GraphTrackLine
using as(wig, "BasicTrackLine").

Slots

itemRgb: Object of class "logical" indicating whether each feature in a track uploaded as
BED should be drawn in its specified color.

useScore: Object of class "logical" indicating whether the data value should be mapped to
color.

group: Object of class "character" naming a group to which this track should belong.

db: Object of class "character" indicating the associated genome assembly.

offset: Object of class "numeric", a number added to all positions in the track.

url: Object of class "character" referring to additional information about this track.

htmlUrl: Object of class "character" referring to an HTML page to be displayed with this
track.

name: Object of class "character" specifying the name of the track.

description: Object of class "character" describing the track.

visibility: Object of class "character" indicating the default visible mode of the track,
see UCSCTrackModes.

color: Object of class "integer" representing the track color (as from col2rgb).

priority: Object of class "numeric" specifying the rank of the track.

Extends

Class "TrackLine", directly.

Methods

as(object, "character") Export line to its string representation.

as(object, "GraphTrackLine") Convert this line to a graph track line, using defaults for slots
not held in common.

Author(s)

Michael Lawrence

20 blocks-methods

References

http://genome.ucsc.edu/goldenPath/help/customTrack.html#TRACK for the
official documentation.

See Also

GraphTrackLine for Wiggle/bedGraph tracks.

blocks-methods Get blocks/exons

Description

Obtains the block ranges (subranges, usually exons) from an object, such as a RangedData im-
ported from a BED file.

Usage

blocks(x, ...)

Arguments

x The instance from which to obtain the block/exon information. Currently must
be a RangedData or GenomicRanges, presumably imported with import.bed
or formatted with asBED.

... Additional arguments for methods

Details

For the RangedDatamethod, there must be two columns in x: blockStarts and blockSizes,
each field of which should be a comma-separated list of block starts and widths, respectively. This
comes from the BED specification.

Author(s)

Michael Lawrence

See Also

import.bed for importing a track from BED, which can store block information; asBED for
coercing an interval dataset into a BED-like structure that can be passed to this function.

http://genome.ucsc.edu/goldenPath/help/customTrack.html#TRACK

browseGenome 21

browseGenome Browse a genome

Description

A generic function for launching a genome browser.

Usage

browseGenome(object, ...)
S4 method for signature 'RangedDataORRangedDataList'
browseGenome(object,

browser = "UCSC", range = base::range(object),
view = TRUE, trackParams = list(), viewParams = list(),
name = "customTrack", ...)

Arguments

object A list of RangedData instances, e.g. a RangedDataList instance.

browser The name of the genome browser.

range A genome identifier or a GRanges or RangesList to display in the initial
view.

view Whether to open a view.

trackParams Named list of parameters to pass to track<-.

viewParams Named list of parameters to pass to browserView.

name The name for the track. Ignored if object is a RangedDataList, in which
case the names are taken from the list names.

... Arguments passed to browserSession.

Value

Returns a BrowserSession.

Author(s)

Michael Lawrence

See Also

BrowserSession and BrowserView, the two main classes for interfacing with genome browsers.

Examples

Not run:
open UCSC genome browser:
browseGenome()
to view a specific range:
range <- GRangesForUCSCGenome("hg18", "chr22", IRanges(20000, 50000))
browseGenome(range = range)
a slightly larger range:

22 BrowserSession-class

browseGenome(range = range, end = 75000)
with a track:
track <- import(system.file("tests", "v1.gff", package = "rtracklayer"))
browseGenome(RangedDataList(track))

End(Not run)

BrowserSession-class
Class "BrowserSession"

Description

An object representing a genome browser session. As a derivative of TrackDb, each session
contains a set of loaded tracks. In addition, it has a set of views, in the form of BrowserView
instances, on those tracks. Note that this is a virtual class; a concrete implementation is provided
by each backend driver.

Objects from the Class

A virtual Class: No objects may be created from it. See browserSession for obtaining an
instance of an implementation for a particular genome browser.

Methods

This specifies the API implemented by each browser backend. Note that a backend is not required
to support all operations, and that each backend often has additional parameters for each of the
methods. See the backend-specific documentation for more details. The only built-in backend is
UCSCSession.

If a method is denoted as virtual, it must be implemented by the backend to support the correspond-
ing feature. Otherwise, the fallback behavior is described.

virtual browserView(object, range = range(object), track = trackNames(object), ...)
Constructs a BrowserView of range for this session.

virtual browserViews(object, ...) Gets the BrowserView instances belonging to this
session.

activeView(object, ...) Returns the BrowserView that is currently active in the ses-
sion. Fallback calls browserViews and queries each view with activeView.

range(x, ...) Gets the GRanges representing the range of the genome currently displayed
by the browser (i.e. the range shown by the active view) or a default value (possibly NULL) if
no views exist.

virtual getSeq(object, range = range(object), ...) gets a genomic sequence of
range from this session.

virtual sequence(object, ...) <- value Loads a sequence into the session.

virtual track(object, name = deparse(substitute(track)), view = TRUE, ...) <- value
Loads one or more tracks into the session and optionally open a view of the track. The de-
fault implementation will coerce value to RangedData, so the backend should implement
at least a method for RangedData.

x[[i]] <- value Loads the track value into session x, under the name i. Shortcut to above.

browserSession-methods 23

x$name <- value Loads the track value into session x, under the name name. Shortcut to
above.

virtual track(object, ...) Gets a track from a session as a RangedData.

x[[i]] Gets the track named i from session x. A shortcut to track.

x$name Gets the track named name from session x. A shortcut to track.

virtual trackNames(object, ...) Gets the names of the tracks stored in this session.

virtual genome(x), genome(x) <- value Gets or sets the genome identifier (e.g. “hg18”)
for the session.

virtual close(con, ...) Close this session.

show(object, ...) Output a textual description of this session.

Author(s)

Michael Lawrence

See Also

browserSession for obtaining implementations of this class for a particular genome browser.

browserSession-methods
Get a genome browser session

Description

Methods for getting browser sessions.

Methods

The following methods are defined by rtracklayer.

object = "character" browserSession(object, ...): Creates a BrowserSession from
a genome browser identifier. The identifier corresponds to the prefix of the session class name
(e.g. "UCSC" in "UCSCSession"). The arguments in . . . are passed to the initialization func-
tion of the class.

object = "browserView" Gets the BrowserSession for the view.

object = "missing" Calls browserSession("ucsc", ...).

24 BrowserView-class

BrowserView-class Class "BrowserView"

Description

An object representing a genome browser view of a particular segment of a genome.

Objects from the Class

A virtual Class: No objects may be created from it directly. See browserView for obtaining an
instance of an implementation for a particular genome browser.

Slots

session: Object of class "BrowserSession" the browser session to which this view belongs.

Methods

This specifies the API implemented by each browser backend. Note that a backend is not guaranteed
to support all operations. See the backend-specific documentation for more details. The only built-
in backend is UCSCView.

browserSession(object) Obtains the BrowserSession to which this view belongs.

close(object) Close this view.

range(object) Obtains the GRanges displayed by this view.

trackNames(object) Gets the names of the visible tracks in the view.

trackNames(object) <- value Sets the visible tracks by their names.

show(object) Outputs a textual description of this view.

visible(object) Get a named logical vector indicating whether each track is visible.

visible(object) <- value Set a logical vector indicating the visibility of each track, with
the same names and in the same order as that returned by visible(object).

Author(s)

Michael Lawrence

See Also

browserView for obtaining instances of this class.

browserView-methods 25

browserView-methods
Getting browser views

Description

Methods for creating and getting browser views.

Usage

browserView(object, range, track, ...)

Arguments

object The object from which to get the views.

range The GRanges or RangesList to display. If there are multiple elements, a
view is created for each element and a BrowserViewList is returned.

track List of track names to make visible in the view.

... Arguments to pass to methods

Methods

The following methods are defined by rtracklayer.

object = "UCSCSession" browserView(object, range = range(object), track
= trackNames(object), imagewidth = 800, ...): Creates a BrowserView
of rangewith visible tracks specified by track. The imagewidth parameter specifies the
width of the track image in pixels. track may be an instance of UCSCTrackModes. Argu-
ments in ... are passed to ucscTrackModes to create the UCSCTrackModes instance
that will override modes indicated by the track parameter.

Examples

Not run:
session <- browserSession()
browserView(session,

GRangesForUCSCGenome("hg19", "chr2", IRanges(20000, 50000)))
only view "knownGene" track
browserView(session, track = "knownGene")

End(Not run)

26 cpneTrack

browserViews-methods
Getting the browser views

Description

Methods for getting browser views.

Methods

The following methods are defined by rtracklayer.

Gets the instances of BrowserView in the session.

See Also

object = "UCSCSession" browserView for creating a browser view.

Examples

Not run:
session <- browseGenome()
browserViews(session)

End(Not run)

cpneTrack CPNE1 SNP track

Description

A RangedData object (created by the GGtools package) with features from a subset of the SNPs
on chromosome 20 from 60 HapMap founders in the CEU cohort. Each SNP has an associated data
value indicating its association with the expression of the CPNE1 gene according to a Cochran-
Armitage 1df test. The top 5000 scoring SNPs were selected for the track.

Usage

data(cpneTrack)

Format

Each feature (row) is a SNP. The association test scores are accessible via score.

Source

Vince Carey and the GGtools package.

Examples

data(cpneTrack)
plot(start(cpneTrack), score(cpneTrack))

export 27

export Export objects to connections

Description

Exports (serializes) an object in a given format to a given connection.

Usage

export(object, con, format, ...)

Arguments

object The object to export.

con The connection to which the object is exported. If this is a character vector, it
is assumed to be a filename and a corresponding file connection is created and
then closed after exporting the object. If missing, the function will return the
output as a character vector, rather than writing to a connection.

format The format of the output. If missing and con is a filename, the format is derived
from the file extension.

... Parameters to pass to the format-specific export routine.

Details

This function delegates to another function, depending on the specified format. The name of the
delegate is of the form export.format where format is specified by the format argument.

Value

If con is missing, a character vector containing the string output. Otherwise, nothing is returned.

Author(s)

Michael Lawrence

See Also

import for the reverse

Examples

track <- import(system.file("tests", "v1.gff", package = "rtracklayer"))
Not run: export(track, "my.gff", version = "3")
equivalently,
Not run: export(track, "my.gff3")
or
Not run:
con <- file("my.gff3")
export(track, con, "gff3")
close(con)

End(Not run)

28 export-tracks

or as a string
export(track, format = "gff3")

export-tracks Export tracks

Description

These functions output RangedData instances in various formats.

Usage

export.gff(object, con, version = c("1", "2", "3"), source =
"rtracklayer", append = FALSE, ...)

export.gff1(object, con, ...)
export.gff2(object, con, ...)
export.gff3(object, con, ...)
export.bed(object, con, variant = c("base", "bedGraph", "bed15"),

color = NULL, append = FALSE, ...)
export.bed15(object, con, expNames = NULL, ...)
export.bedGraph(object, con, ...)
export.wig(object, con,

dataFormat = c("auto", "variableStep", "fixedStep"), ...)
export.ucsc(object, con, subformat = c("auto", "gff1", "wig", "bed",

"bed15", "bedGraph"), append = FALSE, ...)
not yet supported on Windows
export.bw(object, con,

dataFormat = c("auto", "variableStep", "fixedStep", "bedGraph"),
seqlengths = GenomicRanges::seqlengths(object), compress = TRUE, ...)

Arguments

object The object to export, such as a RangedData, or anything coercible to a RangedData.
If a UCSCData, the track line information is output. In the case of export.bed15,
export.bedGraph, export.wig, and export.ucsc, a RangedDataList
object with possibly multiple tracks is supported.

con The connection to which the object is exported.

version The GFF version, either "1", "2" or "3" (default is "1").

source The source of the GFF information, for GFF.

variant Which variant of BED lines to output, not for the user.

color Recycled vector of colors, as interpreted by col2rgb for BED features. If
NULL, the color column in the featureData is used, if any.

dataFormat The format of the data lines for WIG tracks, see references. The "auto" format
uses the most efficient format possible.

subformat The format of the tracks within the UCSC container. If "auto", the type is de-
termined from the trackline. If object is not a UCSCData, this essentially
means "wig" or "bedGraph" (depending on the density) if there is a numeric
score, else "bed".

export-tracks 29

expNames Names of the columns in object that hold the experimental data. Defaults to
all column names, unless object is a UCSCData, in which case the expNames
field is taken from the track line, if it exists.

seqlengths The lengths of each sequence in object. If seqinfo(object) is missing
sequence lengths, an attempt is made to retrieve the sequence lengths from an
installed BSgenome package or UCSC, as long as there is a matching genome
identifier.

append Logical, whether to append the output to the connection

compress Logical, indicating whether to compress the bigWig output

... For export.gff1, export.gff2 and export.gff3: arguments to pass
to export.gff. For export.bed: arguments to pass to methods. For
export.bed15, export.bedGraph and export.wig: arguments to pass
to export.ucsc. For export.ucsc: arguments to pass to export.subformat
or to set on the slots of the TrackLine subclass corresponding to subformat.

Details

The following is some advice for choosing a file format.

GFF The General Feature Format is meant to represent any set of genomic features, with application-
specific columns represented as “attributes”. There are three principal versions (1, 2, and 3).
This is a good format for interoperating with other genomic tools. UCSC supports GFF1, but
it needs to be encapsulated in the UCSC metaformat, i.e. export.ucsc(subformat =
"gff1").

BED The Browser Extended Display format is for displaying tracks in a genome browser, in particu-
lar UCSC. There are many options to control the appearance of the track, see GraphTrackLine.
To output a track line when object is not a UCSCData, call export.ucsc(subformat
= "bed").

BED15 An extension of BED with 15 columns, Bed15 is meant to represent data from microarray
experiments. Multiple samples/columns are supported, and the data is displayed as a compact
heatmap. With 15 columns per feature, this format is probably too verbose for e.g. ChIP-seq
coverage (use multiple WIG tracks instead).

BEDGRAPH A variant of BED that represents experimental data more compactly than BED and
especially BED15, although only one sample is supported. The data is displayed as a bar or
line graph. For dense data, WIG is preferred.

WIG The Wiggle format is meant for storing dense numerical data, such as the coverage from a
ChIP-seq experiment. The data is displayed as a bar or line graph.

In summary, BED is usually best for displaying qualitative features or sparse quantiative features
(like ChIP-seq peaks), while WIG is usually best for displaying dense data like coverage.

In general, columns in the RangedData are mapped to the column in the track format of the same
name. For example, a column named “itemRgb” will be mapped to the corresponding column in
BED-formatted output, while it is ignored for other formats. Missing values are mapped between
NA in R and the format-specific missing value indicator, usually “.”. The following describes how
the RangedData object is mapped to each track format. Default values for columns are given in
parentheses.

GFF Maps columns named “source” (“rtracklayer”), “feature” (“sequence”), “score” (“.”), “strand”
(“.”), “frame” (“.”), and (version 1 only) “group” (seqname). In GFF versions 2 and 3, extra
columns are mapped to attributes.

30 export-tracks

BED Maps columns named “name” (“.”), “score” (“.”), “strand” (“.”), “thickStart” (start), “thick-
End” (end), “itemRgb” (“0,0,0”), “blockSizes”, and “blockStarts”. Note that the BED field
“blockCounts” is derived automatically. The intervals specified by “thickStart”, “thickEnd”
and “blockStarts” are 0-based, half-open as in BED. Note that this is different from the chro-
mosome start/end stored in the Ranges object (1-based, closed). The “itemRgb” column
should be specified in a format understood by col2rgb.

BED15 In addition to the behavior for BED above, encodes columns named by the expNames
parameter into the fields “expCount”, “expIds” and “expScores”.

BEDGRAPH The “score” column is used for the quantitative values.

WIG The “score” column is used for the quantitative values.

The graph formats do not encode a strand. Thus, when targeting the UCSC format, if a track
contains features from multiple strands, one track will be output for each strand. The string "m",
"p" or "NA" is appended to the base track name for the minus, plus and NA/* strand, respectively.

Value

If con is missing, a character vector containing the string output, otherwise nothing.

Author(s)

Michael Lawrence

References

GFF1 and GFF2 http://www.sanger.ac.uk/Software/formats/GFF

GFF3 http://www.sequenceontology.org/gff3.shtml

BED http://genome.ucsc.edu/goldenPath/help/customTrack.html#BED

WIG http://genome.ucsc.edu/goldenPath/help/wiggle.html

UCSC http://genome.ucsc.edu/goldenPath/help/customTrack.html

See Also

See export for the high-level interface to these functions.

Examples

dummy <- file() # dummy file connection for demo
track <- import(system.file("tests", "bed.wig", package = "rtracklayer"))
output a track as GFF2
export.gff(track, dummy, version = "2")
equivalently
export.gff2(track, dummy)
output as WIG string in variableStep format
wig <- export.wig(track, dummy, dataFormat = "variableStep")
output multiple tracks in UCSC meta-format
track2 <- import(system.file("tests", "v1.gff", package = "rtracklayer"))
output to WIG
library(IRanges) # for the RangedDataList() constructor
export.ucsc(RangedDataList(track, track2), dummy, subformat = "wig")

http://www.sanger.ac.uk/Software/formats/GFF
http://www.sequenceontology.org/gff3.shtml
http://genome.ucsc.edu/goldenPath/help/customTrack.html#BED
http://genome.ucsc.edu/goldenPath/help/wiggle.html
http://genome.ucsc.edu/goldenPath/help/customTrack.html

genomeBrowsers 31

genomeBrowsers Get available genome browsers

Description

Gets the identifiers of the loaded genome browser drivers.

Usage

genomeBrowsers(where = topenv(parent.frame()))

Arguments

where The environment in which to search for drivers.

Details

This searches the specified environment for classes that extend BrowserSession. The prefix of
the class name, e.g. "ucsc" in "UCSCSession", is returned for each driver.

Value

A character vector of driver identifiers.

Author(s)

Michael Lawrence

See Also

browseGenome and browserSession that create browserSession implementations given
an identifier returned from this function.

import Importing objects

Description

Imports an object from a connection according to a specified format.

Usage

import(con, format, text, ...)

32 import.gff

Arguments

con The connection through which the data is received. If this is a character vector,
it is assumed to be a filename.

format The format in which to expect the input. If omitted and con is a filename, the
format is taken from the file extension.

text If con is missing, this can be a character vector directly providing the string
data to import.

... Arguments to pass to the format-specific import routines.

Details

This function delegates to a format-specific function named according to the scheme import.format
where format is specified by the format parameter.

Value

The object parsed from the connection or text.

Author(s)

Michael Lawrence

See Also

export to do the reverse.

Examples

track <- import(system.file("tests", "bed.wig", package = "rtracklayer"))
track <- import(system.file("tests", "v1.gff", package = "rtracklayer"), version = "1")
or
track <- import(system.file("tests", "v1.gff", package = "rtracklayer"), "gff1")

import.gff Importing tracks

Description

These are the functions for importing RangedData instances from connections or text.

Usage

import.gff(con, version = c("1", "2", "3"), genome = NULL,
asRangedData = TRUE, colnames = NULL)

import.gff1(con, ...)
import.gff2(con, ...)
import.gff3(con, ...)
import.bed(con, variant = c("base", "bedGraph", "bed15"),

trackLine = TRUE, genome = NULL,
asRangedData = TRUE, colnames = NULL, ...)

import.bed15(con, genome = NULL, asRangedData = TRUE, ...)

import.gff 33

import.bedGraph(con, genome = NULL, asRangedData = TRUE, ...)
import.wig(con, genome = NULL, asRangedData = TRUE, ...)
import.ucsc(con,

subformat = c("auto", "gff1", "wig", "bed", "bed15", "bedGraph"),
drop = FALSE, asRangedData = TRUE, ...)

not yet supported on Windows
import.bw(con, ...)

Arguments

con The connection, filename or URL from which to receive the input.

version The version of GFF ("1", "2" or "3").

genome The genome to set on the imported track.

asRangedData A logical value. If TRUE, a RangedData object is returned. If FALSE, a GRanges
object is returned.

variant Variant of BED lines, not for the user.

trackLine Whether the BED data has a track line (it normally does though track lines are
not mandatory).

subformat The expected subformat of the UCSC data. If "auto", automatic detection of the
subformat is attempted.

drop If TRUE and there is only one track in the UCSC data, return the track instead of
a list.

colnames Character vector indicating which columns (excluding the required sequence
name, start and end) should be imported. If NULL, all columns are imported.
This allows some significant optimizations, especially when it is not necessary
to import GFF attributes attributes, which are expensive to parse.

... For import.gff1, import.gff2 and import.gff3: arguments to pass
to import.gff. For import.ucsc: arguments to pass on to import.subformat.
For the others, arguments to pass to methods. See BigWigFile for additional
arguments on import.bw.

Value

For all but import.ucsc, an instance of RangedData (or one of its subclasses) or GRanges
if asRangedData is TRUE or FALSE respectively.

For import.ucscwhen drop is FALSE, an instance of RangedDataList or GRangesList
if asRangedData is TRUE or FALSE respectively.

Author(s)

Michael Lawrence and Patrick Aboyoun

References

GFF1 and GFF2 http://www.sanger.ac.uk/Software/formats/GFF

GFF3 http://www.sequenceontology.org/gff3.shtml

BED http://genome.ucsc.edu/goldenPath/help/customTrack.html#BED

WIG http://genome.ucsc.edu/goldenPath/help/wiggle.html

UCSC http://genome.ucsc.edu/goldenPath/help/customTrack.html

http://www.sanger.ac.uk/Software/formats/GFF
http://www.sequenceontology.org/gff3.shtml
http://genome.ucsc.edu/goldenPath/help/customTrack.html#BED
http://genome.ucsc.edu/goldenPath/help/wiggle.html
http://genome.ucsc.edu/goldenPath/help/customTrack.html

34 sequence<–methods

See Also

import for the high-level interface to these routines.

Examples

import a GFF V2 file
gffRD <- import.gff(system.file("tests", "v2.gff", package = "rtracklayer"),

version = "2")
gffGR <- import.gff(system.file("tests", "v2.gff", package = "rtracklayer"),

version = "2", asRangedData = FALSE)
or
gffRD <- import.gff2(system.file("tests", "v2.gff", package = "rtracklayer"))
gffGR <- import.gff2(system.file("tests", "v2.gff", package = "rtracklayer"),

asRangedData = FALSE)

import a WIG file
wigRD <- import.wig(system.file("tests", "bed.wig", package = "rtracklayer"))
wigGR <- import.wig(system.file("tests", "bed.wig", package = "rtracklayer"),

asRangedData = FALSE)
or
wigRD <- import.ucsc(system.file("tests", "bed.wig", package = "rtracklayer"),

subformat = "wig", drop = TRUE)
wigGR <- import.ucsc(system.file("tests", "bed.wig", package = "rtracklayer"),

subformat = "wig", drop = TRUE, asRangedData = FALSE)

bigWig
Not run:

bw <- import(system.file("tests", "test.bw", package = "rtracklayer"),
ranges = GenomicRanges::GRanges("chr19", IRanges(1, 6e7)))

End(Not run)

sequence<-methods Load a sequence

Description

Methods for loading sequences.

Methods

No methods are defined by rtracklayer for the sequence(object, ...) <- value
generic.

track<–methods 35

track<-methods Laying tracks

Description

Methods for loading RangedData instances (tracks) into genome browsers.

Usage

S4 replacement method for signature 'BrowserSession,RangedData'
track(object, name = deparse(substitute(track)), view = FALSE, ...) <- value

Arguments

object A BrowserSession into which the track is loaded.

value The track(s) to load.

name The name(s) of the track(s) being loaded.

view Whether to create a view of the track after loading it.

... Arguments to pass on to methods.

Methods

The following methods are defined by rtracklayer. A browser session implementation must imple-
ment a method for either RangedData or RangedDataList. The base browserSession
class will delegate appropriately.

object = "BrowserSession", value = "RangedData" Load this track into the session.

object = "BrowserSession", value = "RangedDataList" Load all tracks into the session.

object = "UCSCSession", value = "RangedDataList" track(object, name = deparse(substitute(track)),
view = FALSE, format = "gff", ...) <- value: Load the tracks into the
session using the specified format. The arguments in ... are passed on to export.ucsc,
so they could be slots in a TrackLine subclass or parameters to pass on to the export func-
tion for format.

See Also

track for getting a track from a session.

Examples

Not run:
session <- browserSession()
track <- import(system.file("tests", "v1.gff", package = "rtracklayer"))
track(session, "My Track") <- track

End(Not run)

36 liftOver

liftOver Lift intervals between genome builds

Description

A reimplementation of the UCSC liftover tool for lifting features from one genome build to another.
In our preliminary tests, it is significantly faster than the command line tool. Like the UCSC tool, a
chain file is required input.

Usage

liftOver(x, chain, ...)

Arguments

x The intervals to lift-over, usually a GRanges.

chain A Chain object, usually imported with import.chain.

... Arguments for methods.

Value

A GRanges object, with intervals mapped through the chain.

Author(s)

Michael Lawrence

References

http://genome.ucsc.edu/cgi-bin/hgLiftOver

Examples

Not run:
chain <- import.chain("hg19ToHg18.over.chain")
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
tx_hg19 <- transcripts(TxDb.Hsapiens.UCSC.hg19.knownGene)
tx_hg18 <- liftOver(tx_hg19, chain)

End(Not run)

http://genome.ucsc.edu/cgi-bin/hgLiftOver

targets 37

targets microRNA target sites

Description

A data frame of human microRNA target sites retrieved from MiRBase. This is a subset of the
hsTargets data frame in the microRNA package. See the rtracklayer vignette for more
details.

Usage

data(targets)

Format

A data frame with 2981 observations on the following 6 variables.

name The miRBase ID of the microRNA.

target The Ensembl ID of the targeted transcript.

chrom The name of the chromosome for target site.

start Target start position.

end Target stop position.

strand The strand of the target site, "+", or "-".

Source

The microRNA package, dataset hsTargets. Originally MiRBase (http://microrna.
sanger.ac.uk/).

Examples

data(targets)
targetTrack <- with(targets,

GenomicData(IRanges::IRanges(start, end),
strand = strand, chrom = chrom))

tracks-methods Accessing track names

Description

Methods for getting and setting track names.

http://microrna.sanger.ac.uk/
http://microrna.sanger.ac.uk/

38 ucscGenomes

Methods

The following methods are defined by rtracklayer for getting track names via the generic
trackNames(object, ...).

Get the tracks loaded in the session.

object = "UCSCSession"object = "UCSCTrackModes" Get the visible tracks according to the modes
(all tracks not set to "hide").

object = "UCSCView" Get the visible tracks in the view.
The following methods are defined by rtracklayer for setting track names via the generic
trackNames(object) <- value.

object = "UCSCTrackModes" Sets the tracks that should be visible in the modes. All specified
tracks with mode "hide" in object are set to mode "full". Any tracks in object that are
not specified in the value are set to "hide". No other modes are changed.

object = "UCSCView" Sets the visible tracks in the view. This opens a new web browser with
only the specified tracks visible.

ucscGenomes Get available genomes on UCSC

Description

Get a data.frame describing the available UCSC genomes.

Usage

ucscGenomes()

Value

A data.frame with the following columns:

db UCSC DB identifier (e.g. "hg18")

species The name of the species (e.g. "Human")

date The date the genome was built

name The official name of the genome build

Author(s)

Michael Lawrence

See Also

UCSCSession for details on specifying the genome.

Examples

ucscGenomes()

UCSCSession-class 39

UCSCSession-class Class "UCSCSession"

Description

An implementation of BrowserSession for the UCSC genome browser.

Objects from the Class

Objects can be created by calls of the form browserSession("ucsc", url = "http://genome.ucsc.edu/cgi-
bin", ...). The arguments in ... correspond to libcurl options, see getCurlHandle. Set-
ting these options may be useful e.g. for getting past a proxy.

Slots

url: Object of class "character" holding the base URL of the UCSC browser.
hguid: Object of class "numeric" holding the user identification code.
views: Object of class "environment" containing a list stored under the name "instances".

The list holds the instances of BrowserView for this session.

Extends

Class "BrowserSession", directly.

Methods

browserView(object, range = range(object), track = trackNames(object), ...)
Creates a BrowserView of range with visible tracks specified by track. track may
be an instance of UCSCTrackModes. Arguments in ... should match parameters to a
ucscTrackModes method for creating a UCSCTrackModes instance that will be merged
with and override modes indicated by the track parameter.

browserViews(object) Gets the BrowserView instances for this session.
range(x, asRangedData = TRUE) Gets the GRanges last displayed in this session. Set asRangedData

to FALSE to obtain a GRanges object.
genome(x) Gets the genome identifier of the session, i.e. genome(range(x)).
seqinfo Gets the Seqinfo object with the lengths of the chromosomes in the currenet genome.

No circularity information is available.
range(x) <- value Sets value, usually a GRanges object or RangesList, as the range

of session x. Note that this setting only lasts until a view is created or manipulated. This
mechanism is useful, for example, when treating the UCSC browser as a database, rather than
a genome viewer.

genome(x) <- value Sets the genome identifier on the range of session x.
getSeq(object, range, track = "Assembly") Gets the sequence in range and track.
track(object, name = names(track), format = "auto", ...) <- value

Loads a track, stored under name and formatted as format. The "auto" format resolves to
"bed" for qualitative data. For quantitative data, i.e., data with a numeric score column,
"wig" or "bedGraph" is chosen, depending on how well the data compresses into wig. The
arguments in ... are passed on to export.ucsc, so they could be slots in a TrackLine
subclass (and thus specify visual attributes like color) or parameters to pass on to the export
function for format.

40 TrackLine-class

track(object, name, range = range(object), table = NULL) Retrieves a RangedData
with features in range from track named name. Some built-in tracks have multiple series,
each stored in a separate database table. A specific table may be retrieved by passing its name
in the table parameter. See tableNames for a way to list the available tables.

trackNames(object) Gets the names of the tracks stored in the session.

ucscTrackModes(object) Gets the default view modes for the tracks in the session.

Author(s)

Michael Lawrence

See Also

browserSession for creating instances of this class.

TrackLine-class Class "TrackLine"

Description

An object representing a "track line" in the UCSC format. There are two concrete types of track lines:
BasicTrackLine (used for most types of tracks) and GraphTrackLine (used for graphical
tracks). This class only declares the common elements between the two.

Objects from the Class

Objects can be created by calls of the form new("TrackLine", ...) or parsed from a char-
acter vector track line with as(text, "TrackLine"). But note that UCSC only understands
one of the subclasses mentioned above.

Slots

name: Object of class "character" specifying the name of the track.

description: Object of class "character" describing the track.

visibility: Object of class "character" indicating the default visible mode of the track,
see UCSCTrackModes.

color: Object of class "integer" representing the track color (as from col2rgb).

priority: Object of class "numeric" specifying the rank of this track.

Methods

as(object, "character") Export line to its string representation.

Author(s)

Michael Lawrence

References

http://genome.ucsc.edu/goldenPath/help/customTrack.html#TRACK for the
official documentation.

http://genome.ucsc.edu/goldenPath/help/customTrack.html#TRACK

UCSCTrackModes-class 41

See Also

BasicTrackLine (used for most types of tracks) and GraphTrackLine (used for Wiggle/bedGraph
tracks).

UCSCTrackModes-class
Class "UCSCTrackModes"

Description

A vector of view modes ("hide", "dense", "full", "pack", "squish") for each track in a UCSC view.

Objects from the Class

Objects may be created by calls of the form ucscTrackModes(object = character(),
hide = character(), dense = character(), pack = character(), squish
= character(), full = character()), where object should be a character vector of
mode names (with its names attribute specifying the corresponding track names). The other pa-
rameters should contain track names that override the modes in object. Later parameters override
earlier ones, so, for example, if a track is named in hide and full, it is shown in the full view
mode.

Slots

.Data: Object of class "character" holding the modes ("hide", "dense", "full", "pack", "squish"),
with its names attribute holding corresponding track names.

labels: Object of class "character" holding labels (human-readable names) corresponding
to each track/mode.

Extends

Class "character", from data part. Class "vector", by class "character", distance 2.

Methods

trackNames(object) Gets the names of the visible tracks (those that do not have mode
"hide").

trackNames(object) <- value Sets the names of the visible tracks. Any tracks named
in value are set to "full" if the are currently set to "hide" in this object. Any tracks not in
value are set to "hide". All other modes are preserved.

object[i] Gets the track mode of the tracks indexed by i, which can be any type of index
supported by character vector subsetting. If i is a character vector, it indexes first by the
internal track IDs (the names on .Data) and then by the user-level track names (the labels
slot).

object[i] <- value Sets the track modes indexed by i (in the same way as in object[i]
above) to those specified in value.

Author(s)

Michael Lawrence

42 ucscTrackModes-methods

See Also

UCSCView on which track view modes may be set.

ucscTrackModes-methods
Accessing UCSC track modes

Description

Generics for getting and setting UCSC track visibility modes ("hide", "dense", "full", "pack",
"squish").

Methods

The following methods are defined by rtracklayer for getting the track modes through the
generic ucscTrackModes(object, ...).

function(object, hide = character(), dense = character(), pack =
character(), squish = character(), full = character())Creates an in-
stance of UCSCTrackModes from object, a character vector of mode names, with the cor-
responding track ids given in the names attribute. Note that object can be a UCSCTrackModes
instance, as UCSCTrackModes extends character. The other parameters are character
vectors identifying the tracks for each mode and overriding the modes specified by object.

object = "character"object = "missing" The same interface as above, except object defaults to an
empty character vector.

object = "UCSCView" Gets modes for tracks in the view.

object = "UCSCSession" Gets default modes for the tracks in the session. These are the modes
that will be used as the default for a newly created view.
The following methods are defined by rtracklayer for setting the track modes through the
generic ucscTrackModes(object) <- value.

object = "UCSCView", value = "UCSCTrackModes" Sets the modes for the tracks in the view.

object = "UCSCView", value = "character" Sets the modes from a character vector of mode
names, with the corresponding track names given in the names attribute.

See Also

trackNames and trackNames<- for just getting or setting which tracks are visible (not of
mode "hide").

Examples

Tracks "foo" and "bar" are fully shown, "baz" is hidden
modes <- ucscTrackModes(full = c("foo", "bar"), hide = "baz")
Update the modes to hide track "bar"
modes2 <- ucscTrackModes(modes, hide = "bar")

UCSCView-class 43

UCSCView-class Class "UCSCView"

Description

An object representing a view of a genome in the UCSC browser.

Objects from the Class

Calling browserView(session, range = range(object), track = trackNames(object),
...) creates BrowserView of range with visible tracks specified by track. track may be
an instance of UCSCTrackModes. Arguments in ... should match parameters to a ucscTrackModes
method for creating a UCSCTrackModes instance that will be merged with and override modes
indicated by the track parameter.

Slots

hgsid: Object of class "numeric", which identifies this view to UCSC.

session: Object of class "BrowserSession" to which this view belongs.

Extends

Class "BrowserView", directly.

Methods

activeView(object) Obtains a logical indicating whether this view is the active view.

range(object) Obtains the GRanges displayed by this view.

range(object) <- value Sets the GRanges or RangesList displayed by this view.

trackNames(object) Gets the names of the visible tracks in this view.

trackNames(object) <- value Sets the visible tracks by name.

visible(object) Get a named logical vector indicating whether each track is visible.

visible(object) <- value Set a logical vector indicating the visibility of each track, in
the same order as returned by visible(object).

ucscTrackModes(object) Obtains the UCSCTrackModes for this view.

ucscTrackModes(object) <- value Sets the UCSCTrackModes for this view. The
value may be either a UCSCTrackModes instance or a character vector that will be co-
erced by a call to ucscTrackModes.

Author(s)

Michael Lawrence

See Also

browserView for creating instances of this class.

44 GraphTrackLine-class

GraphTrackLine-class
Class "GraphTrackLine"

Description

A UCSC track line for graphical tracks.

Objects from the Class

Objects can be created by calls of the form new("GraphTrackLine", ...) or parsed from a
character vector track line with as(text, "GraphTrackLine") or converted from a BasicTrackLine
using as(basic, "GraphTrackLine").

Slots

altColor: Object of class "integer" giving an alternate color, as from col2rgb.

autoScale: Object of class "logical" indicating whether to automatically scale to min/max
of the data.

gridDefault: Object of class "logical" indicating whether a grid should be drawn.

maxHeightPixels: Object of class "numeric" of length three (max, default, min), giving
the allowable range for the vertical height of the graph.

graphType: Object of class "character", specifying the graph type, either "bar" or "points".

viewLimits: Object of class "numeric" and of length two specifying the data range (min,
max) shown in the graph.

yLineMark: Object of class "numeric" giving the position of a horizontal line.

yLineOnOff: Object of class "logical" indicating whether the yLineMark should be visi-
ble.

windowingFunction: Object of class "character", one of "maximum", "mean", "mini-
mum", for removing points when the graph shrinks.

smoothingWindow: Object of class "numeric" giving the window size of a smoother to pass
over the graph.

type: Scalar "character" indicating the type of the track, either "wig" or "bedGraph".

name: Object of class "character" specifying the name of the track.

description: Object of class "character" describing the track.

visibility: Object of class "character" indicating the default visible mode of the track,
see UCSCTrackModes.

color: Object of class "integer" representing the track color (as from col2rgb).

priority: Object of class "numeric" specifying the rank of this track.

Extends

Class "TrackLine", directly.

GraphTrackLine-class 45

Methods

as(object, "character") Export line to its string representation.

as(object, "BasicTrackLine") Convert this line to a basic UCSC track line, using defaults for
slots not held in common.

Author(s)

Michael Lawrence

References

Official documentation: http://genome.ucsc.edu/goldenPath/help/wiggle.html.

See Also

export.wig, export.bedGraph for exporting graphical tracks.

http://genome.ucsc.edu/goldenPath/help/wiggle.html

Index

∗Topic IO
export, 27
export-tracks, 28
import, 31
import.gff, 32

∗Topic classes
BasicTrackLine-class, 19
Bed15TrackLine-class, 1
BigWigFile-class, 2
BigWigSelection-class, 3
BrowserSession-class, 22
BrowserView-class, 24
BrowserViewList-class, 4
Chain-class, 4
GraphTrackLine-class, 44
Quickload-class, 6
QuickloadGenome-class, 7
RangedData-methods, 9
RangesList-methods, 11
RTLFile-class, 9
TrackDb-class, 12
TrackLine-class, 40
TwoBitFile-class, 13
UCSCData-class, 14
UCSCSchema-class, 14
UCSCSession-class, 39
UCSCTableQuery-class, 15
UCSCTrackModes-class, 41
UCSCView-class, 43

∗Topic datasets
cpneTrack, 26
targets, 37

∗Topic interface
browseGenome, 21
genomeBrowsers, 31
ucscGenomes, 38

∗Topic manip
blocks-methods, 20
GenomicSelection, 6

∗Topic methods
activeView-methods, 17
BigWigFile-class, 2
BigWigSelection-class, 3

blocks-methods, 20
browserSession-methods, 23
browserView-methods, 25
browserViews-methods, 26
Chain-class, 4
Quickload-class, 6
QuickloadGenome-class, 7
RangedData-methods, 9
RangesList-methods, 11
RTLFile-class, 9
sequence<-methods, 34
track<-methods, 35
TrackDb-class, 12
tracks-methods, 37
TwoBitFile-class, 13
UCSCSchema-class, 14
UCSCTableQuery-class, 15
ucscTrackModes-methods, 42

[,UCSCTrackModes-method
(UCSCTrackModes-class), 41

[<-,UCSCTrackModes,ANY,ANY,ANY-method
(UCSCTrackModes-class), 41

[[,Quickload-method
(Quickload-class), 6

[[,TrackDb-method
(TrackDb-class), 12

[[<-,TrackDb-method
(TrackDb-class), 12

$,Quickload-method
(Quickload-class), 6

$,TrackDb-method (TrackDb-class),
12

$<-,TrackDb-method
(TrackDb-class), 12

activeView, 22, 43
activeView (activeView-methods),

17
activeView,BrowserSession-method

(activeView-methods), 17
activeView,UCSCView-method

(activeView-methods), 17
activeView-methods, 17

46

INDEX 47

activeView<-
(activeView-methods), 17

activeView<-methods
(activeView-methods), 17

asBED, 18, 20
asBED,GRangesList-method (asBED),

18

BasicTrackLine, 40, 41, 44, 45
BasicTrackLine-class, 19
Bed15TrackLine-class, 1
BigWigFile, 3, 9, 33
BigWigFile (BigWigFile-class), 2
BigWigFile-class, 2
BigWigSelection, 6
BigWigSelection

(BigWigSelection-class), 3
BigWigSelection-class, 3
blocks (blocks-methods), 20
blocks,GenomicRanges-method

(blocks-methods), 20
blocks,RangedData-method

(blocks-methods), 20
blocks-methods, 20
browseGenome, 21, 31
browseGenome,GRanges-method

(browseGenome), 21
browseGenome,missing-method

(browseGenome), 21
browseGenome,RangedDataORRangedDataList-method

(browseGenome), 21
BrowserSession, 12, 21, 23, 24, 31, 35, 39
browserSession, 21–24, 31, 39, 40
browserSession

(browserSession-methods),
23

browserSession,BrowserView-method
(browserSession-methods),
23

browserSession,character-method
(browserSession-methods),
23

browserSession,missing-method
(browserSession-methods),
23

browserSession,UCSCTableQuery-method
(UCSCTableQuery-class), 15

BrowserSession-class, 22
browserSession-methods, 23
browserSession<-

(UCSCTableQuery-class), 15
browserSession<-,UCSCTableQuery,UCSCSession-method

(UCSCTableQuery-class), 15

BrowserView, 4, 17, 21, 22, 25, 26, 39, 43
browserView, 4, 21, 22, 24, 26, 39, 43
browserView

(browserView-methods), 25
browserView,UCSCSession-method

(browserView-methods), 25
BrowserView-class, 24
browserView-methods, 25
BrowserViewList, 25
BrowserViewList

(BrowserViewList-class), 4
BrowserViewList-class, 4
browserViews, 22, 39
browserViews

(browserViews-methods), 26
browserViews,UCSCSession-method

(browserViews-methods), 26
browserViews-methods, 26
bsapply, 13
BSgenome, 7, 13

Chain, 36
Chain-class, 4
ChainBlock-class (Chain-class), 4
character, 41
chrom (RangedData-methods), 9
chrom,GRanges-method

(RangedData-methods), 9
chrom,RangedData-method

(RangedData-methods), 9
chrom,RangesList-method

(RangesList-methods), 11
chrom<- (RangedData-methods), 9
chrom<-,GRanges-method

(RangedData-methods), 9
chrom<-,RangedData-method

(RangedData-methods), 9
chrom<-,RangesList-method

(RangesList-methods), 11
class:BigWigFile

(BigWigFile-class), 2
class:Chain (Chain-class), 4
class:ChainBlock (Chain-class), 4
class:Quickload

(Quickload-class), 6
class:QuickloadGenome

(QuickloadGenome-class), 7
class:RTLFile (RTLFile-class), 9
class:TrackDb (TrackDb-class), 12
class:TwoBitFile

(TwoBitFile-class), 13
close, 23, 24

48 INDEX

coerce,BasicTrackLine,character-method
(BasicTrackLine-class), 19

coerce,BasicTrackLine,GraphTrackLine-method
(GraphTrackLine-class), 44

coerce,Bed15TrackLine,character-method
(Bed15TrackLine-class), 1

coerce,character,BasicTrackLine-method
(BasicTrackLine-class), 19

coerce,character,Bed15TrackLine-method
(Bed15TrackLine-class), 1

coerce,character,GraphTrackLine-method
(GraphTrackLine-class), 44

coerce,character,Quickload-method
(Quickload-class), 6

coerce,character,TrackLine-method
(TrackLine-class), 40

coerce,GenomicRanges,BigWigSelection-method
(BigWigSelection-class), 3

coerce,GraphTrackLine,BasicTrackLine-method
(GraphTrackLine-class), 44

coerce,GraphTrackLine,character-method
(GraphTrackLine-class), 44

coerce,RangedData,UCSCData-method
(UCSCData-class), 14

coerce,RangesList,BigWigSelection-method
(BigWigSelection-class), 3

coerce,TrackLine,character-method
(TrackLine-class), 40

col2rgb, 1, 19, 28, 30, 40, 44
cpneTrack, 26

DNAStringSet, 13

elementMetadata,QuickloadGenome-method
(QuickloadGenome-class), 7

export, 14, 27, 30, 32
export,ANY,character,character-method

(export), 27
export,ANY,character,missing-method

(export), 27
export,ANY,connection,character-method

(export), 27
export,ANY,missing,character-method

(export), 27
export-tracks, 28
export.2bit (TwoBitFile-class), 13
export.2bit,ANY,ANY-method

(TwoBitFile-class), 13
export.2bit,BSgenome,character-method

(TwoBitFile-class), 13
export.2bit,DNAStringSet,character-method

(TwoBitFile-class), 13
export.bed, 14

export.bed (export-tracks), 28
export.bed,ANY,ANY-method

(export-tracks), 28
export.bed,RangedData,characterORconnection-method

(export-tracks), 28
export.bed,RangedDataList,ANY-method

(export-tracks), 28
export.bed,UCSCData,characterORconnection-method

(UCSCData-class), 14
export.bed15, 2, 14
export.bed15 (export-tracks), 28
export.bed15,ANY-method

(export-tracks), 28
export.bed15,UCSCData-method

(UCSCData-class), 14
export.bedGraph, 45
export.bedGraph (export-tracks),

28
export.bedGraph,ANY-method

(export-tracks), 28
export.bw, 2
export.bw (export-tracks), 28
export.bw,ANY,ANY-method

(export-tracks), 28
export.bw,RangedData,character-method

(export-tracks), 28
export.gff, 14
export.gff (export-tracks), 28
export.gff,ANY,ANY-method

(export-tracks), 28
export.gff,RangedData,characterORconnection-method

(export-tracks), 28
export.gff,UCSCData,characterORconnection-method

(UCSCData-class), 14
export.gff1 (export-tracks), 28
export.gff1,ANY-method

(export-tracks), 28
export.gff2 (export-tracks), 28
export.gff2,ANY-method

(export-tracks), 28
export.gff3 (export-tracks), 28
export.gff3,ANY-method

(export-tracks), 28
export.ucsc, 14, 35, 39
export.ucsc (export-tracks), 28
export.ucsc,ANY,ANY-method

(export-tracks), 28
export.ucsc,RangedData,ANY-method

(export-tracks), 28
export.ucsc,RangedDataList,ANY-method

(export-tracks), 28
export.ucsc,UCSCData,characterORconnection-method

INDEX 49

(UCSCData-class), 14
export.wig, 45
export.wig (export-tracks), 28
export.wig,ANY-method

(export-tracks), 28

formatDescription
(UCSCSchema-class), 14

formatDescription,UCSCSchema-method
(UCSCSchema-class), 14

genome, 5, 23, 39
genome,BrowserSession-method

(BrowserSession-class), 22
genome,Quickload-method

(Quickload-class), 6
genome,QuickloadGenome-method

(QuickloadGenome-class), 7
genome,ucscCart-method

(UCSCSession-class), 39
genome,UCSCSchema-method

(UCSCSchema-class), 14
genome,UCSCSession-method

(UCSCSession-class), 39
genome<-,BrowserSession-method

(BrowserSession-class), 22
genome<-,UCSCSession-method

(UCSCSession-class), 39
genomeBrowsers, 31
GenomeDescription, 7
GenomicData (RangedData-methods),

9
GenomicSelection, 3, 6
getCurlHandle, 39
getSeq, 22, 39
getTable (UCSCTableQuery-class),

15
getTable,UCSCTableQuery-method

(UCSCTableQuery-class), 15
GRanges, 3, 5, 15, 21, 22, 24, 25, 33, 36, 39,

43
GRangesForBSGenome

(GRangesForUCSCGenome), 5
GRangesForUCSCGenome, 5, 15
GRangesList, 33
GraphTrackLine, 19, 20, 29, 40, 41
GraphTrackLine-class, 44

import, 14, 27, 31, 34
import,character,character,ANY-method

(import), 31
import,character,missing,ANY-method

(import), 31

import,connection,character,ANY-method
(import), 31

import,missing,ANY,character-method
(import), 31

import.2bit (TwoBitFile-class), 13
import.2bit,character-method

(TwoBitFile-class), 13
import.2bit,connection-method

(TwoBitFile-class), 13
import.2bit,TwoBitFile-method

(TwoBitFile-class), 13
import.bed, 20
import.bed (import.gff), 32
import.bed,character-method

(import.gff), 32
import.bed,connection-method

(import.gff), 32
import.bed15 (import.gff), 32
import.bed15,ANY-method

(import.gff), 32
import.bedGraph (import.gff), 32
import.bedGraph,ANY-method

(import.gff), 32
import.bw, 2, 3
import.bw (import.gff), 32
import.bw,BigWigFile-method

(BigWigFile-class), 2
import.bw,character-method

(import.gff), 32
import.bw,connection-method

(import.gff), 32
import.chain, 36
import.chain (Chain-class), 4
import.chain,character-method

(Chain-class), 4
import.gff, 32
import.gff,characterORconnection-method

(import.gff), 32
import.gff1 (import.gff), 32
import.gff1,ANY-method

(import.gff), 32
import.gff2 (import.gff), 32
import.gff2,ANY-method

(import.gff), 32
import.gff3 (import.gff), 32
import.gff3,ANY-method

(import.gff), 32
import.ucsc (import.gff), 32
import.ucsc,characterORconnection-method

(import.gff), 32
import.wig (import.gff), 32
import.wig,ANY-method

50 INDEX

(import.gff), 32
initialize,UCSCData-method

(UCSCData-class), 14
initialize,UCSCSession-method

(UCSCSession-class), 39

length,Quickload-method
(Quickload-class), 6

length,QuickloadGenome-method
(QuickloadGenome-class), 7

liftOver, 5, 36
liftOver,GenomicRanges,Chain-method

(liftOver), 36

names, 10, 12
names,BrowserSession-method

(BrowserSession-class), 22
names,QuickloadGenome-method

(QuickloadGenome-class), 7
names,UCSCTableQuery-method

(UCSCTableQuery-class), 15
names<-,UCSCTableQuery-method

(UCSCTableQuery-class), 15
nrow,UCSCSchema-method

(UCSCSchema-class), 14

offset,ChainBlock-method
(Chain-class), 4

organism,QuickloadGenome-method
(QuickloadGenome-class), 7

path (RTLFile-class), 9
path,RTLFile-method

(RTLFile-class), 9

Quickload, 7
Quickload (Quickload-class), 6
quickload

(QuickloadGenome-class), 7
Quickload-class, 6
QuickloadGenome, 7, 12
QuickloadGenome

(QuickloadGenome-class), 7
QuickloadGenome-class, 7

range, 22, 24, 39, 43
range,BrowserSession-method

(BrowserSession-class), 22
range,ucscCart-method

(UCSCSession-class), 39
range,UCSCSession-method

(UCSCSession-class), 39
range,UCSCTableQuery-method

(UCSCTableQuery-class), 15

range,UCSCView-method
(UCSCView-class), 43

range<- (UCSCSession-class), 39
range<-,UCSCSession-method

(UCSCSession-class), 39
range<-,UCSCTableQuery-method

(UCSCTableQuery-class), 15
range<-,UCSCView-method

(UCSCView-class), 43
RangedData, 10, 11, 20, 21, 23, 28, 32, 33,

35, 40
RangedData-methods, 9
RangedDataList, 21, 28, 33
RangedSelection, 2, 3, 6
Ranges, 4, 5
ranges,ChainBlock-method

(Chain-class), 4
RangesList, 3, 11, 15, 21, 25, 43
RangesList-methods, 11
referenceSequence

(QuickloadGenome-class), 7
referenceSequence,QuickloadGenome-method

(QuickloadGenome-class), 7
referenceSequence<-

(QuickloadGenome-class), 7
referenceSequence<-,QuickloadGenome-method

(QuickloadGenome-class), 7
releaseDate,QuickloadGenome-method

(QuickloadGenome-class), 7
reversed (Chain-class), 4
reversed,ChainBlock-method

(Chain-class), 4
RleList, 2
RTLFile-class, 9

score, 26
score,ANY-method

(RangedData-methods), 9
score,ChainBlock-method

(Chain-class), 4
score,GenomicRangesORGRangesList-method

(RangedData-methods), 9
Seqinfo, 2, 8, 10, 12, 13, 39
seqinfo, 10
seqinfo,BigWigFile-method

(BigWigFile-class), 2
seqinfo,DNAStringSet-method

(QuickloadGenome-class), 7
seqinfo,QuickloadGenome-method

(QuickloadGenome-class), 7
seqinfo,RangedData-method

(RangedData-methods), 9

INDEX 51

seqinfo,RangesList-method
(RangesList-methods), 11

seqinfo,TwoBitFile-method
(TwoBitFile-class), 13

seqinfo,UCSCSession-method
(UCSCSession-class), 39

seqinfo<-,QuickloadGenome-method
(QuickloadGenome-class), 7

seqinfo<-,RangedData-method
(RangedData-methods), 9

seqinfo<-,RangesList-method
(RangesList-methods), 11

seqlengths, 5
sequence, 22
sequence<- (sequence<-methods), 34
sequence<-methods, 34
show, 23, 24
show,BrowserSession-method

(BrowserSession-class), 22
show,BrowserView-method

(BrowserView-class), 24
show,Quickload-method

(Quickload-class), 6
show,QuickloadGenome-method

(QuickloadGenome-class), 7
show,RTLFile-method

(RTLFile-class), 9
show,TrackLine-method

(TrackLine-class), 40
show,UCSCData-method

(UCSCData-class), 14
show,UCSCTableQuery-method

(UCSCTableQuery-class), 15
space,ChainBlock-method

(Chain-class), 4
summary,BigWigFile-method

(BigWigFile-class), 2

tableName (UCSCTableQuery-class),
15

tableName,UCSCSchema-method
(UCSCSchema-class), 14

tableName,UCSCTableQuery-method
(UCSCTableQuery-class), 15

tableName<-
(UCSCTableQuery-class), 15

tableName<-,UCSCTableQuery-method
(UCSCTableQuery-class), 15

tableNames, 40
tableNames

(UCSCTableQuery-class), 15
tableNames,UCSCTableQuery-method

(UCSCTableQuery-class), 15

targets, 37
track, 22, 23, 35, 39, 40
track (UCSCTableQuery-class), 15
track,QuickloadGenome-method

(QuickloadGenome-class), 7
track,UCSCSession-method

(UCSCSession-class), 39
track,UCSCTableQuery-method

(UCSCTableQuery-class), 15
track<- (track<-methods), 35
track<-,BrowserSession,ANY-method

(track<-methods), 35
track<-,BrowserSession,RangedData-method

(track<-methods), 35
track<-,BrowserSession,RangedDataList-method

(track<-methods), 35
track<-,QuickloadGenome,ANY-method

(QuickloadGenome-class), 7
track<-,QuickloadGenome,character-method

(QuickloadGenome-class), 7
track<-,QuickloadGenome,RangedData-method

(QuickloadGenome-class), 7
track<-,TrackDb,ANY-method

(TrackDb-class), 12
track<-,TrackDb,RangedData-method

(TrackDb-class), 12
track<-,TrackDb,RangedDataList-method

(TrackDb-class), 12
track<-,UCSCSession,RangedDataList-method

(track<-methods), 35
track<-methods, 35
track<-, 21
TrackDb, 22
TrackDb-class, 12
TrackLine, 1, 14, 19, 29, 35, 39, 44
TrackLine-class, 40
trackName (UCSCTableQuery-class),

15
trackName,UCSCTableQuery-method

(UCSCTableQuery-class), 15
trackName<-

(UCSCTableQuery-class), 15
trackName<-,UCSCTableQuery-method

(UCSCTableQuery-class), 15
trackNames, 23, 24, 40–43
trackNames (tracks-methods), 37
trackNames,BrowserSession-method

(BrowserSession-class), 22
trackNames,UCSCSession-method

(tracks-methods), 37
trackNames,UCSCTableQuery-method

(UCSCTableQuery-class), 15

52 INDEX

trackNames,UCSCTrackModes-method
(tracks-methods), 37

trackNames,UCSCView-method
(tracks-methods), 37

trackNames-methods
(tracks-methods), 37

trackNames<- (tracks-methods), 37
trackNames<-,UCSCTrackModes-method

(tracks-methods), 37
trackNames<-,UCSCView-method

(tracks-methods), 37
trackNames<-methods

(tracks-methods), 37
trackNames<-, 42
tracks-methods, 37
TwoBitFile, 9
TwoBitFile (TwoBitFile-class), 13
TwoBitFile-class, 13

UCSCData, 28, 29
UCSCData-class, 14
ucscGenomes, 38
UCSCSchema, 16
ucscSchema

(UCSCTableQuery-class), 15
ucscSchema,UCSCSchemaDescription-method

(UCSCSchema-class), 14
ucscSchema,UCSCTableQuery-method

(UCSCTableQuery-class), 15
UCSCSchema-class, 14
UCSCSession, 15, 22, 38
UCSCSession-class, 39
ucscTableQuery

(UCSCTableQuery-class), 15
ucscTableQuery,UCSCSession-method

(UCSCTableQuery-class), 15
UCSCTableQuery-class, 15
UCSCTrackModes, 1, 19, 25, 39, 40, 42–44
ucscTrackModes, 25, 39–41, 43
ucscTrackModes

(ucscTrackModes-methods),
42

ucscTrackModes,character-method
(ucscTrackModes-methods),
42

ucscTrackModes,missing-method
(ucscTrackModes-methods),
42

ucscTrackModes,UCSCSession-method
(ucscTrackModes-methods),
42

ucscTrackModes,ucscTracks-method
(ucscTrackModes-methods),

42
ucscTrackModes,UCSCView-method

(ucscTrackModes-methods),
42

UCSCTrackModes-class, 41
ucscTrackModes-methods, 42
ucscTrackModes<-

(ucscTrackModes-methods),
42

ucscTrackModes<-,UCSCView,character-method
(ucscTrackModes-methods),
42

ucscTrackModes<-,UCSCView,UCSCTrackModes-method
(ucscTrackModes-methods),
42

ucscTrackModes<-methods
(ucscTrackModes-methods),
42

UCSCView, 24, 42
UCSCView-class, 43
universe, 12
uri (Quickload-class), 6
uri,QuickloadGenome-method

(QuickloadGenome-class), 7

Vector, 4
vector, 41
visible (BrowserView-class), 24
visible,BrowserView-method

(BrowserView-class), 24
visible,UCSCView-method

(UCSCView-class), 43
visible<- (BrowserView-class), 24
visible<-,BrowserView-method

(BrowserView-class), 24
visible<-,UCSCView-method

(UCSCView-class), 43

	Bed15TrackLine-class
	BigWigFile-class
	BigWigSelection-class
	BrowserViewList-class
	Chain-class
	GRangesForUCSCGenome
	GenomicSelection
	Quickload-class
	QuickloadGenome-class
	RTLFile-class
	RangedData-methods
	RangesList-methods
	TrackDb-class
	TwoBitFile-class
	UCSCData-class
	UCSCSchema-class
	UCSCTableQuery-class
	activeView-methods
	asBED
	BasicTrackLine-class
	blocks-methods
	browseGenome
	BrowserSession-class
	browserSession-methods
	BrowserView-class
	browserView-methods
	browserViews-methods
	cpneTrack
	export
	export-tracks
	genomeBrowsers
	import
	import.gff
	sequence<–methods
	track<–methods
	liftOver
	targets
	tracks-methods
	ucscGenomes
	UCSCSession-class
	TrackLine-class
	UCSCTrackModes-class
	ucscTrackModes-methods
	UCSCView-class
	GraphTrackLine-class
	Index

