
GenomicRanges
March 24, 2012

GRanges-class GRanges objects

Description

The GRanges class is a container for the genomic locations and their associated annotations.

Details

The GRanges class stores the sequences of genomic locations and associated annotations. Each
element in the sequence is comprised of a sequence name, an interval, a strand, and optional element
metadata (e.g. score, GC content, etc.). This information is stored in four slots:

seqnames a ’factor’ Rle object containing the sequence names.

ranges an IRanges object containing the ranges.

strand a ’factor’ Rle object containing the strand information.

elementMetadata a DataFrame object containing the annotation columns. Columns cannot be
named "seqnames", "ranges", "strand", "seqlevels", "seqlengths", "isCircular",
"genome", "start", "end", "width", or "element".

Constructor

GRanges(seqnames = Rle(), ranges = IRanges(), strand = Rle("*", length(seqnames)),
..., seqlengths = structure(rep(NA_integer_, length(levels(seqnames))),
names = levels(seqnames))): Creates a GRanges object.

seqnames Rle object, character vector, or factor containing the sequence names.
ranges IRanges object containing the ranges.
strand Rle object, character vector, or factor containing the strand information.
seqlengths a named integer vector containing the sequence lengths for each level(seqnames).
... Optional annotation columns for the elementMetadata slot. These columns cannot

be named "start", "end", "width", or "element".

1

2 GRanges-class

Coercion

In the code snippets below, x is a GRanges object.

as(from, "GRanges"): Creates a GRanges object from a RangedData, RangesList or RleList
object.

as(from, "RangedData"): Creates a RangedData object from a GRanges object. The
strand and the values become columns in the result. The seqlengths(from), isCircular(from),
and genome(from) vectors are stored in the element metadata of ranges(rd).

as(from, "RangesList"): Creates a RangesList object from a GRanges object. The strand
and values become element metadata on the ranges. The seqlengths(from), isCircular(from),
and genome(from) vectors are stored in the element metadata.

as.data.frame(x, row.names = NULL, optional = FALSE): Creates a data.frame
with columns seqnames (factor), start (integer), end (integer), width (integer), strand
(factor), as well as the additional columns stored in elementMetadata(x).

Accessors

In the following code snippets, x is a GRanges object.

length(x): Gets the number of elements.

seqnames(x), seqnames(x) <- value: Gets or sets the sequence names. value can be
an Rle object, a character vector, or a factor.

ranges(x), ranges(x) <- value: Gets or sets the ranges. value can be a Ranges object.

names(x), names(x) <- value: Gets or sets the names of the elements.

strand(x), strand(x) <- value: Gets or sets the strand. value can be an Rle object,
character vector, or factor.

elementMetadata(x), elementMetadata(x) <- value: Gets or sets the optional
data columns. value can be a DataFrame, data.frame object, or NULL.

values(x), values(x) <- value: Alternative to elementMetadata functions.

seqinfo(x), seqinfo(x) <- value: Gets or sets the information about the underlying
sequences. value must be a Seqinfo object.

seqlevels(x), seqlevels(x, force=FALSE) <- value: Gets or sets the sequence
levels. seqlevels(x) is equivalent to seqlevels(seqinfo(x)) or to levels(seqnames(x)),
those 2 expressions being guaranteed to return identical character vectors on a GRanges object.
value must be a character vector with no NAs. See ?seqlevels for more information.

seqlengths(x), seqlengths(x) <- value: Gets or sets the sequence lengths. seqlengths(x)
is equivalent to seqlengths(seqinfo(x)). value can be a named non-negative inte-
ger or numeric vector eventually with NAs.

isCircular(x), isCircular(x) <- value: Gets or sets the circularity flags. isCircular(x)
is equivalent to isCircular(seqinfo(x)). value must be a named logical vector
eventually with NAs.

genome(x), genome(x) <- value: Gets or sets the genome identifier or assembly name
for each sequence. genome(x) is equivalent to genome(seqinfo(x)). value must be
a named character vector eventually with NAs.

GRanges-class 3

Ranges methods

In the following code snippets, x is a GRanges object.

start(x), start(x) <- value: Gets or sets start(ranges(x)).

end(x), end(x) <- value: Gets or sets end(ranges(x)).

width(x), width(x) <- value: Gets or sets width(ranges(x)).

flank(x, width, start = TRUE, both = FALSE, use.names = TRUE, ignore.strand=FALSE):
Returns a new GRanges object containing intervals of width width that flank the intervals in
x. The start argument takes a logical indicating whether x should be flanked at the "start"
(TRUE) or the "end" (FALSE), which for strand(x) != "-" is start(x) and end(x)
respectively and for strand(x) == "-" is codeend(x) and start(x) respectively. The
both argument takes a single logical value indicating whether the flanking region width
positions extends into the range. If both = TRUE, the resulting range thus straddles the end
point, with width positions on either side.

resize(x, width, use.names = TRUE): Returns a new GRanges object containing in-
tervals that have been resized to width width based on the strand(x) values. Elements
where strand(x) == "+" or strand(x) == "*" are anchored at start(x) and
elements where strand(x) == "-" are anchored at the end(x). The use.names ar-
gument determines whether or not to keep the names on the ranges.

shift(x, shift, use.names = TRUE): Returns a new GRanges object containing in-
tervals with start and end values that have been shifted by integer vector shift. The use.names
argument determines whether or not to keep the names on the ranges.

disjoin(x): Returns a new GRanges object containing disjoint ranges for each distinct (seq-
name, strand) pairing. The names (names(x)) and the columns in x are dropped.

isDisjoint(x): Return a logical value indicating whether the ranges x are disjoint (i.e. non-
overlapping).

gaps(x, start = 1L, end = seqlengths(x)): Returns a new GRanges object con-
taining complemented ranges for each distinct (seqname, strand) pairing. The names (names(x))
and the columns in x are dropped. For the start and end arguments of this gaps method, it is
expected that the user will supply a named integer vector (where the names correspond to the
appropriate seqlevels). See ?gaps for more information about range complements and for a
description of the optional arguments.

range(x, ...): Returns a new GRanges object containing range bounds for each distinct
(seqname, strand) pairing. The names (names(x)) and the columns in x are dropped.

reduce(x, drop.empty.ranges = FALSE, min.gapwidth = 1L): Returns a new
GRanges object containing reduced ranges for each distinct (seqname, strand) pairing. The
names (names(x)) and the columns in x are dropped. See ?reduce for more information
about range reduction and for a description of the optional arguments.

restrict(x, start = NA, end = NA, keep.all.ranges = FALSE, use.names
= TRUE): Returns a new GRanges object containing restricted ranges for distinct seqnames.
The start and end arguments can be a named numeric vector of seqnames for the ranges
to be resticted or a numeric vector or length 1 if the restriction operation is to be applied to all
the sequences in x. See ?restrict for more information about range restriction and for a
description of the optional arguments.

distance(x, y, ignore.strand = FALSE): Calculate the number of positions sepa-
rating two features. The value is zero if the features overlap and NA if the features are on
different sequences, or different strands (if ignore.strand is FALSE).

4 GRanges-class

Splitting and Combining

In the code snippets below, x is a GRanges object.

append(x, values, after = length(x)): Inserts the values into x at the position
given by after, where x and values are of the same class.

c(x, ...): Combines x and the GRanges objects in ... together. Any object in ... must
belong to the same class as x, or to one of its subclasses, or must be NULL. The result is an
object of the same class as x.

c(x, ..., .ignoreElementMetadata=TRUE) If the GRanges objects have associated
elementMetadata (also known as values), each such DataFrame must have the same
columns in order to combine successfully. In order to circumvent this restraint, you can pass
in an .ignoreElementMetadata=TRUE argument which will combine all the objects
into one and drop all of their elementMetadata.

split(x, f = seq_len(length(x)), drop = FALSE): Splits x into a GRangesList,
according to f, dropping elements corresponding to unrepresented levels if drop is TRUE.
Split factor f defaults to splitting each element of x into a separate element in the resulting
GRangesList object.

Subsetting

In the code snippets below, x is a GRanges object.

x[i, j], x[i, j] <- value: Gets or sets elements iwith optional elementMetadata columns
elementMetadata(x)[,j], where i can be missing; an NA-free logical, numeric, or
character vector; or a ’logical’ Rle object.

x[i,j] <- value: Replaces elements i and optional elementMetadata columns jwith value.

head(x, n = 6L): If n is non-negative, returns the first n elements of the GRanges object. If
n is negative, returns all but the last abs(n) elements of the GRanges object.

rep(x, times, length.out, each): Repeats the values in x through one of the follow-
ing conventions:

times Vector giving the number of times to repeat each element if of length length(x),
or to repeat the whole vector if of length 1.

length.out Non-negative integer. The desired length of the output vector.
each Non-negative integer. Each element of x is repeated each times.

seqselect(x, start=NULL, end=NULL, width=NULL): Similar to window, except
that multiple consecutive subsequences can be requested for concatenation. As such two of
the three start, end, and width arguments can be used to specify the consecutive subse-
quences. Alternatively, start can take a Ranges object or something that can be converted
to a Ranges object like an integer vector, logical vector or logical Rle. If the concatenation of
the consecutive subsequences is undesirable, consider using Views.

seqselect(x, start=NULL, end=NULL, width=NULL) <- value: Similar to window<-
, except that multiple consecutive subsequences can be replaced with a value whose length
is a divisor of the number of elements it is replacing. As such two of the three start, end,
and width arguments can be used to specify the consecutive subsequences. Alternatively,
start can take a Ranges object or something that can be converted to a Ranges object like
an integer vector, logical vector or logical Rle.

subset(x, subset): Returns a new object of the same class as x made of the subset using
logical vector subset, where missing values are taken as FALSE.

GRanges-class 5

tail(x, n = 6L): If n is non-negative, returns the last n elements of the GRanges object. If
n is negative, returns all but the first abs(n) elements of the GRanges object.

window(x, start = NA, end = NA, width = NA, frequency = NULL, delta
= NULL, ...): Extracts the subsequence window from the GRanges object using:

start, end, width The start, end, or width of the window. Two of the three are required.
frequency, delta Optional arguments that specify the sampling frequency and increment

within the window.

In general, this is more efficient than using "[" operator.

window(x, start = NA, end = NA, width = NA, keepLength = TRUE) <- value:
Replaces the subsequence window specified on the left (i.e. the subsequence in x specified by
start, end and width) by value. value must either be of class class(x), belong to a
subclass of class(x), be coercible to class(x), or be NULL. If keepLength is TRUE,
the elements of value are repeated to create a GRanges object with the same number of el-
ements as the width of the subsequence window it is replacing. If keepLength is FALSE,
this replacement method can modify the length of x, depending on how the length of the left
subsequence window compares to the length of value.

Author(s)

P. Aboyoun

See Also

GRangesList-class, seqinfo, Vector-class, Ranges-class, Rle-class, DataFrame-class, coverage-
methods, setops-methods, findOverlaps-methods

Examples

gr <-
GRanges(seqnames =

Rle(c("chr1", "chr2", "chr1", "chr3"), c(1, 3, 2, 4)),
ranges =
IRanges(1:10, width = 10:1, names = head(letters,10)),
strand =
Rle(strand(c("-", "+", "*", "+", "-")),

c(1, 2, 2, 3, 2)),
score = 1:10,
GC = seq(1, 0, length=10))

gr

Summarizing elements
table(seqnames(gr))
sum(width(gr))
summary(elementMetadata(gr)[,"score"]) # or values(gr)

Renaming the underlying sequences
seqlevels(gr)
seqlevels(gr) <- sub("chr", "Chrom", seqlevels(gr))
gr

Intra-interval operations
flank(gr, 10)
resize(gr, 10)
shift(gr, 1)

6 GRangesList-class

Inter-interval operations
isDisjoint(gr)
disjoin(gr)
gaps(gr, start = 1, end = 10)
range(gr)
reduce(gr)
restrict(gr, start =3)

Combining objects
gr2 <- GRanges(seqnames=Rle(c('Chrom1', 'Chrom2', 'Chrom3'), c(3, 3, 4)),

IRanges(1:10, width=5), strand='-',
score=101:110, GC = runif(10))

gr3 <- GRanges(seqnames=Rle(c('Chrom1', 'Chrom2', 'Chrom3'), c(3, 4, 3)),
IRanges(101:110, width=10), strand='-',
score=21:30)

some.gr <- c(gr, gr2)

all.gr <- c(gr, gr2, gr3) ## (This would fail)
all.gr <- c(gr, gr2, gr3, .ignoreElementMetadata=TRUE)

GRangesList-class GRangesList objects

Description

The GRangesList class is a container for storing a collection of GRanges objects. It is derived from
GenomicRangesList.

Constructors

GRangesList(...): Creates a GRangesList object using GRanges objects supplied in

makeGRangesListFromFeatureFragments(seqnames=Rle(factor()), fragmentStarts=list(),
fragmentEnds=list(), fragmentWidths=list(), strand=character(0),
sep=","): Constructs a GRangesList object from a list of fragmented features. See the Ex-
amples section below.

Coercion

In the code snippets below, x is a GRangesList object.

as.data.frame(x, row.names = NULL, optional = FALSE): Creates a data.frame
with columns element (character), seqnames (factor), start (integer), end (integer),
width (integer), strand (factor), as well as the additional columns stored in elementMetadata(unlist(x)).

as.list(x, use.names = TRUE): Creates a list containing the elements of x.

as(x, "IRangesList"): Turns x into an IRangesList object.

as(from, "GRangesList"): Creates a GRangesList object from a RangedDataList object.

GRangesList-class 7

Accessors

In the following code snippets, x is a GRanges object.

seqnames(x), seqnames(x) <- value: Gets or sets the sequence names in the form of
an RleList. value can be an RleList or CharacterList.

ranges(x), ranges(x) <- value: Gets or sets the ranges in the form of a CompressedI-
RangesList. value can be a RangesList object.

strand(x), strand(x) <- value: Gets or sets the strand in the form of an RleList.
value can be an RleList or CharacterList object.

elementMetadata(x), elementMetadata(x) <- value: Gets or sets the optional
data columns for the GRangesList elements. value can be a DataFrame, data.frame object,
or NULL.

values(x), values(x) <- value: Alternative to elementMetadata functions.

seqinfo(x), seqinfo(x) <- value: Gets or sets the information about the underlying
sequences. value must be a Seqinfo object.

seqlevels(x), seqlevels(x, force=FALSE) <- value: Gets or sets the sequence
levels. seqlevels(x) is equivalent to seqlevels(seqinfo(x)) or to levels(seqnames(x)),
those 2 expressions being guaranteed to return identical character vectors on a GRangesList
object. value must be a character vector with no NAs. See ?seqlevels for more infor-
mation.

seqlengths(x), seqlengths(x) <- value: Gets or sets the sequence lengths. seqlengths(x)
is equivalent to seqlengths(seqinfo(x)). value can be a named non-negative inte-
ger or numeric vector eventually with NAs.

isCircular(x), isCircular(x) <- value: Gets or sets the circularity flags. isCircular(x)
is equivalent to isCircular(seqinfo(x)). value must be a named logical vector
eventually with NAs.

genome(x), genome(x) <- value: Gets or sets the genome identifier or assembly name
for each sequence. genome(x) is equivalent to genome(seqinfo(x)). value must be
a named character vector eventually with NAs.

List methods

In the following code snippets, x is a GRangesList object.

length(x): Gets the number of elements.

names(x), names(x) <- value: Gets or sets the names of the elements.

elementLengths(x): Gets the length of each of the elements.

isEmpty(x): Returns a logical indicating either if the GRangesList has no elements or if all its
elements are empty.

RangesList methods

In the following code snippets, x is a GRangesList object.

start(x), start(x) <- value: Gets or sets start(ranges(x)).

end(x), end(x) <- value: Gets or sets end(ranges(x)).

width(x), width(x) <- value: Gets or sets width(ranges(x)).

8 GRangesList-class

shift(x, shift, use.names=TRUE): Returns a new GRangesList object containing in-
tervals with start and end values that have been shifted by integer vector shift. The use.names
argument determines whether or not to keep the names on the ranges.

isDisjoint(x) Return a vector of logical values indicating whether the ranges of each element
of x are disjoint (i.e. non-overlapping).

Combining

In the code snippets below, x is a GRangesList object.

append(x, values, after = length(x)): Inserts the values into x at the position
given by after, where x and values are of the same class.

c(x, ...): Combines x and the GRangesList objects in ... together. Any object in ...
must belong to the same class as x, or to one of its subclasses, or must be NULL. The result is
an object of the same class as x.

unlist(x, recursive = TRUE, use.names = TRUE): Concatenates the elements of
x into a single GRanges object.

Subsetting

In the following code snippets, x is a GRangesList object.

x[i, j], x[i, j] <- value: Gets or sets elements iwith optional values columns values(x)[,j],
where i can be missing; an NA-free logical, numeric, or character vector; a ’logical’ Rle ob-
ject, or an AtomicList object.

x[[i]], x[[i]] <- value: Gets or sets element i, where i is a numeric or character vector
of length 1.

x$name, x$name <- value: Gets or sets element name, where name is a name or character
vector of length 1.

head(x, n = 6L): If n is non-negative, returns the first n elements of the GRangesList object.
If n is negative, returns all but the last abs(n) elements of the GRangesList object.

rep(x, times, length.out, each): Repeats the values in x through one of the follow-
ing conventions:

times Vector giving the number of times to repeat each element if of length length(x),
or to repeat the whole vector if of length 1.

length.out Non-negative integer. The desired length of the output vector.
each Non-negative integer. Each element of x is repeated each times.

seqselect(x, start=NULL, end=NULL, width=NULL): Similar to window, except
that multiple consecutive subsequences can be requested for concatenation. As such two of
the three start, end, and width arguments can be used to specify the consecutive subse-
quences. Alternatively, start can take a Ranges object or something that can be converted
to a Ranges object like an integer vector, logical vector or logical Rle. If the concatenation of
the consecutive subsequences is undesirable, consider using Views.

seqselect(x, start=NULL, end=NULL, width=NULL) <- value: Similar to window<-
, except that multiple consecutive subsequences can be replaced by a value whose length is
a divisor of the number of elements it is replacing. As such two of the three start, end,
and width arguments can be used to specify the consecutive subsequences. Alternatively,
start can take a Ranges object or something that can be converted to a Ranges object like
an integer vector, logical vector or logical Rle.

GRangesList-class 9

subset(x, subset): Returns a new object of the same class as x made of the subset using
logical vector subset, where missing values are taken as FALSE.

tail(x, n = 6L): If n is non-negative, returns the last n elements of the GRanges object. If
n is negative, returns all but the first abs(n) elements of the GRanges object.

window(x, start = NA, end = NA, width = NA, frequency = NULL, delta
= NULL, ...): Extracts the subsequence window from the GRanges object using:

start, end, width The start, end, or width of the window. Two of the three are required.

frequency, delta Optional arguments that specify the sampling frequency and increment
within the window.

In general, this is more efficient than using "[" operator.

window(x, start = NA, end = NA, width = NA, keepLength = TRUE) <- value:
Replaces the subsequence window specified on the left (i.e. the subsequence in x specified by
start, end and width) by value. value must either be of class class(x), belong to a
subclass of class(x), be coercible to class(x), or be NULL. If keepLength is TRUE,
the elements of value are repeated to create a GRanges object with the same number of el-
ements as the width of the subsequence window it is replacing. If keepLength is FALSE,
this replacement method can modify the length of x, depending on how the length of the left
subsequence window compares to the length of value.

Looping

In the code snippets below, x is a GRangesList object.

endoapply(X, FUN, ...): Similar to lapply, but performs an endomorphism, i.e. re-
turns an object of class(X).

lapply(X, FUN, ...): Like the standard lapply function defined in the base package, the
lapply method for GRangesList objects returns a list of the same length as X, with each
element being the result of applying FUN to the corresponding element of X.

Map(f, ...): Applies a function to the corresponding elements of given GRangesList objects.

mapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE):
Like the standard mapply function defined in the base package, the mapply method for
GRangesList objects is a multivariate version of sapply.

mendoapply(FUN, ..., MoreArgs = NULL): Similar to mapply, but performs an en-
domorphism across multiple objects, i.e. returns an object of class(list(...)[[1]]).

Reduce(f, x, init, right = FALSE, accumulate = FALSE): Uses a binary func-
tion to successively combine the elements of x and a possibly given initial value.

f A binary argument function.

init An R object of the same kind as the elements of x.

right A logical indicating whether to proceed from left to right (default) or from right to left.

nomatch The value to be returned in the case when "no match" (no element satisfying the
predicate) is found.

sapply(X, FUN, ..., simplify=TRUE, USE.NAMES=TRUE): Like the standard sapply
function defined in the base package, the sapply method for GRangesList objects is a user-
friendly version of lapply by default returning a vector or matrix if appropriate.

10 GRangesList-class

The "range", "reduce" and "restrict" methods

In the code snippets below, x is a GRangesList object. The methods in this section are isomor-
phisms, that is, they are endomorphisms (i.e. they preserve the class of x) who also preserve the
length & names & elementMetadata of x. In addition, the seqinfo is preserved too.

range(x): Applies range to each element in x. More precisely, it is equivalent to endoapply(x,
range).

reduce(x, drop.empty.ranges=FALSE, min.gapwidth=1L): Applies reduce to
each element in x. More precisely, it is equivalent to endoapply(x, reduce, drop.empty.ranges=drop.empty.ranges,
min.gapwidth=min.gapwidth).

restrict(x, start = NA, end = NA, keep.all.ranges = FALSE, use.names
= TRUE): Applies restrict to each element in x.

flank(x, width, start = TRUE, end = NA, keep.all.ranges = FALSE, use.names
= TRUE, ignore.strand = FALSE): Applies flank to each element in x.

Author(s)

P. Aboyoun & H. Pages

See Also

GRanges-class, seqinfo, Vector-class, RangesList-class, RleList-class, DataFrameList-class, coverage-
methods, setops-methods, findOverlaps-methods

Examples

Construction with GRangesList():
gr1 <-
GRanges(seqnames = "chr2", ranges = IRanges(3, 6),

strand = "+", score = 5L, GC = 0.45)
gr2 <-
GRanges(seqnames = c("chr1", "chr1"),

ranges = IRanges(c(7,13), width = 3),
strand = c("+", "-"), score = 3:4, GC = c(0.3, 0.5))

gr3 <-
GRanges(seqnames = c("chr1", "chr2"),

ranges = IRanges(c(1, 4), c(3, 9)),
strand = c("-", "-"), score = c(6L, 2L), GC = c(0.4, 0.1))

grl <- GRangesList("gr1" = gr1, "gr2" = gr2, "gr3" = gr3)
grl

Summarizing elements:
elementLengths(grl)
table(seqnames(grl))

Extracting subsets:
grl[seqnames(grl) == "chr1",]
grl[seqnames(grl) == "chr1" & strand(grl) == "+",]

Renaming the underlying sequences:
seqlevels(grl)
seqlevels(grl) <- sub("chr", "Chrom", seqlevels(grl))
grl

GappedAlignments-class 11

range() and reduce():
range(grl)
reduce(grl) # Doesn't really reduce anything but note the reordering

of the inner elements in the 3rd top-level element: the
ranges are reordered by sequence name first (the order of
the sequence names is dictated by the sequence levels),
and then by strand.

restrict(grl, start=3)
flank
flank(grl, width =20)

Coerce to IRangesList (seqnames and strand information is lost):
as(grl, "IRangesList")

isDisjoint():
isDisjoint(grl)

Construction with makeGRangesListFromFeatureFragments():
filepath <- system.file("extdata", "feature_frags.txt",

package="GenomicRanges")
featfrags <- read.table(filepath, header=TRUE, stringsAsFactors=FALSE)
grl2 <- with(featfrags,

makeGRangesListFromFeatureFragments(seqnames=targetName,
fragmentStarts=targetStart,
fragmentWidths=blockSizes,
strand=strand))

names(grl2) <- featfrags$RefSeqID
grl2

GappedAlignments-class
GappedAlignments objects

Description

The GappedAlignments class is a simple container which purpose is to store a set of alignments
that will hold just enough information for supporting the operations described below.

Details

A GappedAlignments object is a vector-like object where each element describes an alignment i.e.
how a given sequence (called "query" or "read", typically short) aligns to a reference sequence
(typically long).

Most of the time, a GappedAlignments object will be created by loading records from a BAM
(or SAM) file and each element in the resulting object will correspond to a record. BAM/SAM
records generally contain a lot of information but only part of that information is loaded in the
GappedAlignments object. In particular, we discard the query sequences (SEQ field), the query
qualities (QUAL), the mapping qualities (MAPQ) and any other information that is not needed in
order to support the operations or methods described below.

This means that multi-reads (i.e. reads with multiple hits in the reference) won’t receive any special
treatment i.e. the various SAM/BAM records corresponding to a multi-read will show up in the
GappedAlignments object as if they were coming from different/unrelated queries. Also paired-end
reads will be treated as single-end reads and the pairing information will be lost.

12 GappedAlignments-class

Each element of a GappedAlignments object consists of:

• The name of the reference sequence. (This is the RNAME field in a SAM/BAM record.)

• The strand in the reference sequence to which the query is aligned. (This information is stored
in the FLAG field in a SAM/BAM record.)

• The CIGAR string in the "Extended CIGAR format" (see the SAM Format Specifications for
the details).

• The 1-based leftmost position/coordinate of the clipped query relative to the reference se-
quence. We will refer to it as the "start" of the query. (This is the POS field in a SAM/BAM
record.)

• The 1-based rightmost position/coordinate of the clipped query relative to the reference se-
quence. We will refer to it as the "end" of the query. (This is NOT explicitly stored in a
SAM/BAM record but can be inferred from the POS and CIGAR fields.) Note that all po-
sitions/coordinates are always relative to the first base at the 5’ end of the plus strand of the
reference sequence, even when the query is aligned to the minus strand.

• The genomic intervals between the "start" and "end" of the query that are "covered" by the
alignment. Saying that the full [start,end] interval is covered is the same as saying that the
alignment has no gap (no N in the CIGAR). It is then considered a simple alignment. Note
that a simple alignment can have mismatches or deletions (in the reference). In other words, a
deletion, encoded with a D, is NOT considered a gap.

Note that the last 2 items are not expicitly stored in the GappedAlignments object: they are inferred
on-the-fly from the CIGAR and the "start".

Optionally, a GappedAlignments object can have names (accessed thru the names generic function)
which will be coming from the QNAME field of the SAM/BAM records.

The rest of this man page will focus on describing how to:

• Access the information stored in a GappedAlignments object in a way that is independent
from how the data are actually stored internally.

• How to create and manipulate a GappedAlignments object.

Constructors

readGappedAlignments(file, format="BAM", use.names=FALSE, ...): Read
a file as a GappedAlignments object. By default (i.e. use.names=FALSE), the resulting ob-
ject has no names. If use.names is TRUE, then the names are constructed from the query
template names (QNAME field in a SAM/BAM file).
Note that this function is just a front-end that delegates to the format-specific back-end func-
tion specified via the format argument. The use.names argument and any extra argument
are passed to the back-end function. Only the BAM format is supported for now. Its back-
end is the readBamGappedAlignments function defined in the Rsamtools package. See
?readBamGappedAlignments for more information (you might need to install and load
the Rsamtools package first).

GappedAlignments(rname = Rle(factor()), pos = integer(0), cigar = character(0),
strand = NULL, names = NULL, seqlengths = NULL, ...): Create a GappedAlign-
ments object. Named arguments in ... are used as elementMetadata.

Accessors

In the code snippets below, x is a GappedAlignments object.

GappedAlignments-class 13

length(x): Returns the number of alignments in x.

names(x), names(x) <- value: Gets or sets the names of x. See readGappedAlignments
above for how to automatically extract and set the names from the file to read.

rname(x), rname(x) <- value: Gets or sets the name of the reference sequence for each
alignment in x (see Details section above for more information about the RNAME field of a
SAM/BAM file). value can be a factor, or a ’factor’ Rle, or a character vector.

seqnames(x), seqnames(x) <- value: Same as rname(x) and rname(x) <- value.

strand(x), strand(x) <- value: Gets or sets the strand for each alignment in x (see
Details section above for more information about the strand of an alignment). value can be
a factor (with levels +, - and *), or a ’factor’ Rle, or a character vector.

cigar(x): Returns a character vector of length length(x) containing the CIGAR string for
each alignment.

qwidth(x): Returns an integer vector of length length(x) containing the length of the query
after hard clipping (i.e. the length of the query sequence that is stored in the corresponding
SAM/BAM record).

start(x), end(x): Returns an integer vector of length length(x) containing the "start" and
"end" (respectively) of the query for each alignment. See Details section above for the exact
definitions of the "start" and "end" of a query. Note that start(x) and end(x) are equiva-
lent to start(granges(x)) and end(granges(x)), respectively (or, alternatively, to
min(rglist(x)) and max(rglist(x)), respectively).

width(x): Equivalent to width(granges(x)) (or, alternatively, to end(x) - start(x)
+ 1L). Note that this is generally different from qwidth(x) except for alignments with a
trivial CIGAR string (i.e. a string of the form "<n>M" where <n> is a number).

ngap(x): Returns an integer vector of length length(x) containing the number of gaps for
each alignment. Equivalent to elementLengths(rglist(x)) - 1L.

seqinfo(x), seqinfo(x) <- value: Gets or sets the information about the underlying
sequences. value must be a Seqinfo object.

seqlevels(x), seqlevels(x) <- value: Gets or sets the sequence levels. seqlevels(x)
is equivalent to seqlevels(seqinfo(x)) or to levels(rname(x)), those 2 expres-
sions being guaranteed to return identical character vectors on a GappedAlignments object.
value must be a character vector with no NAs. See ?seqlevels for more information.

seqlengths(x), seqlengths(x) <- value: Gets or sets the sequence lengths. seqlengths(x)
is equivalent to seqlengths(seqinfo(x)). value can be a named non-negative inte-
ger or numeric vector eventually with NAs.

isCircular(x), isCircular(x) <- value: Gets or sets the circularity flags. isCircular(x)
is equivalent to isCircular(seqinfo(x)). value must be a named logical vector
eventually with NAs.

genome(x), genome(x) <- value: Gets or sets the genome identifier or assembly name
for each sequence. genome(x) is equivalent to genome(seqinfo(x)). value must be
a named character vector eventually with NAs.

Coercion

In the code snippets below, x is a GappedAlignments object.

grglist(x, drop.D.ranges=FALSE), granges(x), rglist(x, drop.D.ranges=FALSE),
ranges(x): Returns either a GRangesList object, or a GRanges object, or a RangesList ob-
ject, or a Ranges object of length length(x) where each element represents the regions in
the reference to which a query is aligned. If drop.D.ranges is TRUE for either grglist

14 GappedAlignments-class

or rglist, the ranges corresponding to deletions in the CIGAR string are dropped, i.e., they
are not considered part of the alignment but are treated like the N (intron) CIGAR element.
See Details section above for more information. More precisely, the RangesList object re-
turned by rglist(x) is a CompressedNormalIRangesList object, and the Ranges object
returned by ranges(x) is an IRanges object.

as(x, "GRangesList"), as(x, "GRanges"), as(x, "RangesList"), as(x, "Ranges"):
An alternate way of doing grglist(x), granges(x), rglist(x), ranges(x), re-
spectively.

Subsetting and related operations

In the code snippets below, x is a GappedAlignments object.

x[i]: Returns a new GappedAlignments object made of the selected alignments. i can be a
numeric or logical vector.

Combining

c(...): Concatenates the GappedAlignment objects in

Other methods

qnarrow(x, start=NA, end=NA, width=NA): x is a GappedAlignments object. Re-
turns a new GappedAlignments object of the same length as x describing how the narrowed
query sequences align to the reference. The start/end/width arguments describe how
to narrow the query sequences. They must be vectors of integers. NAs and negative values
are accepted and "solved" according to the rules of the SEW (Start/End/Width) interface (see
?solveUserSEW for the details).

narrow(x, start=NA, end=NA, width=NA): x is a GappedAlignments object. Returns
a new GappedAlignments object of the same length as x describing the narrowed alignments.
Unlike with qnarrow now the start/end/width arguments describe the narrowing on
the reference side, not the query side. Like with qnarrow, they must be vectors of inte-
gers. NAs and negative values are accepted and "solved" according to the rules of the SEW
(Start/End/Width) interface (see ?solveUserSEW for the details).

Author(s)

H. Pages and P. Aboyoun

References

http://samtools.sourceforge.net/

See Also

readBamGappedAlignments, GRangesList-class, GRanges-class, seqinfo, CompressedNormalIRangesList-
class, IRanges-class, coverage-methods, setops-methods, findOverlaps-methods

Examples

library(Rsamtools) # for ScanBamParam() and the ex1.bam file
galn_file <- system.file("extdata", "ex1.bam", package="Rsamtools")
galn <- readGappedAlignments(galn_file, param=ScanBamParam(what="flag"))
galn

http://samtools.sourceforge.net/

GappedAlignments-class 15

A. BASIC MANIPULATION

length(galn)
head(galn)
names(galn) # no names by default
head(rname(galn))
seqlevels(galn)

Rename the reference sequences:
seqlevels(galn) <- sub("seq", "chr", seqlevels(galn))
seqlevels(galn)

head(strand(galn))
head(cigar(galn))
head(qwidth(galn))
table(qwidth(galn))

grglist(galn) # a GRangesList object
granges(galn) # a GRanges object
rglist(galn) # a CompressedNormalIRangesList object
ranges(galn) # an IRanges object
stopifnot(identical(elementLengths(grglist(galn)), elementLengths(rglist(galn))))

head(start(galn))
head(end(galn))
head(width(galn))
head(ngap(galn))

B. SUBSETTING

galn[strand(galn) == "-"]
galn[grep("I", cigar(galn), fixed=TRUE)]
galn[grep("N", cigar(galn), fixed=TRUE)] # no gaps

A confirmation that all the queries map to the reference with no
gaps:
stopifnot(all(ngap(galn) == 0))

Different ways to subset:
galn[6] # a GappedAlignments object of length 1
grglist(galn)[[6]] # a GRanges object of length 1
rglist(galn)[[6]] # a NormalIRanges object of length 1

Ds are NOT gaps:
ii <- grep("D", cigar(galn), fixed=TRUE)
galn[ii]
ngap(galn[ii])
grglist(galn[ii])

qwidth() vs width():
galn[qwidth(galn) != width(galn)]

This MUST return an empty object:
galn[cigar(galn) == "35M" & qwidth(galn) != 35]

16 GenomicRanges-comparison

but this doesn't have too:
galn[cigar(galn) != "35M" & qwidth(galn) == 35]

C. qnarrow()/narrow()

Note that there is no difference between qnarrow() and narrow() when
all the alignments are simple and with no indels.

This trims 3 nucleotides on the left and 5 nucleotides on the right
of each alignment:
qnarrow(galn, start=4, end=-6)
Note that the 'start' and 'end' arguments specify what part of each
query sequence should be kept (negative values being relative to the
right end of the query sequence), not what part should be trimmed.

Trimming on the left doesn't change the "end" of the queries.
qnarrow(galn, start=21)
stopifnot(identical(end(qnarrow(galn, start=21)), end(galn)))

GenomicRanges-comparison
Ordering and comparing genomic ranges

Description

Methods for ordering and comparing the elements in one or more GenomicRanges objects.

Details

Two elements of a GenomicRanges object (i.e. two genomic ranges) are considered equal iff
they are on the same underlying sequence and strand, and have the same start and width. The
duplicated and unique methods for GenomicRanges objects are using this equality.

The "natural order" for the elements of a GenomicRanges object is to order them (a) first by se-
quence level, (b) then by strand, (c) then by start, (d) and finally by width. This way, the space
of genomic ranges is totally ordered. Note that the reduce method for GenomicRanges uses this
"natural order" implicitly. Also, note that, because we already do (c) and (d) for regular ranges (see
¿Ranges-comparison‘), genomic ranges that belong to the same underlying sequence and
strand are ordered like regular ranges. The order, sort and rank methods for GenomicRanges
objects are using this "natural order".

Also the ==, !=, <=, >=, < and > operators between 2 GenomicRanges objects are using this
"natural order".

See Also

GenomicRanges-class, Ranges-comparison

Examples

gr <- GRanges(
seqnames=Rle(c("chr1", "chr2", "chr1", "chr3"), c(1, 3, 2, 4)),
ranges=IRanges(1:10, end=10),

GenomicRangesList-class 17

strand=Rle(strand(c("-", "+", "*", "+", "-")), c(1, 2, 2, 3, 2)),
seqlengths=c(chr1=11, chr2=12, chr3=13))

duplicated(gr)
duplicated(c(gr[4], gr))
unique(gr)
unique(c(gr[4], gr))
order(gr)
sort(gr)
rank(gr)

gr[2] == gr[2] # TRUE
gr[2] == gr[5] # FALSE
gr == gr[4]
gr >= gr[3]

GenomicRangesList-class
GenomicRangesList objects

Description

A GenomicRangesList is a List of GenomicRanges. It is a virtual class; SimpleGenomicRangesList
is the basic implementation. The subclass GRangesList provides special behavior and is partic-
ularly efficient for storing a large number of elements.

Constructor

GenomicRangesList(...): Constructs a SimpleGenomicRangesList with elements
taken from the arguments in If the only argument is a list, the elements are taken from
that list.

Author(s)

Michael Lawrence

See Also

GRangesList, which differs from SimpleGenomicRangesList in that the GRangesList
treats its elements as single, compound ranges, particularly in overlap operations. SimpleGenomicRangesList
is just a barebones list for now, without that compound semantic.

Seqinfo-class Seqinfo objects

Description

A Seqinfo object is a table-like object that contains basic information about a set of genomic se-
quences. The table has 1 row per sequence and 1 column per sequence attribute. Currently the only
attributes are the length, circularity flagi, and genome provenance (e.g. hg19) of the sequence, but
more attributes might be added in the future as the need arises.

18 Seqinfo-class

Details

Typically Seqinfo objects are not used directly but are part of higher level objects. Those higher
level objects will generally provide a seqinfo accessor for getting/setting their Seqinfo compo-
nent.

Constructor

Seqinfo(seqnames, seqlengths=NA, isCircular=NA, genome=NA): Creates a
Seqinfo object.

Accessor methods

In the code snippets below, x is a Seqinfo object.

length(x): Gets the number of sequences in x.

seqnames(x), seqnames(x) <- value: Gets/sets the names of the sequences in x. Those
names must be non-NA, non-empty and unique. They are also called the sequence levels or
the keys of the Seqinfo object.
Note that, in general, the end-user should not try to alter the sequence levels with seqnames(x)
<- value. The recommended way to do this is with seqlevels(x) <- value as de-
scribed below.

names(x), names(x) <- value: Same as seqnames(x) and seqnames(x) <- value.

seqlevels(x): Same as seqnames(x).

seqlevels(x) <- value: Can be used to rename, drop, add and/or reorder the sequence
levels. valuemust be either a named or unnamed character vector. When value has names,
the names only serve the purpose of mapping the new sequence levels to the old ones. Oth-
erwise (i.e. when value is unnamed) this mapping is implicitly inferred from the following
rules:
(1) If the number of new and old levels are the same, and if the positional mapping between
the new and old levels shows that some or all of the levels are being renamed, and if the levels
that are being renamed are renamed with levels that didn’t exist before (i.e. are not present
in the old levels), then seqlevels(x) <- value will just rename the sequence levels.
Note that in that case the result is the same as with seqnames(x) <- value but it’s still
recommended to use seqlevels(x) <- value as it is safer.
(2) Otherwise (i.e. if the conditions for (1) are not satisfied) seqlevels(x) <- value
will consider that the sequence levels are not being renamed and will just perform x <-
x[value].
See below for some examples.

seqlengths(x), seqlengths(x) <- value: Gets/sets the length for each sequence in
x.

isCircular(x), isCircular(x) <- value: Gets/sets the circularity flag for each se-
quence in x.

isCircularWithKnownLength(x): Formally defined as (isCircular(x) %in% TRUE)
& !is.na(seqlengths(x)).

genome(x), genome(x) <- value: Gets/sets the genome identifier or assembly name for
each sequence in x.

Seqinfo-class 19

Subsetting

In the code snippets below, x is a Seqinfo object.

x[i]: A Seqinfo object can be subsetted only by name i.e. i must be a character vector. This is
a convenient way to drop/add/reorder the rows (aka the sequence levels) of a Seqinfo object.
See below for some examples.

Coercion

In the code snippets below, x is a Seqinfo object.

as.data.frame(x): Turns x into a data frame.

as(x, "GenomicRanges"), as(x, "RangesList"): Turns x (with no NA lengths) into
a GRanges or RangesList.

Combining Seqinfo objects

There are no c or rbind method for Seqinfo objects. Both would be expected to just append the
rows in y to the rows in x resulting in an object of length length(x) + length(y). But that
would tend to break the constraint that the seqnames of a Seqinfo object must be unique keys.

So instead, a merge method is provided.

In the code snippet below, x and y are Seqinfo objects.

merge(x, y): Merge x and y into a single Seqinfo object where the keys (aka the seqnames)
are union(seqnames(x), seqnames(y)). If a row in y has the same key as a row in
x, and if the 2 rows contain compatible information (NA values are compatible with anything),
then they are merged into a single row in the result. If they cannot be merged (because they
contain different seqlengths, and/or circularity flags, and/or genome identifiers), then an error
is raised. In addition to check for incompatible sequence information, merge(x, y) also
compares seqnames(x) with seqnames(y) and issues a warning if each of them has
names not in the other. The purpose of these checks is to try to detect situations where the
user might be combining or comparing objects based on different reference genomes.

Author(s)

H. Pages

See Also

seqinfo

Examples

Note that all the arguments (except 'genome') must have the
same length. 'genome' can be of length 1, whatever the lengths
of the other arguments are.
x <- Seqinfo(seqnames=c("chr1", "chr2", "chr3", "chrM"),

seqlengths=c(100, 200, NA, 15),
isCircular=c(NA, FALSE, FALSE, TRUE),
genome="toy")

x

x[c("chrY", "chr3", "chr1")] # subset by names

20 SummarizedExperiment-class

Rename, drop, add and/or reorder the sequence levels:
xx <- x
seqlevels(xx) <- sub("chr", "ch", seqlevels(xx)) # rename
xx
seqlevels(xx) <- rev(seqlevels(xx)) # reorder
xx
seqlevels(xx) <- c("ch1", "ch2", "chY") # drop/add/reorder
xx
seqlevels(xx) <- c(chY="Y", ch1="1", "22") # rename/reorder/drop/add
xx

y <- Seqinfo(seqnames=c("chr3", "chr4", "chrM"),
seqlengths=c(300, NA, 15))

y
merge(x, y) # rows for chr3 and chrM are merged
suppressWarnings(merge(x, y))

Note that, strictly speaking, merging 2 Seqinfo objects is not
a commutative operation, i.e., in general 'z1 <- merge(x, y)'
is not identical to 'z2 <- merge(y, x)'. However 'z1' and 'z2'
are guaranteed to contain the same information (i.e. the same
rows, but typically not in the same order):
suppressWarnings(merge(y, x))

This contradicts what 'x' says about circularity of chr3 and chrM:
isCircular(y)[c("chr3", "chrM")] <- c(TRUE, FALSE)
y
if (interactive()) {
merge(x, y) # raises an error

}

SummarizedExperiment-class
SummarizedExperiment instances

Description

The SummarizedExperiment class is an eSet-like container where rows represent ranges of inter-
est (as a GRanges-class) and columns represent samples (with sample data summarized as a
DataFrame-class). A SummarizedExperiment contains one or more assays, each repre-
sented by a matrix of numeric or other mode.

Usage

Constructors

SummarizedExperiment(assays, ...)
S4 method for signature 'SimpleList'
SummarizedExperiment(assays, rowData = GRanges(),

colData = DataFrame(), exptData = SimpleList(), ...,
verbose = FALSE)

SummarizedExperiment-class 21

S4 method for signature 'missing'
SummarizedExperiment(assays, ...)
S4 method for signature 'list'
SummarizedExperiment(assays, ...)
S4 method for signature 'matrix'
SummarizedExperiment(assays, ...)

Accessors

assays(x, ..., withDimnames=TRUE)
assays(x, ...) <- value
assay(x, i, ...)
assay(x, i, ...) <- value
rowData(x, ...)
rowData(x, ...) <- value
colData(x, ...)
colData(x, ...) <- value
exptData(x, ...)
exptData(x, ...) <- value
S4 method for signature 'SummarizedExperiment'
dim(x)
S4 method for signature 'SummarizedExperiment'
dimnames(x)
S4 replacement method for signature 'SummarizedExperiment,NULL'
dimnames(x) <- value
S4 replacement method for signature 'SummarizedExperiment,list'
dimnames(x) <- value

Subsetting

S4 method for signature 'SummarizedExperiment'
x[i, j, ..., drop=TRUE]
S4 replacement method for signature 'SummarizedExperiment,ANY,ANY,SummarizedExperiment'
x[i, j] <- value

Arguments

assays A list or SimpleList of matrix elements, or a matrix. Each element of
the list must have the same dimensions, and dimension names (if present) must
be consistent across elements and with the row names of rowData, colData.

rowData A GRanges or GRangesList instance describing the ranges of interest. Row
names, if present, become the row names of the SummarizedExperiment.
The length of the GRanges or the GRangesList must equal the number of
rows of the matrices in assays.

colData An optional DataFrame describing the samples. Row names, if present, be-
come the column names of the SummarizedExperiment.

exptData An optional SimpleList of arbitrary content describing the overall experi-
ment.

... For SummarizedExperiment, S4 methods list and matrix, arguments
identical to those of the SimpleList method.
For assay, ... may contain withNames, which is forwarded to assays.

22 SummarizedExperiment-class

For other accessors, ignored.

verbose A logical(1) indicating whether messages about data coercion during con-
struction should be printed.

x An instance of SummarizedExperiment-class.

i, j For assay, assay<-, i is a integer or numeric scalar; see ‘Details’ for addi-
tional constraints.
For SummarizedExperiment, SummarizedExperiment<-, i, j are
instances that can act to subset the underlying rowData, colData, and matrix
elements of assays.

withDimnames A logical(1), indicating whether dimnames should be applied to extracted
assay elements.

drop A logical(1), ignored by these methods.

value An instance of a class specified in the S4 method signature or as outlined in
‘Details’.

Details

The SummarizedExperiment class is meant for numeric and other data types derived from a
sequencing experiment. The structure is rectangular, like an eSet in Biobase.

The rows of a SummarizedExperiment instance represent ranges (in genomic coordinates)
of interest. The ranges of interest are described by a GRanges-class or a GRangesList-
class instance, accessible using the rowData function, described below. The GRanges and
GRangesList classes contains sequence (e.g., chromosome) name, genomic coordinates, and
strand information. Each range can be annotated with additional data; this data might be used to
describe the range (analogous to annotations associated with genes in a eSet) or to summarize
results (e.g., statistics of differential abundance) relevant to the range. Rows may or may not have
row names; they often will not.

Each column of a SummarizedExperiment instance represents a sample. Information about
the samples are stored in a DataFrame-class, accessible using the function colData, de-
scribed below. The DataFramemust have as many rows as there are columns in the SummarizedExperiment,
with each row of the DataFrame providing information on the sample in the corresponding col-
umn of the SummarizedExperiment. Columns of the DataFrame represent different sample
attributes, e.g., tissue of origin, etc. Columns of the DataFrame can themselves be annotated
(via the values function) in a fashion similar to the varMetadata facilities of the eSet class.
Column names typically provide a short identifier unique to each sample.

A SummarizedExperiment can also contain information about the overall experiment, for in-
stance the lab in which it was conducted, the publications with which it is associated, etc. This
information is stored as a SimpleList-class, accessible using the exptData function. The
form of the data associated with the experiment is left to the discretion of the user.

The SummarizedExperiment is appropriate for matrix-like data. The data are accessed using
the assays function, described below. This returns a SimpleList-class instance. Each element
of the list must itself be a matrix (of any mode) and must have dimensions that are the same as the
dimensions of the SummarizedExperiment in which they are stored. Row and column names
of each matrix must either be NULL or match those of the SummarizedExperiment during
construction. It is convenient for the elements of SimpleList of assays to be named.

The SummarizedExperiment class has the following slots; this detail of class structure is not
relevant to the user.

exptData A SimpleList-class instance containing information about the overall experiment.

SummarizedExperiment-class 23

rowData A GRanges-class instance defining the ranges of interest and associated metadata.

colData A DataFrame-class instance describing the samples and associated metadata.

assays A SimpleList-class instance, each element of which is a matrix summarizing data associ-
ated with the corresponding range and sample.

Constructor

Instances are constructed using the SummarizedExperiment function with arguments outlined
above.

Accessors

In the following code snippets, x is a SummarizedExperiment instance.

assays(x), assays(x) <- value: Get or set the assays. value is a list or SimpleList,
each element of which is a matrix with the same dimensions as x.

assay(x, i), assay(x, i) <- value: A convenient alternative (to assays(x)[[i]],
assays(x)[[i]] <- value) to get or set the ith (default first) assay element. value
must be a matrix of the same dimension as x, and with dimension names NULL or consistent
with those of x.

rowData(x), rowData(x) <- value: Get or set the row data. value is a GenomicRanges
instance. Row names of value must be NULL or consistent with the existing row names of
x.

colData(x), colData(x) <- value: Get or set the column data. value is a DataFrame
instance. Row names of value must be NULL or consistent with the existing column names
of x.

exptData(x), exptData(x) <- value: Get or set the experiment data. value is a list
or SimpleList instance, with arbitrary content.

dim(x): Get the dimensions (ranges x samples) of the SummarizedExperiment.

dimnames(x), dimnames(x) <- value: Get or set the dimension names. value is usu-
ally a list of length 2, containing elements that are either NULL or vectors of appropriate length
for the corresponding dimension. value can be NULL, which removes dimension names.
This method implies that rownames, rownames<-, colnames, and colnames<- are
all available.

Subsetting

In the code snippets below, x is a SummarizedExperiment instance.

x[i,j], x[i,j] <- value: Create or replace a subset of x. i, j can be numeric, logical,
character, or missing. value must be a SummarizedExperiment instance with
dimensions, dimension names, and assay elements consistent with the subset x[i,j] being
replaced.

Author(s)

Martin Morgan, mtmorgan@fhcrc.org

See Also

GRanges, DataFrame, SimpleList,

mtmorgan@fhcrc.org

24 cigar-utils

Examples

nrows <- 200; ncols <- 6
counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows)
rowData <- GRanges(rep(c("chr1", "chr2"), c(50, 150)),

IRanges(floor(runif(200, 1e5, 1e6)), width=100),
strand=sample(c("+", "-"), 200, TRUE))

colData <- DataFrame(Treatment=rep(c("ChIP", "Input"), 3),
row.names=LETTERS[1:6])

sset <- SummarizedExperiment(assays=SimpleList(counts=counts),
rowData=rowData, colData=colData)

sset
assays(sset) <- endoapply(assays(sset), asinh)
head(assay(sset))

cigar-utils CIGAR utility functions

Description

Utility functions for low-level CIGAR manipulation.

Usage

cigarOpTable(cigar)

cigarToQWidth(cigar, before.hard.clipping=FALSE)
cigarToWidth(cigar)

cigarQNarrow(cigar, start=NA, end=NA, width=NA)
cigarNarrow(cigar, start=NA, end=NA, width=NA)

cigarToIRanges(cigar, drop.D.ranges=FALSE, merge.ranges=TRUE)
cigarToIRangesListByAlignment(cigar, pos, flag=NULL, drop.D.ranges=FALSE)
cigarToIRangesListByRName(cigar, rname, pos, flag=NULL, drop.D.ranges=FALSE,

merge.ranges=TRUE)

queryLoc2refLoc(qloc, cigar, pos=1)
queryLocs2refLocs(qlocs, cigar, pos, flag=NULL)

splitCigar(cigar)
cigarToRleList(cigar)
cigarToCigarTable(cigar)
summarizeCigarTable(x)

Arguments

cigar A character vector/factor containing the extended CIGAR string for each read.
For cigarToIRanges and queryLoc2refLoc, this must be a single string
(i.e. a character vector/factor of length 1).

cigar-utils 25

before.hard.clipping
Should the returned widths be the lengths of the reads before or after "hard
clipping"? Hard clipping of a read is encoded with an H in the CIGAR. If NO
(before.hard.clipping=FALSE, the default), then the returned widths
are the lengths of the query sequences stored in the SAM/BAM file. If YES
(before.hard.clipping=TRUE), then the returned widths are the lengths
of the original reads.

start,end,width
Vectors of integers. NAs and negative values are accepted and "solved" accord-
ing to the rules of the SEW (Start/End/Width) interface (see ?solveUserSEW
for the details).

drop.D.ranges
Should the ranges corresponding to a deletion from the reference (encoded with
a D in the CIGAR) be dropped? By default we keep them to be consistent with
the pileup tool from SAMtools. Note that, when drop.D.ranges is TRUE,
then Ds and Ns in the CIGAR are equivalent.

merge.ranges Should adjacent ranges coming from the same cigar be merged or not? Using
TRUE (the default) can significantly reduce the size of the returned object.

pos An integer vector containing the 1-based leftmost position/coordinate for each
(eventually clipped) read sequence.

flag NULL or an integer vector containing the SAM flag for each read. Accord-
ing to the SAM specs, flag bits 0x004 and 0x400 have the following meaning:
when bit 0x004 is ON then "the query sequence itself is unmapped" and when
bit 0x400 is ON then "the read is either a PCR duplicate or an optical dupli-
cate". When flag is provided, cigarToIRangesListByAlignment and
cigarToIRangesListByRName ignore these reads.

rname A character vector/factor containing the name of the reference sequence asso-
ciated with each read (i.e. the name of the sequence the read has been aligned
to).

qloc An integer vector containing "query-based locations" i.e. 1-based locations rel-
ative to the query sequence stored in the SAM/BAM file.

qlocs A list of the same length as cigar where each element is an integer vector
containing "query-based locations" i.e. 1-based locations relative to the corre-
sponding query sequence stored in the SAM/BAM file.

x A DataFrame produced by cigarToCigarTable.

Value

For cigarOpTable: An integer matrix with number of rows equal to the length of cigar and
seven columns, one for each extended CIGAR operation.

For cigarToQWidth: An integer vector of the same length as cigar where each element is
the width of the query (i.e. the length of the query sequence) as inferred from the corresponding
element in cigar (NAs in cigar will produce NAs in the returned vector).

For cigarQNarrow and cigarNarrow: A character vector of the same length as cigar con-
taining the narrowed cigars. In addition the vector has an "rshift" attribute which is an integer vector
of the same length as cigar. It contains the values that would need to be added to the POS field
of a SAM/BAM file as a consequence of this cigar narrowing.

For cigarToWidth: An integer vector of the same length as cigar where each element is the
width of the alignment (i.e. its total length on the reference, gaps included) as inferred from the
corresponding element in cigar (NAs in cigar will produce NAs in the returned vector).

26 cigar-utils

For cigarToIRanges: An IRanges object describing where the bases in the read align with
respect to an imaginary reference sequence assuming that the leftmost aligned base is at position 1
in the reference (i.e. at the first position).

For cigarToIRangesListByAlignment: A CompressedNormalIRangesList object of the
same length as cigar.

For cigarToIRangesListByRName: A named IRangesList object with one element (IRanges)
per unique reference sequence.

For queryLoc2refLoc: An integer vector of the same length as qloc containing the "reference-
based locations" (i.e. the 1-based locations relative to the reference sequence) corresponding to the
"query-based locations" passed in qloc.

For queryLocs2refLocs: A list of the same length as qlocs where each element is an inte-
ger vector containing the "reference-based locations" corresponding to the "query-based locations"
passed in the corresponding element in qlocs.

For splitCigar: A list of the same length as cigar where each element is itself a list with 2
elements of the same lengths, the 1st one being a raw vector containing the CIGAR operations and
the 2nd one being an integer vector containing the lengths of the CIGAR operations.

For cigarToRleList: A CompressedRleList object.

For cigarToCigarTable: A frequency table of the CIGARs in the form of a DataFrame with
two columns: cigar (a CompressedRleList) and count (an integer).

For summarizeCigarTable: A list with two elements: AlignedCharacters (integer) and
Indels (matrix)

Author(s)

H. Pages and P. Aboyoun

References

http://samtools.sourceforge.net/

See Also

IRanges-class, IRangesList-class, coverage, RleList-class

Examples

A. SIMPLE EXAMPLES

With a cigar vector of length 1:
cigar1 <- "3H15M55N4M2I6M2D5M6S"

cigarToQWidth()/cigarToWidth():
cigarToQWidth(cigar1)
cigarToQWidth(cigar1, before.hard.clipping=TRUE)
cigarToWidth(cigar1)

cigarQNarrow():
cigarQNarrow(cigar1, start=4, end=-3)
cigarQNarrow(cigar1, start=10)
cigarQNarrow(cigar1, start=19)

http://samtools.sourceforge.net/

cigar-utils 27

cigarQNarrow(cigar1, start=24)

cigarNarrow():
cigarNarrow(cigar1) # only drops the soft/hard clipping
cigarNarrow(cigar1, start=10)
cigarNarrow(cigar1, start=15)
cigarNarrow(cigar1, start=15, width=57)
cigarNarrow(cigar1, start=16)
#cigarNarrow(cigar1, start=16, width=55) # ERROR! (empty cigar)
cigarNarrow(cigar1, start=71)
cigarNarrow(cigar1, start=72)
cigarNarrow(cigar1, start=75)

cigarToIRanges():
cigarToIRanges(cigar1)
cigarToIRanges(cigar1, merge.ranges=FALSE)
cigarToIRanges(cigar1, drop.D.ranges=TRUE)

With a cigar vector of length 4:
cigar2 <- c("40M", cigar1, "2S10M2000N15M", "3H25M5H")
pos <- c(1, 1001, 1, 351)
cigarToIRangesListByAlignment(cigar2, pos)
rname <- c("chr6", "chr6", "chr2", "chr6")
cigarToIRangesListByRName(cigar2, rname, pos)

cigarOpTable(cigar2)

splitCigar(cigar2)
cigarToRleList(cigar2)

cigarToCigarTable(cigar2)
cigarToCigarTable(cigar2)[,"cigar"]
cigarToCigarTable(cigar2)[,"count"]

summarizeCigarTable(cigarToCigarTable(cigar2))

B. PERFORMANCE

if (interactive()) {
We simulate 20 millions aligned reads, all 40-mers. 95% of them
align with no indels. 5% align with a big deletion in the
reference. In the context of an RNAseq experiment, those 5% would
be suspected to be "junction reads".
set.seed(123)
nreads <- 20000000L
njunctionreads <- nreads * 5L / 100L
cigar3 <- character(nreads)
cigar3[] <- "40M"
junctioncigars <- paste(

paste(10:30, "M", sep=""),
paste(sample(80:8000, njunctionreads, replace=TRUE), "N", sep=""),
paste(30:10, "M", sep=""), sep="")

cigar3[sample(nreads, njunctionreads)] <- junctioncigars
some_fake_rnames <- paste("chr", c(1:6, "X"), sep="")
rname <- sample(some_fake_rnames, nreads, replace=TRUE)

28 countGenomicOverlaps

pos <- sample(80000000L, nreads, replace=TRUE)

The following takes < 5 sec. to complete:
system.time(rglist <- cigarToIRangesListByAlignment(cigar3, pos))

The following takes < 10 sec. to complete:
system.time(irl <- cigarToIRangesListByRName(cigar3, rname, pos))

Internally, cigarToIRangesListByRName() turns 'rname' into a factor
before starting the calculation. Hence it will run sligthly
faster if 'rname' is already a factor.
rname2 <- as.factor(rname)
system.time(irl2 <- cigarToIRangesListByRName(cigar3, rname2, pos))

The sizes of the resulting objects are about 240M and 160M,
respectively:
object.size(rglist)
object.size(irl)

}

C. COMPUTE THE COVERAGE OF THE READS STORED IN A BAM FILE

The information stored in a BAM file can be used to compute the
"coverage" of the mapped reads i.e. the number of reads that hit any
given position in the reference genome.
The following function takes the path to a BAM file and returns an
object representing the coverage of the mapped reads that are stored
in the file. The returned object is an RleList object named with the
names of the reference sequences that actually receive some coverage.

extractCoverageFromBAM <- function(file)
{

This ScanBamParam object allows us to load only the necessary
information from the file.
param <- ScanBamParam(flag=scanBamFlag(isUnmappedQuery=FALSE,

isDuplicate=FALSE),
what=c("rname", "pos", "cigar"))

bam <- scanBam(file, param=param)[[1]]
Note that unmapped reads and reads that are PCR/optical duplicates
have already been filtered out by using the ScanBamParam object above.
irl <- cigarToIRangesListByRName(bam$cigar, bam$rname, bam$pos)
irl <- irl[elementLengths(irl) != 0] # drop empty elements
coverage(irl)

}

library(Rsamtools)
f1 <- system.file("extdata", "ex1.bam", package="Rsamtools")
extractCoverageFromBAM(f1)

countGenomicOverlaps
Count Read Hits in Genomic Features

countGenomicOverlaps 29

Description

Count read hits per exon or transcript and resolve multi-hit reads.

Usage

S4 method for signature 'GRangesList,GRangesList'
countGenomicOverlaps(

query, subject,
type = c("any", "start", "end", "within", "equal"),
resolution = c("none", "divide", "uniqueDisjoint"),
ignore.strand = FALSE, splitreads = TRUE, ...)

Arguments

query A GRangesList, or a GRanges of genomic features. These are the annotations
that define the genomic regions and will often be the result of calling "exonsBy"
or "transcriptsBy" on a TranscriptDb object. If a GRangesList is provided, each
top level of the list represents a "super" such as a gene and each row is a "sub"
such as an exon or transcript. When query is a GRanges all rows are consid-
ered to be of the same level (e.g., all genes, all exons or all transcripts).

subject A GRangesList, GRanges, or GappedAlignments representing the data (e.g.,
reads).

List structures as the subject are used to represent reads with multiple parts
(i.e., gaps in the CIGAR). When a GappedAlignments is provided it is coerced
to a GRangesList object. If any of the reads in the GappedAlignments have
gaps, the corresponding GRangesList will have multiple elements for that top
level list. When subject is a GRanges, it is assumed that all reads are simple
and do not have multiple parts.

type See findOverlaps in the IRanges package for a description of this argument.

resolution A character(1) string of "none", "divide", or "uniqueDisjoint". These rule
sets are used to distribute read hits when multiple queries are hit by the same
subject.

• "none" : No conflict resolution is performed. All subjects that hit more than
1 query are dropped.

• "divide" : The hit from a single subject is divided equally among all queries
that were hit. If a subject hit 4 queries each query is assigned 1/4 of a hit.

• "uniqueDisjoint" : Queries hit by a common subject are partitioned into
disjoint intervals. Any regions that are shared between the queries are
discarded. If the read overlaps one of these remaining unique disjoint re-
gions the hit is assigned to that feature. If the read overlaps both or none
of the regions, no hit is assigned. Therefore, unlike the divide option,
uniqueDisjoint does not resolve multi-hit conflict in all situations.

ignore.strand
A logical value indicating if strand should be considered when matching.

splitreads A logical value indicating if split reads should be included.

... Additional arguments, perhaps used by methods defined on this generic.

30 countGenomicOverlaps

Details

The countGenomicOverlaps methods use the findOverlaps function in conjunction with
a resolution method to identify overlaps and resolve subjects (reads) that match multiple queries
(annotation regions). The usual type argument of findOverlaps is used to specify the type
of overlap. The resolution argument is used to select a method to resolve the conflict when a
subject hits more than 1 query. Here the term ‘hit’ means an overlap identified by findOverlaps.

The primary difference in the handling of split reads vs simple reads (i.e., no gap in the CIGAR) is
the portion of the read hit each split read fragment has to contribute. All reads, whether simple or
split, have an overall value of 1 to contribute to a query they hit. In the case of the split reads, this
value is further divided by the number of fragments in the read. For example, if a split read has 3
fragments (i.e., two gaps in the CIGAR) each fragment has a value of 1/3 to contribute to the query
they hit. As with the simple reads, depending upon the resolution chosen the value may be
divided, fully assigned or discarded.

More detailed examples can be found in the countGenomicOverlaps vignette.

Value

A vector of counts

Author(s)

Valerie Obenchain and Martin Morgan

Examples

Not run:
rng1 <- function(s, w)
GRanges(seq="chr1", IRanges(s, width=w), strand="+")

rng2 <- function(s, w)
GRanges(seq="chr2", IRanges(s, width=w), strand="+")

query <- GRangesList(A=rng1(1000, 500),
B=rng2(2000, 900),
C=rng1(c(3000, 3600), c(500, 300)),
D=rng2(c(7000, 7500), c(600, 300)),
E1=rng1(4000, 500), E2=rng1(c(4300, 4500), c(400, 400)),
F=rng2(3000, 500),
G=rng1(c(5000, 5600), c(500, 300)),
H1=rng1(6000, 500), H2=rng1(6600, 400))

subj <- GRangesList(a=rng1(1400, 500),
b=rng2(2700, 100),
c=rng1(3400, 300),
d=rng2(7100, 600),
e=rng1(4200, 500),
f=rng2(c(3100, 3300), 50),
g=rng1(c(5400, 5600), 50),
h=rng1(c(6400, 6600), 50))

Overlap type = "any"
none <- countGenomicOverlaps(query, subj,

type="any", resolution="none")
divide <- countGenomicOverlaps(query, subj,

coverage-methods 31

type="any", resolution="divide")
uniqueDisjoint <- countGenomicOverlaps(query, subj, type="any",

resolution="uniqueDisjoint")
data.frame(none = none,

divide = divide,
uniqDisj = uniqueDisjoint)

Split read with 4 fragments :
splitreads <- GRangesList(c(rng1(c(3000, 3200, 4000), 100), rng1(5400, 300)))
Unlist both the splitreads and the query to see
- read fragments 1 and 2 both hit query 3
- read fragment 3 hits query 7
- read fragment 4 hits query 11 and 12
findOverlaps(unlist(query), unlist(splitreads))

Use countGenomicOverlaps to avoid double counting.
Because this read has 4 parts each part contributes a count of 1/4.
When resolution="none" only reads that hit a single region are counted.
split_none <- countGenomicOverlaps(query, splitreads, type="any",

resolution="none")
When resolution="divide" all reads are counted by dividing their count
evenly between the regions they hit. Region 3 of the query was hit
by two reads each contributing a count of 1/4. Region 7 was hit
by one read contributing a count of 1/4. Regions 11 and 12 were both
hit by the same read resulting in having to share (i.e., "divide") the
single 1/4 hit read 4 had to contribute.
split_divide <- countGenomicOverlaps(query, splitreads,

type="any", resolution="divide")

data.frame(none = split_none,
divide = split_divide)

End(Not run)

coverage-methods GRanges, GRangesList and GappedAlignments coverage

Description

coverage methods for GRanges, GRangesList and GappedAlignments objects.

Usage

S4 method for signature 'GenomicRanges'
coverage(x, shift=0L, width=NULL, weight=1L, ...)

Arguments

x A GRanges, GRangesList or GappedAlignments object.
shift, width, weight, ...

See coverage in the IRanges package for a description of these optional ar-
guments.

32 coverage-methods

Details

Here is how optional arguments shift, width and weight are handled when x is a GRanges
object:

• shift, weight: can be either a numeric vector (integers) or a list. If a list, then it should
be named by the sequence levels in x (i.e. by the names of the underlying sequences), and
its elements are passed into the coverage method for IRanges objects. If a numeric vec-
tor, then it is first recycled to the length of x, then turned into a list with split(shift,
as.factor(seqnames(x))), and finally the elements of this list are passed into the
coverage method for IRanges objects.

• width: can be either NULL or a numeric vector. If a numeric vector, then it should be named
by the sequence levels in x. If NULL (the default), then it is replaced with seqlengths(x).
Like for shift and weight, its elements are passed into the coveragemethod for IRanges
objects (if the element is NA then NULL is passed instead).

When x is a GRangesList object, coverage(x, ...) is equivalent to coverage(unlist(x),
...).

When x is a GappedAlignments object, coverage(x, ...) is equivalent to coverage(as(x,
"GRangesList"), ...).

Value

Returns a named RleList object with one element (’integer’ Rle) per underlying sequence in x
representing how many times each position in the sequence is covered by the intervals in x.

Author(s)

P. Aboyoun and H. Pages

See Also

coverage, RleList-class, GRanges-class, GRangesList-class, GappedAlignments-class

Examples

Coverage of a GRanges object:
gr <- GRanges(

seqnames=Rle(c("chr1", "chr2", "chr1", "chr3"), c(1, 3, 2, 4)),
ranges=IRanges(1:10, end=10),
strand=Rle(strand(c("-", "+", "*", "+", "-")), c(1, 2, 2, 3, 2)),
seqlengths=c(chr1=11, chr2=12, chr3=13))

cvg <- coverage(gr)
pcvg <- coverage(gr[strand(gr) == "+"])
mcvg <- coverage(gr[strand(gr) == "-"])
scvg <- coverage(gr[strand(gr) == "*"])
stopifnot(identical(pcvg + mcvg + scvg, cvg))

Coverage of a GRangesList object:
gr1 <- GRanges(seqnames="chr2",

ranges=IRanges(3, 6),
strand = "+")

gr2 <- GRanges(seqnames=c("chr1", "chr1"),
ranges=IRanges(c(7,13), width=3),
strand=c("+", "-"))

gr3 <- GRanges(seqnames=c("chr1", "chr2"),

findOverlaps-methods 33

ranges=IRanges(c(1, 4), c(3, 9)),
strand=c("-", "-"))

grl <- GRangesList(gr1=gr1, gr2=gr2, gr3=gr3)
stopifnot(identical(coverage(grl), coverage(unlist(grl))))

Coverage of a GappedAlignments object:
library(Rsamtools) # because file ex1.bam is in this package
galn_file <- system.file("extdata", "ex1.bam", package="Rsamtools")
galn <- readGappedAlignments(galn_file)
stopifnot(identical(coverage(galn), coverage(as(galn, "GRangesList"))))

findOverlaps-methods
GRanges, GRangesList and GappedAlignments Interval Overlaps

Description

Finds interval overlaps between a GRanges, GRangesList or GappedAlignments object and another
object containing ranges.

Usage

S4 method for signature 'GenomicRanges,GenomicRanges'
findOverlaps(query, subject,

maxgap = 0L, minoverlap = 1L,
type = c("any", "start", "end", "within", "equal"),
select = c("all", "first"), ignore.strand = FALSE)

S4 method for signature 'GenomicRanges,GenomicRanges'
countOverlaps(query, subject,

maxgap = 0L, minoverlap = 1L,
type = c("any", "start", "end", "within", "equal"),
ignore.strand = FALSE)

S4 method for signature 'GenomicRanges,GenomicRanges'
subsetByOverlaps(query, subject,

maxgap = 0L, minoverlap = 1L,
type = c("any", "start", "end", "within", "equal"),
ignore.strand = FALSE)

S4 method for signature 'GenomicRanges,GenomicRanges'
match(x, table,

nomatch = NA_integer_, incomparables = NULL)
Also: x %in% table

Arguments
query, subject, x, table

A GRanges, GRangesList or GappedAlignments object. RangesList and Ranged-
Data are also accepted for one of query or subject (x or table for match).

maxgap, minoverlap, type, select
See findOverlaps in the IRanges package for a description of these argu-
ments.

ignore.strand
When set to TRUE, the strand information is ignored in the overlap calculations.

34 findOverlaps-methods

nomatch The integer value to be returned in the case when no match is found.
incomparables

This value is ignored.

Details

When the query and the subject are GRanges or GRangesList objects, findOverlaps uses the
triplet (sequence name, range, strand) to determine which features (see paragraph below for the
definition of feature) from the query overlap which features in the subject, where a strand
value of "*" is treated as occurring on both the "+" and "-" strand. An overlap is recorded
when a feature in the query and a feature in the subject have the same sequence name, have a
compatible pairing of strands (e.g. "+"/"+", "-"/"-", "*"/"+", "*"/"-", etc.), and satisfy the
interval overlap requirements. Strand is taken as "*" for RangedData and RangesList.

In the context of findOverlaps, a feature is a collection of ranges that are treated as a single
entity. For GRanges objects, a feature is a single range; while for GRangesList objects, a feature
is a list element containing a set of ranges. In the results, the features are referred to by number,
which run from 1 to length(query)/length(subject).

When the query or the subject (or both) is a GappedAlignments object, it is first turned into a
GRangesList object (with as(, "GRangesList")) and then the rules described previously
apply.

Value

For findOverlaps either a RangesMatching object when select = "all" or an integer
vector when select = "first".

For countOverlaps an integer vector containing the tabulated query overlap hits.

For subsetByOverlaps an object of the same class as query containing the subset that over-
lapped at least one entity in subject.

For match same as findOverlaps when select = "first".

For %in% the logical vector produced by !is.na(match(x, table)).

For RangedData and RangesList, with the exception of subsetByOverlaps, the results
align to the unlisted form of the object. This turns out to be fairly convenient for RangedData
(not so much for RangesList, but something has to give).

Author(s)

P. Aboyoun, S. Falcon, M. Lawrence, N. Gopalakrishnan and H. Pages

See Also

findOverlaps, RangesMatching-class, GRanges-class, GRangesList-class, GappedAlignments-
class

Examples

WITH GRanges AND/OR GRangesList OBJECTS

GRanges object:
gr <-
GRanges(seqnames =

findOverlaps-methods 35

Rle(c("chr1", "chr2", "chr1", "chr3"), c(1, 3, 2, 4)),
ranges =
IRanges(1:10, width = 10:1, names = head(letters,10)),
strand =
Rle(strand(c("-", "+", "*", "+", "-")),

c(1, 2, 2, 3, 2)),
score = 1:10,
GC = seq(1, 0, length=10))

gr

GRangesList object:
gr1 <-
GRanges(seqnames = "chr2", ranges = IRanges(3, 6),

strand = "+", score = 5L, GC = 0.45)
gr2 <-
GRanges(seqnames = c("chr1", "chr1"),

ranges = IRanges(c(7,13), width = 3),
strand = c("+", "-"), score = 3:4, GC = c(0.3, 0.5))

gr3 <-
GRanges(seqnames = c("chr1", "chr2"),

ranges = IRanges(c(1, 4), c(3, 9)),
strand = c("-", "-"), score = c(6L, 2L), GC = c(0.4, 0.1))

grlist <- GRangesList("gr1" = gr1, "gr2" = gr2, "gr3" = gr3)

Overlapping two GRanges objects:
table(gr %in% gr1)
countOverlaps(gr, gr1)
findOverlaps(gr, gr1)
subsetByOverlaps(gr, gr1)

countOverlaps(gr, gr1, type = "start")
findOverlaps(gr, gr1, type = "start")
subsetByOverlaps(gr, gr1, type = "start")

findOverlaps(gr, gr1, select = "first")

findOverlaps(gr1, gr)
findOverlaps(gr1, gr, type = "start")
findOverlaps(gr1, gr, type = "within")
findOverlaps(gr1, gr, type = "equal")

Overlapping a GRanges and a GRangesList object:
table(grlist %in% gr)
countOverlaps(grlist, gr)
findOverlaps(grlist, gr)
subsetByOverlaps(grlist, gr)
countOverlaps(grlist, gr, type = "start")
findOverlaps(grlist, gr, type = "start")
subsetByOverlaps(grlist, gr, type = "start")
findOverlaps(grlist, gr, select = "first")

Overlapping two GRangesList objects:
countOverlaps(grlist, rev(grlist))
findOverlaps(grlist, rev(grlist))
subsetByOverlaps(grlist, rev(grlist))

36 seqinfo

WITH A GappedAlignments OBJECT

library(Rsamtools) # because file ex1.bam is in this package
galn_file <- system.file("extdata", "ex1.bam", package="Rsamtools")
galn <- readGappedAlignments(galn_file)

subject <- granges(galn)[1]

Note the absence of query no. 9 (i.e. 'galn[9]') in this result:
as.matrix(findOverlaps(galn, subject))

This is because, by default, findOverlaps()/countOverlaps() are
strand specific:
galn[8:10]
countOverlaps(galn[8:10], subject)
countOverlaps(galn[8:10], subject, ignore.strand=TRUE)

Advanced examples:
subsetByOverlaps(galn, subject)
table(match(galn, subject), useNA = "ifany")
table(galn %in% subject)

seqinfo Accessing sequence information

Description

A set of generic functions for getting/setting sequence information from/on an object.

Usage

seqinfo(x)
seqinfo(x, new2old=NULL, force=FALSE) <- value

seqnames(x)
seqnames(x) <- value

seqlevels(x)
seqlevels(x, force=FALSE) <- value

seqlengths(x)
seqlengths(x) <- value

isCircular(x)
isCircular(x) <- value

isCircularWithKnownLength(x)

genome(x)
genome(x) <- value

seqinfo 37

Arguments

x The object from/on which to get/set the sequence information.

new2old The new2old argument allows the user to rename, drop, add and/or reorder the
"sequence levels" in x.
new2old can be NULL or an integer vector with one element per row in Se-
qinfo object value (i.e. new2old and value must have the same length)
describing how the "new" sequence levels should be mapped to the "old" se-
quence levels, that is, how the rows in value should be mapped to the rows in
seqinfo(x). The values in new2oldmust be >= 1 and <= length(seqinfo(x)).
NAs are allowed and indicate sequence levels that are being added. Old sequence
levels that are not represented in new2old will be dropped, but this will fail if
those levels are in use (e.g. if x is a GRanges object with ranges defined on
those sequence levels) unless force=TRUE is used (see below).
If new2old=NULL, then sequence levels can only be added to the existing
ones, that is, value must have at least as many rows as seqinfo(x) (i.e.
length(values) >= length(seqinfo(x))) and also seqlevels(values)[seq_len(length(seqlevels(x)))]
must be identical to seqlevels(x).

force Force dropping sequence levels currently in use. This is achieved by drop-
ping the elements in x where those levels are used (hence typically reducing
the length of x).

value Typically a Seqinfo object for the seqinfo setter.
Either a named or unnamed character vector for the seqlevels setter.
A vector containing the sequence information to store for the other setters.

Details

Various classes implement methods for those generic functions.

The Seqinfo class plays a central role for those generics because:

• It implements methods for all the above generics except for seqinfo. That is, the seqnames,
seqlevels, seqlengths, isCircular, isCircularWithKnownLength and genome
getters are defined for Seqinfo objects.

• Classes that implement the seqinfo getter are typically expected to return a Seqinfo object.

• Default seqlevels, seqlengths, isCircular, isCircularWithKnownLength
and genome getters and setters are provided. By default, seqlevels(x) does seqlevels(seqinfo(x)),
seqlengths(x) does seqlengths(seqinfo(x)), isCircular(x) does isCircular(seqinfo(x)),
isCircularWithKnownLength(x) does isCircularWithKnownLength(seqinfo(x)),
and genome(x) does genome(seqinfo(x)). So any class with a seqinfo getter that
returns a Seqinfo object also has all those getters working out-of-the-box. See the GRanges,
GRangesList and GappedAlignments classes as examples of such classes (those 3 classes are
defined in the GenomicRanges package).

Note

The full list of methods defined for a given generic can be seen with e.g. showMethods("seqinfo")
or showMethods("seqnames") (for the getters), and showMethods("seqinfo<-") or
showMethods("seqnames<-") (for the setters aka replacement methods). Please be aware
that this shows only methods defined in packages that are currently attached.

38 utils

See Also

Seqinfo-class, GRanges-class, GRangesList-class, GappedAlignments-class

Examples

showMethods("seqinfo")
showMethods("seqinfo<-")

showMethods("seqnames")
showMethods("seqnames<-")

if (interactive())
?`GRanges-class`

utils seqlevels utility functions

Description

Rename or subset the seqlevels in a GenomicRanges, GRangesList or GappedAlignments object.

Usage

S4 method for signature 'GenomicRanges,GenomicRanges'
keepSeqlevels(x, value, ...)

S4 method for signature 'GenomicRanges,GRangesList'
keepSeqlevels(x, value, ...)

S4 method for signature 'GenomicRanges,GappedAlignments'
keepSeqlevels(x, value, ...)

S4 method for signature 'GenomicRanges,character'
keepSeqlevels(x, value, ...)

S4 method for signature 'GRangesList,GenomicRanges'
keepSeqlevels(x, value, ...)

S4 method for signature 'GRangesList,GRangesList'
keepSeqlevels(x, value, ...)

S4 method for signature 'GRangesList,GappedAlignments'
keepSeqlevels(x, value, ...)

S4 method for signature 'GRangesList,character'
keepSeqlevels(x, value, ...)

S4 method for signature 'GappedAlignments,GenomicRanges'
keepSeqlevels(x, value, ...)

S4 method for signature 'GappedAlignments,GRangesList'
keepSeqlevels(x, value, ...)

S4 method for signature 'GappedAlignments,GappedAlignments'
keepSeqlevels(x, value, ...)

S4 method for signature 'GappedAlignments,character'
keepSeqlevels(x, value, ...)

S4 method for signature 'GenomicRanges,character'
renameSeqlevels(x, value, ...)

S4 method for signature 'GRangesList,character'

utils 39

renameSeqlevels(x, value, ...)
S4 method for signature 'GappedAlignments,character'

renameSeqlevels(x, value, ...)

Arguments

x The GenomicRanges, GRangesList or GappedAlignments object for which the
seqlevels will be removed or renamed.

value For keepSeqlevels, a GRanges, GRangesList or GappedAlignments or
character vector. The seqlevels from value object will be used to subset the
seqlevels in the x.
For renameSeqlevels, a named character vector where the names are the
’old’ seqlevels and the values are the ’new’ seqlevels. seqlevels in the x will be
renamed from the ’old’ to the ’new’.

... Arguments passed to other functions.

Details

Many operations on GRanges objects require the seqlevels to match before a comparison can be
made (e.g., findOverlaps(type="within")). keepSeqlevels and renameSeqlevels
are convenience functions for subsetting and renaming the seqlevels of these objects.

The keepSeqlevels function subsets the seqlevels of x based on the seqlevels provided in
value. seqlevels contained in value that are not in x are ignored. If none of the seqlevels in
the value are present in x an error is thrown. When x is a GRangesList, keepSeqlevels retains
only the seqlevels specified in value. If a list element has multiple chromosomes but not all chro-
mosomes are specified in value, a reduced list element is returned. All empty list elements are
dropped. See examples.

renameSeqlevels renames the seqlevels in x based on those provided in value. value is
a named character vector where the names should match existing seqlevels in x. The matching
seqlevels will be renamed to the corresponding list values. List names in value that are not in x
are ignored. An error is thrown if none of the list names in value match the seqlevels in x

Value

The x object with seqlevels removed or renamed.

Author(s)

Valerie Obenchain <vobencha@fhcrc.org>

Examples

gr1 <- GRanges(seqnames = c("chr1", "chr2"),
ranges = IRanges(c(7,13), width = 3),
strand = c("+", "-"), score = 3:4, GC = c(0.3, 0.5))

gr2 <- GRanges(seqnames = c("chr1", "chr1", "chr2", "chr3", "chr3"),
ranges = IRanges(c(1, 4, 8, 9, 16), width=5),
strand = "-", score = c(3L, 2L, 5L, 6L, 2L),
GC = c(0.4, 0.1, 0.55, 0.20, 0.10))

gr3 <- GRanges(seqnames = c("CHROM4", "CHROM4"),
ranges = IRanges(c(20, 45), width=6),
strand = "+", score = c(2L, 5L), GC = c(0.30, 0.45))

40 setops-methods

GRanges :
gr3_rename <- renameSeqlevels(gr3, c(CHROM4="chr4"))
gr3_rename

gr2_subset_chr <- keepSeqlevels(gr2, c("chr1", "chr2"))
gr2_subset_gr <- keepSeqlevels(gr2, gr1)
identical(gr2_subset_chr, gr2_subset_gr)

GRangesList :
grl1 <- GRangesList("gr1" = gr1, "gr2" = gr2, "gr3" = gr3)
grl2 <- GRangesList("gr1" = gr1, "gr2" = gr2, "gr3" = gr3_rename)
grl1_rename <- renameSeqlevels(grl1, c(CHROM4="chr4"))
identical(grl1_rename, grl2)

grl1_subset <- keepSeqlevels(grl1, "chr3")

GappedAlignments :
library(Rsamtools)
galn_file <- system.file("extdata", "ex1.bam", package="Rsamtools")
galn <- readGappedAlignments(galn_file)

galn_rename <- renameSeqlevels(galn, c(seq2="chr2"))
galn_subset <- keepSeqlevels(galn_rename, gr1)
galn_subset

setops-methods Set operations on GRanges/GRangesList/GappedAlignments objects

Description

Performs set operations on GRanges/GRangesList/GappedAlignments objects.

Usage

Set operations
S4 method for signature 'GRanges,GRanges'
union(x, y, ignore.strand=FALSE, ...)
S4 method for signature 'GRanges,GRanges'
intersect(x, y, ignore.strand=FALSE, ...)
S4 method for signature 'GRanges,GRanges'
setdiff(x, y, ignore.strand=FALSE, ...)

Parallel set operations
S4 method for signature 'GRanges,GRanges'
punion(x, y, fill.gap=FALSE, ignore.strand=FALSE, ...)
S4 method for signature 'GRanges,GRanges'
pintersect(x, y, resolve.empty=c("none", "max.start", "start.x"), ignore.strand=FALSE, ...)
S4 method for signature 'GappedAlignments,GRanges'
pintersect(x, y, ...)
S4 method for signature 'GRanges,GRanges'
psetdiff(x, y, ignore.strand=FALSE, ...)

setops-methods 41

Arguments

x, y For union, intersect, setdiff, pgap: x and y must both be GRanges
objects.
For punion: one of x or y must be a GRanges object, the other one can be a
GRanges or GRangesList object.
For pintersect: one of x or y must be a GRanges object, the other one can
be a GRanges, GRangesList or GappedAlignments object.
For psetdiff: x and y can be any combination of GRanges and/or GRanges-
List objects, with the exception that if x is a GRangesList object then y must be
a GRangesList too.
In addition, for the "parallel" operations, x and y must be of equal length (i.e.
length(x) == length(y)).

fill.gap Logical indicating whether or not to force a union by using the rule start =
min(start(x), start(y)), end = max(end(x), end(y)).

resolve.empty
One of "none", "max.start", or "start.x" denoting how to handle am-
biguous empty ranges formed by intersections. "none" - throw an error if an
ambiguous empty range is formed, "max.start" - associate the maximum
start value with any ambiguous empty range, and "start.x" - associate the
start value of x with any ambiguous empty range. (See pintersect for the
definition of an ambiguous range.)

ignore.strand
For set operations: If set to TRUE, then the strand of x and y is set to "*" prior
to any computation.
For parallel set operations: If set to TRUE, the strand information is ignored in
the computation and the result has the strand information of x.

... Further arguments to be passed to or from other methods.

Details

The pintersect methods involving GRanges, GRangesList and/or GappedAlignments objects
use the triplet (sequence name, range, strand) to determine the element by element intersection of
features, where a strand value of "*" is treated as occurring on both the "+" and "-" strand.

The psetdiff methods involving GRanges and/or GRangesList objects use the triplet (sequence
name, range, strand) to determine the element by element set difference of features, where a strand
value of "*" is treated as occurring on both the "+" and "-" strand.

Value

For union, intersect, setdiff, and pgap: a GRanges.

For punion and pintersect: when x or y is not a GRanges object, an object of the same class
as this non-GRanges object. Otherwise, a GRanges object.

For psetdiff: either a GRanges object when both x and y are GRanges objects, or a GRangesList
object when y is a GRangesList object.

Author(s)

P. Aboyoun

42 setops-methods

See Also

IRanges-setops, GRanges-class, GRangesList-class, GappedAlignments-class, findOverlaps-methods

Examples

A. SET OPERATIONS

x <- GRanges("chr1", IRanges(c(2, 9) , c(7, 19)), strand=c("+", "-"))
y <- GRanges("chr1", IRanges(5, 10), strand="-")

union(x, y)
union(x, y, ignore.strand=TRUE)

intersect(x, y)
intersect(x, y, ignore.strand=TRUE)

setdiff(x, y)
setdiff(x, y, ignore.strand=TRUE)

B. PARALLEL SET OPERATIONS

Not run:
punion(x, shift(x, 7)) # will fail

End(Not run)
punion(x, shift(x, 7), fill.gap=TRUE)

pintersect(x, shift(x, 6))
Not run:
pintersect(x, shift(x, 7)) # will fail

End(Not run)
pintersect(x, shift(x, 7), resolve.empty="max.start")

psetdiff(x, shift(x, 7))

C. MORE EXAMPLES

GRanges object:
gr <- GRanges(seqnames=c("chr2", "chr1", "chr1"),

ranges=IRanges(1:3, width = 12),
strand=Rle(strand(c("-", "*", "-"))))

GRangesList object
gr1 <- GRanges(seqnames="chr2",

ranges=IRanges(3, 6))
gr2 <- GRanges(seqnames=c("chr1", "chr1"),

ranges=IRanges(c(7,13), width = 3),
strand=c("+", "-"))

gr3 <- GRanges(seqnames=c("chr1", "chr2"),

strand 43

ranges=IRanges(c(1, 4), c(3, 9)),
strand=c("-", "-"))

grlist <- GRangesList(gr1=gr1, gr2=gr2, gr3=gr3)

Parallel intersection of a GRanges and a GRangesList object
pintersect(gr, grlist)
pintersect(grlist, gr)

Parallel intersection of a GappedAlignments and a GRanges object
library(Rsamtools) # because file ex1.bam is in this package
galn_file <- system.file("extdata", "ex1.bam", package="Rsamtools")
galn <- readGappedAlignments(galn_file)
pintersect(galn, shift(as(galn, "GRanges"), 6L))

Parallel set difference of a GRanges and a GRangesList object
psetdiff(gr, grlist)

Parallel set difference of two GRangesList objects
psetdiff(grlist, shift(grlist, 3))

strand Accessing strand information

Description

The strand generic is meant as an accessor for strand information. Four methods are defined by
the GenomicRanges package, described below.

Usage

strand(x)

Arguments

x The object from which to obtain a strand factor, can be missing.

Details

If x is missing, returns an empty factor with the standard levels that any strand factor should have:
+, -, and * (for either).

If x is a character vector or factor, it is coerced to a factor with the levels listed above.

If x is an integer vector, it is coerced to a factor with the levels listed above. 1 and -1 values in x
are mapped to the + and - levels respectively. NAs in x produce NAs in the result.

If x is a logical vector, it is coerced to a factor with the levels listed above. FALSE and TRUE values
in x are mapped to the + and - levels respectively. NAs in x produce NAs in the result.

If x inherits from DataTable, the "strand" column is returned as a factor with the levels listed
above. If x has no "strand" column, this return value is populated with NAs.

Author(s)

Michael Lawrence

44 summarizeOverlaps

Examples

strand()
strand(c("+", "-", NA, "*"))
strand(c(-1L, 1L, NA, -1L, NA))
strand(c(FALSE, FALSE, TRUE, NA, TRUE, FALSE))

summarizeOverlaps Count reads that map to genomic features

Description

Count reads that map to genomic features with options to resolve reads that overlap multiple features

Usage

S4 method for signature 'GRanges,GappedAlignments'
summarizeOverlaps(

features, reads, mode, ignore.strand = FALSE, ..., param = ScanBamParam())

Arguments

features A GRanges or a GRangesList object of genomic regions of interest. When
a GRanges is supplied, each row is considered a different feature. When a
GRangesList is supplied, each highest list-level is considered a feature and the
multiple elements are considered portions of the same feature. See examples or
vignette for details.

reads A GappedAlignments, BamFileList or a BamViews object.

mode Character name of a function that defines the counting method to be used.
Available counting modes include "Union", "IntersectionStrict", or "Intersec-
tionNotEmpty" and are designed after the counting modes available in the HT-
Seq package by Simon Anders (see references). A user provided count function
can be used as the modewith the BamFileListmethod for summarizedOverlaps.

• "Union" : (Default) Reads that overlap any portion of exactly one feature
are counted. Reads that overlap multiple features are discarded. For mode
"Union" gapped reads are handled the same as simple reads. If any portion
of the gapped read hits >1 feature the read is discarded.

• "IntersectionStrict" : The read must fall completely within a single feature
to be counted. A read can overlap multiple features but must fall within
only one. In the case of gapped reads, all portions of the read fragment
must fall within the same feature for the read to be counted. The fragments
can overlap multiple features but collectively they must fall within only one.

• "IntersectionNotEmpty" : For this counting mode, the features are parti-
tioned into unique disjoint regions. This is accomplished by disjoining the
feature ranges then removing ranges shared by more than one feature. The
result is a group of non-overlapping regions each of which belong to a sin-
gle feature. Simple and gapped reads are counted if,

– the read or exactly 1 of the read fragments overlaps a unique disjoint
region

– the read or >1 read fragments overlap >1 unique disjoint region from
the same feature

summarizeOverlaps 45

param An optional ScanBamParam instance to further influence scanning, counting, or
filtering of the BAM file.

ignore.strand
A logical value indicating if strand should be considered when matching.

... Additional arguments for other methods. If using multiple cores, you can pass
arguments in here to be used by mclapply to indicate the number of cores to use
etc.

Details

In the context of summarizeOverlaps a "feature" can be any portion of a genomic region such
as a gene, transcript, exon etc. When the features argument is a GRanges the rows define the
features to be overlapped. When features is a GRangesList the highest list-levels define the
features.

summarizeOverlaps offers three mode functions to handle reads that overlap multiple fea-
tures: "Union", "IntersectionStrict", and "IntersectionNotEmpty". These functions are patterned
after the counting methods in the HTSeq package (see references). Each mode has a set of rules
that dictate how a read is assigned. Reads are counted a maximum of once. Alternatively, users can
provide their own counting function as the mode argument and take advantage of the infrastructure
in summarizeOverlaps to count across multiple files and parse the results into a Summarized-
Experiment object.

Currently reads must be input as either a BAM file or a GappedAlignments object. The information
in the CIGAR field is used to determine if gapped reads are present.

NOTE : summarizeOverlaps does not currently handle paired-end reads.

Value

A SummarizedExperiment object. The assays slot holds the counts, rowData holds the features,
colData will either be NULL or hold any metadata that was present in the reads.

Author(s)

Valerie Obenchain <vobencha@fhcrc.org>

References

http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html home page
for HTSeq

http://www-huber.embl.de/users/anders/HTSeq/doc/count.html counting with
htseq-count

See Also

DESeq, DEXSeq and edgeR packages BamFileList BamViews

Examples

group_id <- c("A", "B", "C", "C", "D", "D", "E", "F", "G", "H", "H")
features <- GRanges(

seqnames = Rle(c("chr1", "chr2", "chr1", "chr1", "chr2", "chr2",
"chr1", "chr1", "chr2", "chr1", "chr1")),

http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html

46 summarizeOverlaps

strand = strand(rep("+", length(group_id))),
ranges = IRanges(

start=c(1000, 2000, 3000, 3600, 7000, 7500, 4000, 4000, 3000,
5000, 5400),

width=c(500, 900, 500, 300, 600, 300, 500, 900, 500, 500, 500)),
DataFrame(group_id)

)

reads <- GappedAlignments(
names = c("a","b","c","d","e","f","g"),
rname = Rle(c(rep(c("chr1", "chr2"), 3), "chr1")),
pos = as.integer(c(1400, 2700, 3400, 7100, 4000, 3100, 5200)),
cigar = c("500M", "100M", "300M", "500M", "300M",

"50M200N50M", "50M150N50M"),
strand = strand(rep.int("+", 7L)))

Results from countOverlaps are included to highlight how the
modes in summarizeOverlaps count a read a maximum of once.

When the 'features' argument is a GRanges, each row
is treated as a different feature.
rowsAsFeatures <-

data.frame(union = assays(summarizeOverlaps(features, reads))$counts,
intStrict = assays(summarizeOverlaps(features, reads,

mode="IntersectionStrict"))$counts,
intNotEmpty = assays(summarizeOverlaps(features, reads,

mode="IntersectionNotEmpty"))$counts,
countOverlaps = countOverlaps(features, reads))

When the 'features' argument is a GRangesList, each
highest list-level is a different feature.
lst <- split(features, values(features)[["group_id"]])
listAsFeatures <-

data.frame(union = assays(summarizeOverlaps(lst, reads))$counts,
intStrict = assays(summarizeOverlaps(lst, reads,

mode="IntersectionStrict"))$counts,
intNotEmpty = assays(summarizeOverlaps(lst, reads,

mode="IntersectionNotEmpty"))$counts,
countOverlaps = countOverlaps(lst, reads))

Read across BAM files and package output for DESeq or edgeR analysis
library(Rsamtools)
library(DESeq)
library(edgeR)

fls = list.files(system.file("extdata",package="GenomicRanges"),
recursive=TRUE, pattern="*bam$", full=TRUE)

bfl <- BamFileList(fls)
features <- GRanges(

seqnames = Rle(c("chr2L", "chr2R", "chr2L", "chr2R", "chr2L", "chr2R",
"chr2L", "chr2R", "chr2R", "chr3L", "chr3L")),

strand = strand(rep("+", 11)),
ranges = IRanges(start=c(1000, 2000, 3000, 3600, 7000, 7500, 4000, 4000,

3000, 5000, 5400), width=c(500, 900, 500, 300, 600, 300, 500, 900,
500, 500, 500))

)

summarizeOverlaps 47

solap <- summarizeOverlaps(features, bfl)

deseq <- newCountDataSet(countData=assays(solap)$counts,
conditions=rownames(colData(solap)))

edger <- DGEList(counts=assays(solap)$counts, group=rownames(colData(solap)))

Index

∗Topic classes
GappedAlignments-class, 11
Seqinfo-class, 17

∗Topic manip
cigar-utils, 24

∗Topic methods
countGenomicOverlaps, 28
coverage-methods, 31
findOverlaps-methods, 33
GappedAlignments-class, 11
GenomicRanges-comparison, 16
seqinfo, 36
Seqinfo-class, 17
setops-methods, 40
strand, 43
summarizeOverlaps, 44
utils, 38

∗Topic utilities
countGenomicOverlaps, 28
coverage-methods, 31
findOverlaps-methods, 33
setops-methods, 40
summarizeOverlaps, 44
utils, 38

<,GenomicRanges,GenomicRanges-method
(GenomicRanges-comparison),
16

<=,GenomicRanges,GenomicRanges-method
(GenomicRanges-comparison),
16

==,GenomicRanges,GenomicRanges-method
(GenomicRanges-comparison),
16

>,GenomicRanges,GenomicRanges-method
(GenomicRanges-comparison),
16

>=,GenomicRanges,GenomicRanges-method
(GenomicRanges-comparison),
16

[,GRangesList-method
(GRangesList-class), 6

[,GappedAlignments-method
(GappedAlignments-class),

11
[,GenomicRanges-method

(GRanges-class), 1
[,Seqinfo-method (Seqinfo-class),

17
[,SummarizedExperiment-method

(SummarizedExperiment-class),
20

[<-,GRangesList,ANY,ANY,ANY-method
(GRangesList-class), 6

[<-,GenomicRanges,ANY,ANY,ANY-method
(GRanges-class), 1

[<-,SummarizedExperiment,ANY,ANY,SummarizedExperiment-method
(SummarizedExperiment-class),
20

[[<-,GRangesList-method
(GRangesList-class), 6

%in%,ANY,GappedAlignments-method
(findOverlaps-methods), 33

%in%,GRangesList,GRangesList-method
(findOverlaps-methods), 33

%in%,GRangesList,GenomicRanges-method
(findOverlaps-methods), 33

%in%,GRangesList,RangedData-method
(findOverlaps-methods), 33

%in%,GRangesList,RangesList-method
(findOverlaps-methods), 33

%in%,GappedAlignments,ANY-method
(findOverlaps-methods), 33

%in%,GappedAlignments,GappedAlignments-method
(findOverlaps-methods), 33

%in%,GenomicRanges,GRangesList-method
(findOverlaps-methods), 33

%in%,GenomicRanges,GenomicRanges-method
(findOverlaps-methods), 33

%in%,GenomicRanges,RangedData-method
(findOverlaps-methods), 33

%in%,GenomicRanges,RangesList-method
(findOverlaps-methods), 33

%in%,RangedData,GRangesList-method
(findOverlaps-methods), 33

%in%,RangedData,GenomicRanges-method
(findOverlaps-methods), 33

48

INDEX 49

%in%,RangesList,GRangesList-method
(findOverlaps-methods), 33

%in%,RangesList,GenomicRanges-method
(findOverlaps-methods), 33

as.data.frame,GappedAlignments-method
(GappedAlignments-class),
11

as.data.frame,GenomicRanges-method
(GRanges-class), 1

as.data.frame,GRangesList-method
(GRangesList-class), 6

as.data.frame,Seqinfo-method
(Seqinfo-class), 17

assay
(SummarizedExperiment-class),
20

assay,SummarizedExperiment,ANY-method
(SummarizedExperiment-class),
20

assay,SummarizedExperiment,character-method
(SummarizedExperiment-class),
20

assay,SummarizedExperiment,missing-method
(SummarizedExperiment-class),
20

assay,SummarizedExperiment,numeric-method
(SummarizedExperiment-class),
20

assay<-
(SummarizedExperiment-class),
20

assay<-,SummarizedExperiment,character,matrix-method
(SummarizedExperiment-class),
20

assay<-,SummarizedExperiment,missing,matrix-method
(SummarizedExperiment-class),
20

assay<-,SummarizedExperiment,numeric,matrix-method
(SummarizedExperiment-class),
20

assays
(SummarizedExperiment-class),
20

assays,SummarizedExperiment-method
(SummarizedExperiment-class),
20

assays<-
(SummarizedExperiment-class),
20

assays<-,SummarizedExperiment,list-method
(SummarizedExperiment-class),
20

assays<-,SummarizedExperiment,SimpleList-method
(SummarizedExperiment-class),
20

BamFileList, 44, 45
BamViews, 44, 45

c,GappedAlignments-method
(GappedAlignments-class),
11

c,GenomicRanges-method
(GRanges-class), 1

cigar (GappedAlignments-class), 11
cigar,GappedAlignments-method

(GappedAlignments-class),
11

cigar-utils, 24
cigarNarrow (cigar-utils), 24
cigarOpTable (cigar-utils), 24
cigarQNarrow (cigar-utils), 24
cigarToCigarTable (cigar-utils),

24
cigarToIRanges (cigar-utils), 24
cigarToIRangesListByAlignment

(cigar-utils), 24
cigarToIRangesListByRName

(cigar-utils), 24
cigarToQWidth (cigar-utils), 24
cigarToRleList (cigar-utils), 24
cigarToWidth (cigar-utils), 24
class:GappedAlignments

(GappedAlignments-class),
11

class:GenomicRanges
(GRanges-class), 1

class:GenomicRangesList
(GenomicRangesList-class),
17

class:GRanges (GRanges-class), 1
class:GRangesList

(GRangesList-class), 6
class:Seqinfo (Seqinfo-class), 17
class:SimpleGenomicRangesList

(GenomicRangesList-class),
17

coerce,GappedAlignments,GRanges-method
(GappedAlignments-class),
11

coerce,GappedAlignments,GRangesList-method
(GappedAlignments-class),
11

coerce,GappedAlignments,Ranges-method
(GappedAlignments-class),

50 INDEX

11
coerce,GappedAlignments,RangesList-method

(GappedAlignments-class),
11

coerce,GenomicRanges,RangedData-method
(GRanges-class), 1

coerce,GenomicRanges,RangesList-method
(GRanges-class), 1

coerce,GRangesList,CompressedIRangesList-method
(GRangesList-class), 6

coerce,GRangesList,IRangesList-method
(GRangesList-class), 6

coerce,RangedData,GRanges-method
(GRanges-class), 1

coerce,RangedDataList,GRangesList-method
(GRangesList-class), 6

coerce,RangesList,GRanges-method
(GRanges-class), 1

coerce,RleList,GRanges-method
(GRanges-class), 1

coerce,Seqinfo,GenomicRanges-method
(Seqinfo-class), 17

coerce,Seqinfo,RangesList-method
(Seqinfo-class), 17

colData
(SummarizedExperiment-class),
20

colData,SummarizedExperiment-method
(SummarizedExperiment-class),
20

colData<-
(SummarizedExperiment-class),
20

colData<-,SummarizedExperiment,DataFrame-method
(SummarizedExperiment-class),
20

CompressedNormalIRangesList, 14,
26

CompressedNormalIRangesList-class,
14

CompressedRleList, 26
countGenomicOverlaps, 28
countGenomicOverlaps,GenomicRanges,GappedAlignments-method

(countGenomicOverlaps), 28
countGenomicOverlaps,GenomicRanges,GenomicRanges-method

(countGenomicOverlaps), 28
countGenomicOverlaps,GenomicRanges,GRangesList-method

(countGenomicOverlaps), 28
countGenomicOverlaps,GRangesList,GappedAlignments-method

(countGenomicOverlaps), 28
countGenomicOverlaps,GRangesList,GenomicRanges-method

(countGenomicOverlaps), 28

countGenomicOverlaps,GRangesList,GRangesList-method
(countGenomicOverlaps), 28

countOverlaps,ANY,GappedAlignments-method
(findOverlaps-methods), 33

countOverlaps,GappedAlignments,ANY-method
(findOverlaps-methods), 33

countOverlaps,GappedAlignments,GappedAlignments-method
(findOverlaps-methods), 33

countOverlaps,GenomicRanges,GenomicRanges-method
(findOverlaps-methods), 33

countOverlaps,GenomicRanges,GRangesList-method
(findOverlaps-methods), 33

countOverlaps,GenomicRanges,RangedData-method
(findOverlaps-methods), 33

countOverlaps,GenomicRanges,RangesList-method
(findOverlaps-methods), 33

countOverlaps,GRangesList,GenomicRanges-method
(findOverlaps-methods), 33

countOverlaps,GRangesList,GRangesList-method
(findOverlaps-methods), 33

countOverlaps,GRangesList,RangedData-method
(findOverlaps-methods), 33

countOverlaps,GRangesList,RangesList-method
(findOverlaps-methods), 33

countOverlaps,RangedData,GenomicRanges-method
(findOverlaps-methods), 33

countOverlaps,RangedData,GRangesList-method
(findOverlaps-methods), 33

countOverlaps,RangesList,GenomicRanges-method
(findOverlaps-methods), 33

countOverlaps,RangesList,GRangesList-method
(findOverlaps-methods), 33

coverage, 26, 31, 32
coverage,GappedAlignments-method

(coverage-methods), 31
coverage,GenomicRanges-method

(coverage-methods), 31
coverage,GRangesList-method

(coverage-methods), 31
coverage-methods, 5, 10, 14, 31

DataFrame, 1, 4, 20, 22, 23, 25, 26
DataFrame-class, 5
DataFrameList-class, 10
dim,SummarizedExperiment-method

(SummarizedExperiment-class),
20

dimnames,SummarizedExperiment-method
(SummarizedExperiment-class),
20

dimnames<-,SummarizedExperiment,list-method
(SummarizedExperiment-class),
20

INDEX 51

dimnames<-,SummarizedExperiment,NULL-method
(SummarizedExperiment-class),
20

disjoin,GenomicRanges-method
(GRanges-class), 1

distance,GenomicRanges,GenomicRanges-method
(GRanges-class), 1

duplicated,GenomicRanges-method
(GenomicRanges-comparison),
16

elementMetadata, 4
elementMetadata,GappedAlignments-method

(GappedAlignments-class),
11

elementMetadata,GenomicRanges-method
(GRanges-class), 1

elementMetadata,GRangesList-method
(GRangesList-class), 6

elementMetadata<-,GenomicRanges-method
(GRanges-class), 1

elementMetadata<-,GRangesList-method
(GRangesList-class), 6

end,GappedAlignments-method
(GappedAlignments-class),
11

end,GenomicRanges-method
(GRanges-class), 1

end,GRangesList-method
(GRangesList-class), 6

end<-,GenomicRanges-method
(GRanges-class), 1

end<-,GRangesList-method
(GRangesList-class), 6

exptData
(SummarizedExperiment-class),
20

exptData,SummarizedExperiment-method
(SummarizedExperiment-class),
20

exptData<-
(SummarizedExperiment-class),
20

exptData<-,SummarizedExperiment,list-method
(SummarizedExperiment-class),
20

exptData<-,SummarizedExperiment,SimpleList-method
(SummarizedExperiment-class),
20

findOverlaps, 29, 33, 34
findOverlaps,ANY,GappedAlignments-method

(findOverlaps-methods), 33

findOverlaps,GappedAlignments,ANY-method
(findOverlaps-methods), 33

findOverlaps,GappedAlignments,GappedAlignments-method
(findOverlaps-methods), 33

findOverlaps,GenomicRanges,GenomicRanges-method
(findOverlaps-methods), 33

findOverlaps,GenomicRanges,GRangesList-method
(findOverlaps-methods), 33

findOverlaps,GenomicRanges,RangedData-method
(findOverlaps-methods), 33

findOverlaps,GenomicRanges,RangesList-method
(findOverlaps-methods), 33

findOverlaps,GRangesList,GenomicRanges-method
(findOverlaps-methods), 33

findOverlaps,GRangesList,GRangesList-method
(findOverlaps-methods), 33

findOverlaps,GRangesList,RangedData-method
(findOverlaps-methods), 33

findOverlaps,GRangesList,RangesList-method
(findOverlaps-methods), 33

findOverlaps,RangedData,GenomicRanges-method
(findOverlaps-methods), 33

findOverlaps,RangedData,GRangesList-method
(findOverlaps-methods), 33

findOverlaps,RangesList,GenomicRanges-method
(findOverlaps-methods), 33

findOverlaps,RangesList,GRangesList-method
(findOverlaps-methods), 33

findOverlaps-methods, 5, 10, 14, 33,
42

flank,GenomicRanges-method
(GRanges-class), 1

flank,GRangesList-method
(GRangesList-class), 6

follow,GenomicRanges,GenomicRanges-method
(GRanges-class), 1

GappedAlignments, 29, 31–34, 37–39, 41,
44, 45

GappedAlignments
(GappedAlignments-class),
11

GappedAlignments-class, 11, 32, 34,
38, 42

gaps, 3
gaps,GenomicRanges-method

(GRanges-class), 1
genome (seqinfo), 36
genome,ANY-method (seqinfo), 36
genome,Seqinfo-method

(Seqinfo-class), 17
genome<- (seqinfo), 36
genome<-,ANY-method (seqinfo), 36

52 INDEX

genome<-,Seqinfo-method
(Seqinfo-class), 17

GenomicRanges, 16, 17, 38, 39
GenomicRanges (GRanges-class), 1
GenomicRanges-class, 16
GenomicRanges-class

(GRanges-class), 1
GenomicRanges-comparison, 16
GenomicRangesList

(GenomicRangesList-class),
17

GenomicRangesList-class, 17
GenomicRangesORGRangesList-class

(GRanges-class), 1
GenomicRangesORmissing-class

(GRanges-class), 1
GRanges, 13, 20, 22, 23, 29, 31–34, 37, 39,

41, 44, 45
GRanges (GRanges-class), 1
granges (GappedAlignments-class),

11
granges,GappedAlignments-method

(GappedAlignments-class),
11

GRanges-class, 1, 10, 14, 32, 34, 38, 42
GRangesList, 4, 13, 17, 22, 29, 31–34,

37–39, 41, 44, 45
GRangesList (GRangesList-class), 6
GRangesList-class, 5, 6, 14, 32, 34, 38,

42
grg (GappedAlignments-class), 11
grglist (GappedAlignments-class),

11
grglist,GappedAlignments-method

(GappedAlignments-class),
11

intersect,GRanges,GRanges-method
(setops-methods), 40

IntersectionNotEmpty
(summarizeOverlaps), 44

IntersectionStrict
(summarizeOverlaps), 44

IRanges, 1, 14, 26, 32
IRanges-class, 14, 26
IRanges-setops, 42
IRangesList, 6, 26
IRangesList-class, 26
isCircular (seqinfo), 36
isCircular,ANY-method (seqinfo),

36
isCircular,Seqinfo-method

(Seqinfo-class), 17

isCircular<- (seqinfo), 36
isCircular<-,ANY-method

(seqinfo), 36
isCircular<-,Seqinfo-method

(Seqinfo-class), 17
isCircularWithKnownLength

(seqinfo), 36
isCircularWithKnownLength,ANY-method

(seqinfo), 36
isCircularWithKnownLength,Seqinfo-method

(Seqinfo-class), 17
isDisjoint,GenomicRanges-method

(GRanges-class), 1
isDisjoint,GRangesList-method

(GRangesList-class), 6

keepSeqlevels (utils), 38
keepSeqlevels,GappedAlignments,character-method

(utils), 38
keepSeqlevels,GappedAlignments,GappedAlignments-method

(utils), 38
keepSeqlevels,GappedAlignments,GenomicRanges-method

(utils), 38
keepSeqlevels,GappedAlignments,GRangesList-method

(utils), 38
keepSeqlevels,GenomicRanges,character-method

(utils), 38
keepSeqlevels,GenomicRanges,GappedAlignments-method

(utils), 38
keepSeqlevels,GenomicRanges,GenomicRanges-method

(utils), 38
keepSeqlevels,GenomicRanges,GRangesList-method

(utils), 38
keepSeqlevels,GRangesList,character-method

(utils), 38
keepSeqlevels,GRangesList,GappedAlignments-method

(utils), 38
keepSeqlevels,GRangesList,GenomicRanges-method

(utils), 38
keepSeqlevels,GRangesList,GRangesList-method

(utils), 38

lapply, 9
length,GappedAlignments-method

(GappedAlignments-class),
11

length,GenomicRanges-method
(GRanges-class), 1

length,Seqinfo-method
(Seqinfo-class), 17

List, 17

makeGRangesListFromFeatureFragments
(GRangesList-class), 6

INDEX 53

mapply, 9
match,ANY,GappedAlignments-method

(findOverlaps-methods), 33
match,GappedAlignments,ANY-method

(findOverlaps-methods), 33
match,GappedAlignments,GappedAlignments-method

(findOverlaps-methods), 33
match,GenomicRanges,GenomicRanges-method

(findOverlaps-methods), 33
match,GenomicRanges,GRangesList-method

(findOverlaps-methods), 33
match,GenomicRanges,RangedData-method

(findOverlaps-methods), 33
match,GenomicRanges,RangesList-method

(findOverlaps-methods), 33
match,GRangesList,GenomicRanges-method

(findOverlaps-methods), 33
match,GRangesList,GRangesList-method

(findOverlaps-methods), 33
match,GRangesList,RangedData-method

(findOverlaps-methods), 33
match,GRangesList,RangesList-method

(findOverlaps-methods), 33
match,RangedData,GenomicRanges-method

(findOverlaps-methods), 33
match,RangedData,GRangesList-method

(findOverlaps-methods), 33
match,RangesList,GenomicRanges-method

(findOverlaps-methods), 33
match,RangesList,GRangesList-method

(findOverlaps-methods), 33
merge,missing,Seqinfo-method

(Seqinfo-class), 17
merge,NULL,Seqinfo-method

(Seqinfo-class), 17
merge,Seqinfo,missing-method

(Seqinfo-class), 17
merge,Seqinfo,NULL-method

(Seqinfo-class), 17
merge,Seqinfo,Seqinfo-method

(Seqinfo-class), 17

names, 12
names,GappedAlignments-method

(GappedAlignments-class),
11

names,GenomicRanges-method
(GRanges-class), 1

names,Seqinfo-method
(Seqinfo-class), 17

names<-,GappedAlignments-method
(GappedAlignments-class),
11

names<-,GenomicRanges-method
(GRanges-class), 1

names<-,Seqinfo-method
(Seqinfo-class), 17

narrow,GappedAlignments-method
(GappedAlignments-class),
11

ngap,GappedAlignments-method
(GappedAlignments-class),
11

order,GenomicRanges-method
(GenomicRanges-comparison),
16

pgap,GRanges,GRanges-method
(setops-methods), 40

pintersect, 41
pintersect,GappedAlignments,GRanges-method

(setops-methods), 40
pintersect,GRanges,GappedAlignments-method

(setops-methods), 40
pintersect,GRanges,GRanges-method

(setops-methods), 40
pintersect,GRanges,GRangesList-method

(setops-methods), 40
pintersect,GRangesList,GRanges-method

(setops-methods), 40
precede,GenomicRanges,GenomicRanges-method

(GRanges-class), 1
psetdiff,GRanges,GRanges-method

(setops-methods), 40
psetdiff,GRanges,GRangesList-method

(setops-methods), 40
psetdiff,GRangesList,GRangesList-method

(setops-methods), 40
punion,GRanges,GRanges-method

(setops-methods), 40
punion,GRanges,GRangesList-method

(setops-methods), 40
punion,GRangesList,GRanges-method

(setops-methods), 40

qnarrow (GappedAlignments-class),
11

qnarrow,GappedAlignments-method
(GappedAlignments-class),
11

queryLoc2refLoc (cigar-utils), 24
queryLocs2refLocs (cigar-utils),

24
qwidth (GappedAlignments-class),

11

54 INDEX

qwidth,GappedAlignments-method
(GappedAlignments-class),
11

range,GenomicRanges-method
(GRanges-class), 1

range,GRangesList-method
(GRangesList-class), 6

RangedData, 33
RangedDataList, 6
Ranges, 13, 14
ranges,GappedAlignments-method

(GappedAlignments-class),
11

ranges,GRanges-method
(GRanges-class), 1

ranges,GRangesList-method
(GRangesList-class), 6

Ranges-comparison, 16
Ranges-class, 5
Ranges-comparison, 16
ranges<-,GenomicRanges-method

(GRanges-class), 1
ranges<-,GRangesList-method

(GRangesList-class), 6
RangesList, 13, 14, 33
RangesList-class, 10
RangesMatching-class, 34
rank,GenomicRanges-method

(GenomicRanges-comparison),
16

readBamGappedAlignments, 12, 14
readGappedAlignments

(GappedAlignments-class),
11

reduce, 3
reduce,GenomicRanges-method

(GRanges-class), 1
reduce,GRangesList-method

(GRangesList-class), 6
renameSeqlevels (utils), 38
renameSeqlevels,GappedAlignments,character-method

(utils), 38
renameSeqlevels,GenomicRanges,character-method

(utils), 38
renameSeqlevels,GRangesList,character-method

(utils), 38
resize,GenomicRanges-method

(GRanges-class), 1
restrict, 3
restrict,GenomicRanges-method

(GRanges-class), 1

restrict,GRangesList-method
(GRangesList-class), 6

rglist (GappedAlignments-class),
11

rglist,GappedAlignments-method
(GappedAlignments-class),
11

Rle, 1, 2, 13
Rle-class, 5
RleList, 32
RleList-class, 10, 26, 32
rname (GappedAlignments-class), 11
rname,GappedAlignments-method

(GappedAlignments-class),
11

rname<- (GappedAlignments-class),
11

rname<-,GappedAlignments-method
(GappedAlignments-class),
11

rowData
(SummarizedExperiment-class),
20

rowData,SummarizedExperiment-method
(SummarizedExperiment-class),
20

rowData<-
(SummarizedExperiment-class),
20

rowData<-,SummarizedExperiment,GenomicRanges-method
(SummarizedExperiment-class),
20

rowData<-,SummarizedExperiment,GRangesList-method
(SummarizedExperiment-class),
20

sapply, 9
ScanBamParam, 45
Seqinfo, 2, 7, 13, 37
Seqinfo (Seqinfo-class), 17
seqinfo, 5, 10, 14, 19, 36
seqinfo,GappedAlignments-method

(GappedAlignments-class),
11

seqinfo,GRanges-method
(GRanges-class), 1

seqinfo,GRangesList-method
(GRangesList-class), 6

Seqinfo-class, 17, 38
seqinfo<- (seqinfo), 36
seqinfo<-,GappedAlignments-method

(GappedAlignments-class),
11

INDEX 55

seqinfo<-,GenomicRanges-method
(GRanges-class), 1

seqinfo<-,GRangesList-method
(GRangesList-class), 6

seqlengths (seqinfo), 36
seqlengths,ANY-method (seqinfo),

36
seqlengths,Seqinfo-method

(Seqinfo-class), 17
seqlengths<- (seqinfo), 36
seqlengths<-,ANY-method

(seqinfo), 36
seqlengths<-,Seqinfo-method

(Seqinfo-class), 17
seqlevels, 2, 7, 13
seqlevels (seqinfo), 36
seqlevels,ANY-method (seqinfo), 36
seqlevels,Seqinfo-method

(Seqinfo-class), 17
seqlevels<- (seqinfo), 36
seqlevels<-,ANY-method (seqinfo),

36
seqlevels<-,Seqinfo-method

(Seqinfo-class), 17
seqnames (seqinfo), 36
seqnames,GappedAlignments-method

(GappedAlignments-class),
11

seqnames,GRanges-method
(GRanges-class), 1

seqnames,GRangesList-method
(GRangesList-class), 6

seqnames,Seqinfo-method
(Seqinfo-class), 17

seqnames<- (seqinfo), 36
seqnames<-,GappedAlignments-method

(GappedAlignments-class),
11

seqnames<-,GenomicRanges-method
(GRanges-class), 1

seqnames<-,GRangesList-method
(GRangesList-class), 6

seqnames<-,Seqinfo-method
(Seqinfo-class), 17

seqselect,GenomicRanges-method
(GRanges-class), 1

seqselect<-,GenomicRanges-method
(GRanges-class), 1

setdiff,GRanges,GRanges-method
(setops-methods), 40

setops-methods, 5, 10, 14, 40
shift,GenomicRanges-method

(GRanges-class), 1
shift,GRangesList-method

(GRangesList-class), 6
show,GappedAlignments-method

(GappedAlignments-class),
11

show,GenomicRanges-method
(GRanges-class), 1

show,GRangesList-method
(GRangesList-class), 6

show,Seqinfo-method
(Seqinfo-class), 17

show,SummarizedExperiment-method
(SummarizedExperiment-class),
20

SimpleGenomicRangesList-class
(GenomicRangesList-class),
17

SimpleList, 22, 23
solveUserSEW, 14, 25
sort,GenomicRanges-method

(GenomicRanges-comparison),
16

split,GRanges-method
(GRanges-class), 1

splitCigar (cigar-utils), 24
start,GappedAlignments-method

(GappedAlignments-class),
11

start,GenomicRanges-method
(GRanges-class), 1

start,GRangesList-method
(GRangesList-class), 6

start<-,GenomicRanges-method
(GRanges-class), 1

start<-,GRangesList-method
(GRangesList-class), 6

strand, 1, 43
strand,character-method (strand),

43
strand,DataTable-method (strand),

43
strand,factor-method (strand), 43
strand,GappedAlignments-method

(GappedAlignments-class),
11

strand,GRanges-method
(GRanges-class), 1

strand,GRangesList-method
(GRangesList-class), 6

strand,integer-method (strand), 43
strand,logical-method (strand), 43

56 INDEX

strand,missing-method (strand), 43
strand-methods (strand), 43
strand<- (strand), 43
strand<-,GappedAlignments-method

(GappedAlignments-class),
11

strand<-,GenomicRanges-method
(GRanges-class), 1

strand<-,GRangesList-method
(GRangesList-class), 6

subsetByOverlaps,ANY,GappedAlignments-method
(findOverlaps-methods), 33

subsetByOverlaps,GappedAlignments,ANY-method
(findOverlaps-methods), 33

subsetByOverlaps,GappedAlignments,GappedAlignments-method
(findOverlaps-methods), 33

subsetByOverlaps,GenomicRanges,GenomicRanges-method
(findOverlaps-methods), 33

subsetByOverlaps,GenomicRanges,GRangesList-method
(findOverlaps-methods), 33

subsetByOverlaps,GenomicRanges,RangedData-method
(findOverlaps-methods), 33

subsetByOverlaps,GenomicRanges,RangesList-method
(findOverlaps-methods), 33

subsetByOverlaps,GRangesList,GenomicRanges-method
(findOverlaps-methods), 33

subsetByOverlaps,GRangesList,GRangesList-method
(findOverlaps-methods), 33

subsetByOverlaps,GRangesList,RangedData-method
(findOverlaps-methods), 33

subsetByOverlaps,GRangesList,RangesList-method
(findOverlaps-methods), 33

subsetByOverlaps,RangedData,GenomicRanges-method
(findOverlaps-methods), 33

subsetByOverlaps,RangedData,GRangesList-method
(findOverlaps-methods), 33

subsetByOverlaps,RangesList,GenomicRanges-method
(findOverlaps-methods), 33

subsetByOverlaps,RangesList,GRangesList-method
(findOverlaps-methods), 33

summarizeCigarTable
(cigar-utils), 24

SummarizedExperiment, 45
SummarizedExperiment

(SummarizedExperiment-class),
20

SummarizedExperiment,list-method
(SummarizedExperiment-class),
20

SummarizedExperiment,matrix-method
(SummarizedExperiment-class),
20

SummarizedExperiment,missing-method
(SummarizedExperiment-class),
20

SummarizedExperiment,SimpleList-method
(SummarizedExperiment-class),
20

SummarizedExperiment-class, 20
summarizeOverlaps, 44
summarizeOverlaps,GRanges,GappedAlignments-method

(summarizeOverlaps), 44
summarizeOverlaps,GRangesList,GappedAlignments-method

(summarizeOverlaps), 44

TranscriptDb, 29

Union (summarizeOverlaps), 44
union,GRanges,GRanges-method

(setops-methods), 40
unique,GenomicRanges-method

(GenomicRanges-comparison),
16

unlist,GRangesList-method
(GRangesList-class), 6

updateObject,GappedAlignments-method
(GappedAlignments-class),
11

updateObject,GRanges-method
(GRanges-class), 1

updateObject,GRangesList-method
(GRangesList-class), 6

updateObject,Seqinfo-method
(Seqinfo-class), 17

utils, 38

validCigar (cigar-utils), 24
values, 4, 22
Vector-class, 5, 10
Views, 4, 8

width,GappedAlignments-method
(GappedAlignments-class),
11

width,GenomicRanges-method
(GRanges-class), 1

width,GRangesList-method
(GRangesList-class), 6

width<-,GenomicRanges-method
(GRanges-class), 1

width<-,GRangesList-method
(GRangesList-class), 6

window,GenomicRanges-method
(GRanges-class), 1

	GRanges-class
	GRangesList-class
	GappedAlignments-class
	GenomicRanges-comparison
	GenomicRangesList-class
	Seqinfo-class
	SummarizedExperiment-class
	cigar-utils
	countGenomicOverlaps
	coverage-methods
	findOverlaps-methods
	seqinfo
	utils
	setops-methods
	strand
	summarizeOverlaps
	Index

