GenomicFeatures
March 24, 2012

DEFAULT_CIRC_SEQS character vector: strings that are usually circular chromosomes

Description

The DEFAULT_CIRC_SEQS character vector contains strings that are normally used by major
repositories as the names of chromosomes that are typically circular, it is available as a convenience
so that users can us it as a default value for circ_seqgs arguments, and append to it as needed.

Usage

DEFAULT_CIRC_SEQS

See Also

makeTranscriptDbFromUCSC, makeTranscriptDbFromBiomart

Examples

DEFAULT_CIRC_SEQS

TranscriptDb-class TranscriptDb objects

Description
The TranscriptDb class is a container for storing transcript annotations. The FeatureDb class is a
container for storing more generic GenomicFeature annotations.

See ?makeTranscriptDbFromUCSC and ?makeTranscriptDbFromBiomart for mak-
ing a TranscriptDb object from the UCSC or BioMart sources.

See ?makeFeatureDbFromUCSC for making a FeatureDb object from the UCSC or BioMart
sources.

See ?saveDb and ?1oadDb for saving and loading the database contents of a TranscriptDb or
FeatureDb object.

select, cols and keys are used together to extract data from an TranscriptDb object.

2 TranscriptDb-class

Methods

In the code snippets below, x is a TranscriptDb object. For the metadata and show methods, there
is also support for FeatureDb objects.

metadata (x): Returns x’s metadata in a data frame.
seqginfo (x): Gets the information about the underlying sequences as a Seqinfo object.

as.list (x): Dumps the entire db into a list of data frames txdump that can be used in
do.call (makeTranscriptDb, txdump) to make the db again with no loss of in-
formation. Note that the transcripts are dumped in the same order in all the data frames.

isActiveSeq (x): Returns the currently active sequences for this txdb object as a named log-
ical vector. Only active sequences will be tapped when using the supplied accessor methods.
Inactive sequences will be ignored. By default, all available sequences will be active.

isActiveSeq(x) <-: Allows the user to change which sequences will be actively accessed
by the accessor methods by altering the contents of this named logical vector.

keytypes (x): allows the user to discover which keytypes can be passed into select or keys
and the keytype argument.

keys (x, keytype): returns keys for the database contained in the TranscriptDb object .
By default it will return the "TXNAME" keys for the database, but if used with the keytype
argument, it will return the keys from that keytype.

cols (x): shows which kinds of data can be returned for the TranscriptDb object.

select (x, keys, cols, keytype): When all the appropriate arguments are specifiedm
select will retrieve the matching data as a data.frame based on parameters for selected
keys and cols and keytype arguments.

See ?transcripts, ?transcriptsByOverlaps, ?id2name and ?transcriptsBy for
other useful operations on TranscriptDb objects.

Author(s)

H. Pages, Marc Carlson

See Also

Seqinfo-class, makeTranscriptDbFromUCSC,makeTranscriptDbFromBiomart, loadFeatures,
transcripts, transcriptsByOverlaps, id2name, transcriptsBy

Examples

txdb_file <- system.file("extdata", "Biomart_Ensembl_sample.sglite",
package="GenomicFeatures")

txdb <- loadFeatures (txdb_file)

txdb

Use of seginfo

seqginfo (txdb)

seglevels (txdb) # shortcut for 'seqglevels (seqginfo (txdb))'
seglengths (txdb) # shortcut for 'seqglengths (seginfo (txdb))'
isCircular (txdb) # shortcut for 'isCircular (seqginfo (txdb))'
names (which (isCircular (txdb)))

Examples on how to change which sequences are active
Set chrl and chr3 to be inactive:

extractTranscriptsFromGenome 3

isActiveSeqg(txdb) [c("1", "3")] <- FALSE
Set ALL of the chromsomed to be inactive
isActiveSeqg(txdb) [seglevels (txdb)] <- FALSE
Now set only chrl and chr5 to be active
isActiveSeqg (txdb) [c("1", "4")] <- TRUE

Use of as.list

txdump <- as.list (txdb)

txdump

txdbl <- do.call (makeTranscriptDb, txdump)
stopifnot (identical (as.list (txdbl), txdump))

Use of select and supporting methods

find key types

keytypes (txdb)

list IDs that can be used to filter

head (keys (txdb, "GENEID"))

head (keys (txdb, "TXID"))

head (keys (txdb, "TXNAME"))

list columns that can be returned by select

cols (txdb)

call select

res = select (txdb, head(keys (txdb, "GENEID")),
cols = c("GENEID", "TXNAME"),
keytype="GENEID")

head (res)

extractTranscriptsFromGenome
Tools for extracting transcript sequences

Description

extractTranscriptsFromGenome extracts the transcript sequences from a BSgenome data
package using the transcript information (exon boundaries) stored in a TranscriptDb or GRangesList
object.

extractTranscripts extracts a set of transcripts from a single DNA sequence.
Related utilities:

transcriptWidths to get the lengths of the transcripts (called the "widths" in this context)
based on the boundaries of their exons.

transcriptLocs2refLocs converts transcript-based locations into reference-based (aka chromosome-
based or genomic) locations.

Usage

extractTranscriptsFromGenome (genome, txdb, use.names=TRUE)
extractTranscripts (x,
exonStarts=1list (), exonEnds=list (), strand=character (0),

reorder.exons.on.minus.strand=FALSE)

Related utilities:

extractTranscriptsFromGenome

transcriptWidths (exonStarts=1ist (), exonEnds=list())

transcriptLocs2reflocs (tlocs,
exonStarts=1list (), exonEnds=list (), strand=character(0),
reorder.exons.on.minus.strand=FALSE)

Arguments

genome

txdb

use.names

X

exonStarts,

strand

A BSgenome object. See the available.genomes function in the BSgenome
package for how to install a genome.

A TranscriptDb object or a GRangesList object.

TRUE or FALSE. Ignored if txdb is not a TranscriptDb object. If TRUE (the
default), the returned sequences are named with the transcript names. If FALSE,
they are named with the transcript internal ids. Note that, unlike the transcript
internal ids, the transcript names are not guaranteed to be unique or even defined
(they could be all NAs). A warning is issued when this happens.

A DNAString or MaskedDNAString object.

exonkEnds

The starts and ends of the exons, respectively.

Each argument can be a list of integer vectors, an IntegerList object, or a char-
acter vector where each element is a comma-separated list of integers. In ad-
dition, the lists represented by exonStarts and exonEnds must have the
same shape i.e. have the same lengths and have elements of the same lengths.
The length of exonStarts and exonEnds is the number of transcripts.

A character vector of the same length as exonStarts and exonEnds speci-
fying the strand ("+" or "-") from which the transcript is coming.

reorder.exons.on.minus.strand

tlocs

Value

TRUE or FALSE. Should the order of exons for transcripts coming from the
minus strand be reversed?

A list of integer vectors of the same length as exonStarts and exonEnds.
Each element in t 1ocs must contain transcript-based locations.

For extractTranscriptsFromGenome: A named DNAStringSet object with one element
per transcript. When txdb is a GRangesList object, elements in the output align with elements in
the input (t xdb), and they have the same names.

For extractTranscripts: A DNAStringSet object with one element per transcript.

For transcriptWidths: An integer vector with one element per transcript.

For transcriptLocs2refLocs: A list of integer vectors of the same shape as t 1ocs.

Author(s)

H. Pages

See Also

available.genomes, TranscriptDb-class, GRangesList-class, DNAStringSet-class

extractTranscriptsFromGenome 5

Examples

library (BSgenome.Hsapiens.UCSC.hgl8) # load the genome

T

A. USING extractTranscriptsFromGenome () WITH A TranscriptDb OBJECT

-

txdb_file <- system.file("extdata", "UCSC_knownGene_sample.sglite",
package="GenomicFeatures")

txdb <- loadFeatures (txdb_file)

txseqgs <- extractTranscriptsFromGenome (Hsapiens, txdb)

txseqgs

-
B. USING extractTranscriptsFromGenome () WITH A GRangesList OBJECT
——

A GRangesList object containing exons grouped by transcripts gives
the same result as above:

exbytx <- exonsBy (txdb, by="tx", use.names=TRUE)

txseqgs2 <- extractTranscriptsFromGenome (Hsapiens, exbytx)

A sanity check:

stopifnot (identical (unname (sapply (width (exbytx), sum)), width(txsegs2)))

CDSs grouped by transcripts (this extracts only the translated parts
of the transcripts):
cds <- extractTranscriptsFromGenome (Hsapiens, cdsBy (txdb))

-

C. GOING FROM TRANSCRIPT-BASED TO REFERENCE-BASED LOCATIONS

-

Get the reference-based locations of the first 4 (5' end)

and last 4 (3' end) nucleotides in each transcript:

tlocs <- lapply(width(txsegs2), function(w) c(l:4, (w-3):w))

tx_strand <- sapply(strand(exbytx), runValue)

Note that, because of how we made them, 'tlocs', 'start (exbytx)',

'end(exbytx)' and 'tx_strand' have the same length, and, for any

valid positional index, elements at this position are corresponding

to each other. This is how transcriptLocs2reflLocs () expects them

to be!

rlocs <- transcriptLocs2reflocs (tlocs, start (exbytx), end(exbytx),
tx_strand, reorder.exons.on.minus.strand=TRUE)

b oo
D. EXTRACTING WORM TRANSCRIPTS ZC101.3 AND F37B1.1
b

Transcript 2C101.3 (is on + strand):

Exons starts/ends relative to transcript:

rstartsl <- c (1, 488, 654, 996, 1365, 1712, 2163, 2453)
rendsl <- c¢(137, 578, 889, 1277, 1662, 1870, 2410, 2561)
Exons starts/ends relative to chromosome:

startsl <- 14678410 + rstartsl

endsl <- 14678410 + rendsl

Transcript F37B1.1 (is on - strand):
#4# Exons starts/ends relative to transcript:

6 features

rstarts2 <- c(1l, 325)

rends2 <- c (139, 815)

Exons starts/ends relative to chromosome:
starts2 <- 13611188 - rends2

ends2 <- 13611188 - rstarts2

exon_starts <- list (as.integer (startsl), as.integer(starts2))
exon_ends <- list (as.integer (endsl), as.integer (ends2))

library (BSgenome.Celegans.UCSC.ce2)

Both transcripts are on chrII:

chrII <- Celegans$chrIlI

transcripts <- extractTranscripts(chrII,
exonStarts=exon_starts,
exonkEnds=exon_ends,
strand=c ("+","-"))

Same as 'width(transcripts)':
transcriptWidths (exonStarts=exon_starts, exonEnds=exon_ends)

transcriptLocs2reflocs (list(c(l1:6, 135:140, 1555:1560),
c(l:6, 137:142, 625:630)),
exonStarts=exon_starts,
exonEnds=exon_ends,
strand=c ("+","-"))

A sanity check:

ref_locs <- transcriptLocs2reflocs(list(1:1560, 1:630),
exonStarts=exon_starts,
exonEnds=exon_ends,
strand=c ("+","-"))

stopifnot (chrII[ref locs[[1l]]] == transcripts[[1l]])

stopifnot (complement (chrII) [ref_locs[[2]]] == transcripts[[2]])

features Extract simple features from a FeatureDb object

Description

Generic function to extract genomic features from a FeatureDb object.

Usage
features (x)
S4 method for signature 'FeatureDb'
features (x)

Arguments

X A FeatureDb object.

Value

a GRanges object

id2name 7

Author(s)
M. Carlson

See Also
FeatureDb

Examples

fdb <- loadFeatures(system.file("extdata", "FeatureDb.sglite",
package="GenomicFeatures"))
features (fdb)

id2name Map internal ids to external names for a given feature type

Description

Utility function for retrieving the mapping from the internal ids to the external names of a given
feature type.

Usage

id2name (txdb, feature.type=c("tx", "exon", "cds"))

Arguments

txdb A TranscriptDb object.

feature.type The feature type for which the mapping must be retrieved.

Details

Transcripts, exons and CDS in a TranscriptDb object are stored in seperate tables where the primary
key is an integer called feature internal id. This id is stored in the "t x_id" column for transcripts,
in the "exon_id" column for exons, and in the "cds_id" column for CDS. Unlike other com-
monly used ids like Entrez Gene IDs or Ensembl IDs, this internal id was generated at the time the
TranscriptDb object was created and has no meaning outside the scope of this object.

The id2name function can be used to translate this internal id into a more informative id or name
called feature external name. This name is stored in the "t x_name" column for transcripts, in the
"exon_name" column for exons, and in the "cds_name" column for CDS.

Note that, unlike the feature internal id, the feature external name is not guaranteed to be unique or
even defined (the column can contain NAS).

Value

A named character vector where the names are the internal ids and the values the external names.

Author(s)

H. Pages

8 makeFeatureDbFromUCSC

See Also

TranscriptDb, transcripts, transcriptsBy

Examples

txdbl_file <- system.file("extdata", "UCSC_knownGene_sample.sglite",
package="GenomicFeatures")

txdbl <- loadFeatures (txdbl_file)

id2name (txdbl, feature.type="tx")[1l:4]

id2name (txdbl, feature.type="exon") [1l:4]

id2name (txdbl, feature.type="cds") [1:4]

txdb2_file <- system.file("extdata", "Biomart_Ensembl_sample.sglite",
package="GenomicFeatures")

txdb2 <- loadFeatures (txdb2_file)

id2name (txdb2, feature.type="tx") [1l:4]

id2name (txdb2, feature.type="exon") [1:4]

id2name (txdb2, feature.type="cds") [1:4]

makeFeatureDbFromUCSC

Making a FeatureDb object from annotations available at the UCSC
Genome Browser

Description

The makeFeatureDbFromUCSC function allows the user to make a FeatureDb object from sim-
ple annotation tracks at UCSC. The tracks in question must (at a minimum) have a start, end and a
chromosome affiliation in order to be made into a FeatureDb. This function requires a precise dec-
laration of its first three arguments to indicate which genome, track and table wish to be imported.
There are discovery functions provided to make this process go smoothly.

Usage

supportedUCSCFeatureDbTracks (genome)
supportedUCSCFeatureDbTables (genome, track)

UCSCFeatureDbTableSchema (genome,

track,
tablename)
makeFeatureDbFromUCSC (
genome,
track,
tablename,
columns = UCSCFeatureDbTableSchema (genome, track, tablename),

url="http://genome.ucsc.edu/cgi-bin/",
goldenPath_url="http://hgdownload.cse.ucsc.edu/goldenPath",
chromCol,

chromStartCol,

chromEndCol)

makeFeature DbFromUCSC 9

Arguments

genome genome abbreviation used by UCSC and obtained by ucscGenomes () [,
"db"]. For example: "hgl8".

track name of the UCSC track. Use supportedUCSCFeatureDbTracks to get
the list of available tracks for a particular genome

tablename name of the UCSC table containing the annotations to retrieve. Use the supportedUCSCFeature!
utility function to get the list of supported tables for a track.

columns a named character vector to list out the names and types of the other columns

that the downloaded track should have. Use UCSCFeatureDbTableSchema
to retrieve this information for a particular table.

url,goldenPath_url
use to specify the location of an alternate UCSC Genome Browser.

chromCol If the schema comes back and the ’chrom’ column has been labeled something
other than ’chrom’, use this argument to indicate what that column has been
labeled as so we can properly designate it. This could happen (for example)
with the knownGene track tables, which has no ’chromStart’ or ’chromEnd’
columns, but which DOES have columns that could reasonably substitute for
these columns under particular circumstances. Therefore we allow these three
columns to have arguments so that their definition can be re-specified

chromStartCol
Same thing as chromCol, but for renames of ’chromStart’

chromEndCol Same thing as chromCol, but for renames of ’chromEnd’

Details

makeFeatureDbFromUCSC is a convenience function that builds a tiny database from one of the

UCSC track tables. supportedUCSCFeatureDbTracks a convenience function that returns

potential track names that could be used to make FeatureDb objects supportedUCSCFeatureDbTables
a convenience function that returns potential table names for FeatureDb objects (table names go with

atrack name) UCSCFeatureDbTableSchema A convenience function that creates a named vec-

tor of types for all the fields that can potentially be supported for a given track. By default, this will

be called on your specified tablename to include all of the fields in a track.

Value
A FeatureDb object for makeFeatureDbFromUCSC. Or in the case of supportedUCSCFeatureDbTracks
and UCSCFeatureDbTableSchema a named character vector

Author(s)
M. Carlson and H. Pages

See Also

ucscGenomes,

Examples

Display the list of genomes available at UCSC:
library (GenomicFeatures)
library(rtracklayer)

10 makeTranscriptDb

ucscGenomes () [, "db"]

Display the list of Tracks supported by makeFeatureDbFromUCSC() :
supportedUCSCFeatureDbTracks ("mm9o")

Display the list of tables supported by your track:
supportedUCSCFeatureDbTables (genome="mm9",
track="oreganno")

Display fields that could be passed in to colnames:

UCSCFeatureDbTableSchema (genome="mm9",
track="oreganno",
tablename="oreganno")

Retrieving a full transcript dataset for Yeast from UCSC:
fdb <- makeFeatureDbFromUCSC (genome="mm9",
track="oreganno",
tablename="oreganno")
fdb

makeTranscriptDb Making a TranscriptDb object from user supplied annotations

Description

makeTranscriptDb is a low-level constructor for making a TranscriptDb object from user sup-

plied transcript annotations. See ?makeTranscriptDbFromUCSC and ?makeTranscriptDbFromBiomart

for higher-level functions that feed data from the UCSC or BioMart sources to makeTranscriptDb.

Usage
makeTranscriptDb (transcripts, splicings,
genes=NULL, chrominfo=NULL, metadata=NULL, ...)
Arguments

transcripts data frame containing the genomic locations of a set of transcripts

splicings data frame containing the exon and cds locations of a set of transcripts

genes data frame containing the genes associated to a set of transcripts

chrominfo data frame containing information about the chromosomes hosting the set of
transcripts

metadata 2-column data frame containing meta information about this set of transcripts

like species, organism, genome, UCSC table, etc... The names of the columns
must be "name" and "value" and their type must be character.

e ignored for now

makeTranscriptDb 11

Details

The transcripts (required), splicings (required) and genes (optional) arguments must be
data frames that describe a set of transcripts and the genomic features related to them (exons, cds
and genes at the moment). The chrominfo (optional) argument must be a data frame containing
chromosome information like the length of each chromosome.

transcripts must have 1 row per transcript and the following columns:

e tx_id: Transcript ID. Integer vector. No NAs. No duplicates.
* tx_name: [optional] Transcript name. Character vector (or factor).
* tx_chrom: Transcript chromosome. Character vector (or factor) with no NAs.

e tx_strand: Transcript strand. Character vector (or factor) where each element is either
"+" Or "_"'

* tx_start, tx_end: Transcript start and end. Integer vectors with no NAs.

Other columns, if any, are ignored (with a warning).

splicings must have N rows per transcript, where N is the nb of exons in the transcript. Each
row describes an exon plus eventually the cds contained in this exon. Its columns must be:

* tx_id: Foreign key that links each row in the splicings data frame to a unique row in the
transcripts data frame. Note that more than 1 row in splicings can be linked to the
same row in t ranscripts (many-to-one relationship). Same type as transcripts$tx_id
(integer vector). No NAs. All the values in this column must be presentin transcripts$tx_id.

* exon_rank: The rank of the exon in the transcript. Integer vector with no NAs. (tx_id,
exon_rank) pairs must be unique.

* exon_1id: [optional] Exon ID. Integer vector with no NAs.
* exon_name: [optional] Exon name. Character vector (or factor).

* exon_chrom: [optional] Exon chromosome. Character vector (or factor) with no NAs. If
missing then transcripts$tx_chromis used. If present then exon_strand must be
present too.

* exon_strand: [optional] Exon strand. Character vector (or factor) with no NAs. If missing
then transcripts$tx_strand is used and exon_chrom must be missing too.

* exon_start, exon_end: Exon start and end. Integer vectors with no NAs.

e cds_id: [optional] cds ID. Integer vector. If present then cds_start and cds_end must
be too. NAs are allowed and must match NAs in cds_start and cds_end.

* cds_name: [optional] cds name. Character vector (or factor). If present then cds_start
and cds_end must be too. NAs are allowed and must match NAs in cds_start and
cds_end.

e cds_start, cds_end: [optional] cds start and end. Integer vectors. If one of the 2 columns
is missing then all cds_ + columns must be missing. NAs are allowed and must occur at the
same positions in cds_start and cds_end.

Other columns, if any, are ignored (with a warning).
genes must have N rows per transcript, where N is the nb of genes linked to the transcript (N will

be 1 most of the time). Its columns must be:

* tx_1id: [optional] genes must have either a tx_id or a tx_name column but not both.
Like splicings$tx_1id, thisis a foreign key that links each row in the genes data frame
to a unique row in the t ranscripts data frame.

12 makeTranscriptDbFromBiomart

* tx_name: [optional] Can be used as an alternative to the genes$tx_id foreign key.

¢ gene_1id: Gene ID. Character vector (or factor). No NAs.

Other columns, if any, are ignored (with a warning).

chrominfo must have 1 row per chromosome and the following columns:

¢ chrom: Chromosome name. Character vector (or factor) with no NAs.
* length: Chromosome length. Either all NAs or an integer vector with no NAs.

* is_circular: [optional] Chromosome circularity flag. Either all NAs or a logical vector
with no NAs.

Other columns, if any, are ignored (with a warning).

Value

A TranscriptDDb object.

Author(s)

H. Pages

See Also

TranscriptDb, makeTranscriptDbFromUCSC, makeTranscriptDbFromBiomart

Examples

transcripts <- data.frame (

tx_id=1:3,
tx_chrom="chrl",
tX_Stral’ld:C("*", ll+", "+"),

tx_start=c(1l, 2001, 2001),
tx_end=c (999, 2199, 2199))

splicings <- data.frame (
tx_id=c (1L, 2L, 2L, 2L, 3L, 3L),
exon_rank=c (1, 1, 2, 3, 1, 2),
exon_start=c(1, 2001, 2101, 2131, 2001, 2131),
exon_end=c (999, 2085, 2144, 2199, 2085, 2199),
cds_start=c(1l, 2022, 2101, 2131, NA, NA),
cds_end=c (999, 2085, 2144, 2193, NA, NA))

txdb <- makeTranscriptDb (transcripts, splicings)

makeTranscriptDbFromBiomart

Making a TranscriptDb object from annotations available on a
BioMart database

Description

The makeTranscriptDbFromBiomart function allows the user to make a TranscriptDb ob-
ject from transcript annotations available on a BioMart database.

makeTranscriptDbFromBiomart 13

Usage

getChromInfoFromBiomart (biomart="ensembl",

dataset="hsapiens_gene_ensembl")

makeTranscriptDbFromBiomart (biomart="ensembl",

Arguments

biomart

dataset

dataset="hsapiens_gene_ensembl",
transcript_ids=NULL,
circ_seqgs=DEFAULT_CIRC_SEQS)

which BioMart database to use. Get the list of all available BioMart databases
with the 1istMarts function from the biomaRt package. See the details sec-
tion below for a list of BioMart databases with compatible transcript annota-
tions.

which dataset from BioMart. For example: "hsapiens_gene_ensembl",
"mmusculus_gene_ensembl", "dmelanogaster_gene_ensembl",
"celegans_gene_ensembl", "scerevisiae_gene_ensembl”, etc
in the ensembl database. See the examples section below for how to discover
which datasets are available in a given BioMart database.

transcript_ids

circ_segs

Details

optionally, only retrieve transcript annotation data for the specified set of tran-
script ids. If this is used, then the meta information displayed for the result-
ing TranscriptDb object will say ’Full dataset: no’. Otherwise it will say "Full
dataset: yes’.

a character vector to list out which chromosomes should be marked as circular.

makeTranscriptDbFromBiomart is a convenience function that feeds data from a BioMart

database to the lower level makeTranscriptDb function. See ?makeTranscriptDbFromUCSC

for a similar function that feeds data from the UCSC source.

BioMart databases that are known to have compatible transcript annotations are:

* the most recent ensembl: ENSEMBL GENES (SANGER UK)

* the most recent bacterial_mart: ENSEMBL BACTERIA (EBI UK)
¢ the most recent fungal_mart: ENSEMBL FUNGAL (EBI UK)

¢ the most recent metazoa_mart: ENSEMBL METAZOA (EBI UK)

* the most recent plant_mart: ENSEMBL PLANT (EBI UK)

¢ the most recent protist_mart: ENSEMBL PROTISTS (EBI UK)

¢ the most recent ensembl_expressionmart: EURATMART (EBI UK)

Not all annotations will have CDS information.

Value

A TranscriptDDb object.

Author(s)

M. Carlson and H. Pages

14 makeTranscriptDbFromUCSC

See Also

listMarts,useMart,listDatasets, DEFAULT_CIRC_SEQS,makeTranscriptDbFromUCSC
makeTranscriptDb

Examples

Discover which datasets are available in the "ensembl" BioMart
database:

library (biomaRt)

listDatasets (useMart ("ensembl"))

Retrieving an incomplete transcript dataset for Human from the
"ensembl" BioMart database:
transcript_ids <- c(

"ENST00000268655",

"ENST00000313243",

"ENST00000341724",

"ENST00000400839",

"ENST00000435657",

"ENST00000478783"
)
txdb <- makeTranscriptDbFromBiomart (transcript_ids=transcript_ids)
txdb # note that these annotations match the GRCh37 genome assembly

makeTranscriptDbFromUCSC
Making a TranscriptDb object from annotations available at the
UCSC Genome Browser

Description

The makeTranscriptDbFromUCSC function allows the user to make a TranscriptDb object
from transcript annotations available at the UCSC Genome Browser.

Usage

supportedUCSCtables ()

getChromInfoFromUCSC (
genome,
goldenPath_url="http://hgdownload.cse.ucsc.edu/goldenPath")

makeTranscriptDbFromUCSC (
genome="hgl8",
tablename="knownGene",
transcript_ids=NULL,
circ_seqgs=DEFAULT_CIRC_SEQS,
url="http://genome.ucsc.edu/cgi-bin/",
goldenPath_url="http://hgdownload.cse.ucsc.edu/goldenPath")

makeTranscriptDbFromUCSC 15

Arguments
genome genome abbreviation used by UCSC and obtained by ucscGenomes () [,
"db"]. For example: "hgl8".
tablename name of the UCSC table containing the transcript annotations to retrieve. Use

the supportedUCSCtables utility function to get the list of supported ta-
bles. Note that not all tables are available for all genomes.

transcript_ids
optionally, only retrieve transcript annotation data for the specified set of tran-
script ids. If this is used, then the meta information displayed for the result-
ing TranscriptDb object will say ’Full dataset: no’. Otherwise it will say "Full
dataset: yes’.

circ_seqs a character vector to list out which chromosomes should be marked as circular.
url,goldenPath_url
use to specify the location of an alternate UCSC Genome Browser.

Details

makeTranscriptDbFromUCSC is a convenience function that feeds data from the UCSC source
to the lower level makeTranscriptDb function. See ?makeTranscriptDbFromBiomart
for a similar function that feeds data from a BioMart database.

Value

A TranscriptDb object.

Author(s)
M. Carlson and H. Pages

See Also

ucscGenomes, DEFAULT_CIRC_SEQS,makeTranscriptDbFromBiomart,makeTranscriptDb

Examples

Display the list of genomes available at UCSC:
library(rtracklayer)
ucscGenomes () [, "db"]

Display the list of tables supported by makeTranscriptDbFromUCSC () :
supportedUCSCtables ()

Not run:
Retrieving a full transcript dataset for Yeast from UCSC:
txdbl <- makeTranscriptDbFromUCSC (genome="sacCer2", tablename="ensGene")

End (Not run)

Retrieving an incomplete transcript dataset for Mouse from UCSC
(only transcripts linked to Entrez Gene ID 22290):
transcript_ids <- c(

"ucO00%uzf.1",

"uc009%uzg.1",

"ucO00%9uzh.1",

16 makeTxDbPackage

"uc009uzi.1",
"uc009%uzj.1"

txdb2 <- makeTranscriptDbFromUCSC (genome="mm9", tablename="knownGene",
transcript_ids=transcript_ids)

txdb2
makeTxDbPackage Making a TranscriptDb packages from annotations available at the
UCSC Genome Browser, biomaRt or from another source.
Description

The makeTxDbPackageFromUCSC function allows the user to make a TranscriptDb object from
transcript annotations available at the UCSC Genome Browser. The makeTxDbPackageFromBiomart
function allows the user to do the same thing as makeTxDbPackageFromUCSC except that the
annotations originate from biomaRt. Finally, the makeTxDbPackage function allows the user to

make a TranscriptDb object from transcript annotations that are in a custom transcript Database,

such as could be produced using makeTranscriptDb.

Usage

makeTxDbPackageFromUCSC (
version=,
maintainer,
author,
destDir=".",
license="Artistic-2.0",
genome="hgl9o",
tablename="knownGene",
transcript_ids=NULL,
circ_seqgs=DEFAULT_CIRC_SEQS,
url="http://genome.ucsc.edu/cgi-bin/",
goldenPath_url="http://hgdownload.cse.ucsc.edu/goldenPath")

makeTxDbPackageFromBiomart (
version,
maintainer,
author,
destDir=".",
license="Artistic-2.0",
biomart="ensembl",
dataset="hsapiens_gene_ensembl",
transcript_ids=NULL,
circ_seqs=DEFAULT_CIRC_SEQS)

makeTxDbPackage (txdb,
version,
maintainer,

makeTxDbPackage 17

author,
destDir=".",
license="Artistic-2.0")

Arguments

version What is the version number for this package?

maintainer Who is the package maintainer? (must include email to be valid)

author Who is the creator of this package?

destDir A path where the package source should be assembled.

license What is the license (and it’s version)

biomart which BioMart database to use. Get the list of all available BioMart databases

with the 11 stMarts function from the biomaRt package. See the details sec-
tion below for a list of BioMart databases with compatible transcript annota-

tions.

dataset which dataset from BioMart. For example: "hsapiens_gene_ensembl",
"mmusculus_gene_ensembl", "dmelanogaster_gene_ensembl",
"celegans_gene_ensembl", "scerevisiae_gene_ensembl”, etc

in the ensembl database. See the examples section below for how to discover
which datasets are available in a given BioMart database.

genome genome abbreviation used by UCSC and obtained by ucscGenomes () [,
"db"]. For example: "hgl8".

tablename name of the UCSC table containing the transcript annotations to retrieve. Use
the supportedUCSCtables utility function to get the list of supported ta-
bles. Note that not all tables are available for all genomes.

transcript_ids
optionally, only retrieve transcript annotation data for the specified set of tran-
script ids. If this is used, then the meta information displayed for the result-
ing TranscriptDb object will say ’Full dataset: no’. Otherwise it will say "Full
dataset: yes’.

circ_seqgs a character vector to list out which chromosomes should be marked as circular.

url,goldenPath_url
use to specify the location of an alternate UCSC Genome Browser.

txdb A TranscriptDDb object that represents a handle to a transcript database. This ob-
jecttype is what is returned by makeTranscriptDbFromUCSC,makeTranscriptDbFromUC
ormakeTranscriptDb

Details

makeTxDbPackageFromUCSC is a convenience function that calls both the makeTranscriptDbFromUCSC
and the makeTxDbPackage functions. The makeTxDbPackageFromBiomart follows a

similar pattern and calls the makeTranscriptDbFromBiomart and makeTxDbPackage

functions.

Value

A TranscriptDb object.

Author(s)
M. Carlson

18 regions

See Also

ucscGenomes, DEFAULT_CIRC_SEQS,makeTranscriptDbFromUCSC,makeTranscriptDbFromBiomar
makeTranscriptDb

Examples

Display the list of tables supported by makeTxDbPackageFromUCSC () :
supportedUCSCtables ()

Not run:
Makes a transcript package for Yeast from the ensGene table at UCSC:
makeTxDbPackageFromUCSC (version="0.01",
maintainer="Some One <so@someplace.org>",
author="Some One <so@someplace.com>",
genome="sacCer2",
tablename="ensGene")

Makes a transcript package from Human by using biomaRt and limited to a
small subset of the transcripts.
transcript_ids <- c(

"ENST00000400839",

"ENST00000400840",

"ENST00000478783",

"ENST00000435657",

"ENST00000268655",

"ENST00000313243",

"ENST00000341724")

makeTxDbPackageFromBiomart (version="0.01",
maintainer="Some One <so@someplace.org>",
author="Some One <so@someplace.com>",
transcript_ids=transcript_ids)

End (Not run)

regions Functions that compute genomic regions of interest.

Description

Functions that compute genomic regions of interest such as promotor, upstream regions etc, from
the genomic locations provided in a UCSC-style data frame.

WARNING: All the functions described in this man page are deprecated. Please use transcripts,
exons or intronsByTranscript on a TranscriptDb object instead.

Usage

transcripts_deprecated(genes, proximal = 500, distal = 10000)
exons_deprecated (genes)
introns_deprecated (genes)

saveFeatures 19

Arguments
genes A UCSC-style data frame i.e. a data frame with 1 row per transcript and at
least the following columns: "name", "chrom", "strand", "txStart",
"txEnd", "exonCount", "exonStarts", "exonkEnds", "intronStarts"
and "intronEnds". A value in any of the last 4 columns must be a comma-
separated list of integers. Note that unlike what UCSC does the start values here
must be 1-based, not 0-based.
proximal The number of bases on either side of TSS and 3’-end for the promoter and end
region, respectively.
distal The number of bases on either side for upstream/downstream, i.e. enhancer/silencer
regions.
Details

The assumption made for introns is that there must be more than one exon, and that the introns are
between the end of one exon and before the start of the next exon.

Value

All of these functions return a RangedData object with a gene column with the UCSC ID
of the gene. For transcripts_deprecated, each element corresponds to a transcript, and
there are columns for each type of region (promoter, threeprime, upstream, and downstream). For
exons_deprecated, each element corresponds to an exon. For introns_deprecated,
each element corresponds to an intron.

Author(s)

M. Lawrence.

See Also

transcripts, exons, intronsByTranscript, TranscriptDb-class

saveFeatures Methods to save and load the database contents for a Transcript Ob-
ject.

Description
These methods provide a way to dump a TranscriptDb object to an SQLite file, and to recreate that
object the saved file.
Usage
saveFeatures (x, file)
loadFeatures (file)
Arguments

x a transcripts object, which contains a connection to a DB.
file A SQLite Database filename.

transcripts

Value

For 1oadFeatures only, a TranscriptDb object is returned.

Author(s)

M. Carlson

See Also

TranscriptDb

Examples

txdb <-
loadFeatures (system.file ("extdata", "UCSC_knownGene_sample.sglite",

txdb

package = "GenomicFeatures"))

transcripts

Extract genomic features from an object

Description

Generic functions to extract genomic features from an object. This page documents the methods for
TranscriptDb objects only.

Usage

transcripts (x, ...)
S4 method for signature 'TranscriptDb'
transcripts (x, vals=NULL, columns=c ("tx_id", "tx_name"))

exons (x,

S4 method for signature 'TranscriptDb'

exons (X,

cds (x,

vals=NULL, columns="exon_id")

S4 method for signature 'TranscriptDb'

cds (x, vals=NULL, columns="cds_id")
Arguments

X A TranscriptDb object.
Arguments to be passed to or from methods.

vals Either NULL or a named list of vectors to be used to restrict the output. Valid
names for this list are: "gene_id", "tx_id", "tx_name", "tx_chrom",
"tx_strand", "exon_id", "exon_name", "exon_chrom", "exon_strand",
"cds_1id", "cds_name", "cds_chrom", "cds_strand" and "exon_rank".

columns Columns to include in the output. Must be NULL or a character vector with

values in the above list of valid names. With the following restrictions:

transcriptsBy 21

e "tx_chrom" and "tx_strand" are not allowed for t ranscripts.
e "exon_chrom" and "exon_strand" are not allowed for exons.

e "cds_chrom" and "cds_strand" are not allowed for cds.

Details

These are the main functions for extracting transcript information from a TranscriptDb object. They
can restrict the output based on categorical information. To restrict the output based on interval in-
formation, use the t ranscriptsByOverlaps, exonsByOverlaps, and cdsByOverlaps
functions.

Value

a GRanges object

Author(s)
M. Carlson, P. Aboyoun and H. Pages

See Also

TranscriptDb, id2name, transcriptsBy, transcriptsByOverlaps

Examples

txdb <- loadFeatures (system.file ("extdata", "UCSC_knownGene_sample.sglite",
package="GenomicFeatures"))

vals <- list (tx_chrom = c("chr3", "chr5"), tx_strand = "+")
transcripts (txdb, wvals)
exons (txdb, wvals=list (exon_id=1), columns=c ("exon_id", "tx_name"))
exons (txdb, vals=list (tx_name="uc009vip.1l"), columns=c ("exon_id", "tx_name"))
transcriptsBy Extract and group genomic features of a given type
Description

Generic functions to extract genomic features of a given type grouped based on another type of
genomic feature. This page documents the methods for TranscriptDb objects only.

Usage

transcriptsBy (x, by=c("gene", "exon", "cds"), ...)
S4 method for signature 'TranscriptDb'
transcriptsBy (x, by=c("gene", "exon", "cds"), use.names=FALSE)

exonsBy (x, by=c("tx", "gene"), ...)
S4 method for signature 'TranscriptDb'
exonsBy (x, by=c("tx", "gene"), use.names=FALSE)

cdsBy (x, by=c("tx", "gene"), ...)
S4 method for signature 'TranscriptDb'

22 transcriptsBy

cdsBy (x, by=c("tx", "gene"), use.names=FALSE)

intronsByTranscript (x, ...)
S4 method for signature 'TranscriptDb'
intronsByTranscript (x, use.names=FALSE)

fiveUTRsByTranscript (x, ...)
S4 method for signature 'TranscriptDb'
fiveUTRsByTranscript (x, use.names=FALSE)

threeUTRsByTranscript (x, ...)
S4 method for signature 'TranscriptDb'
threeUTRsByTranscript (x, use.names=FALSE)

Arguments

X A TranscriptDb object.
Arguments to be passed to or from methods.

by One of "gene", "exon", "cds" or "tx". Determines the grouping.

use.names Controls how to set the names of the returned GRangesList object. These func-
tions return all the features of a given type (e.g. all the exons) grouped by an-
other feature type (e.g. grouped by transcript) in a GRangesList object. By
default (i.e. if use.names is FALSE), the names of this GRangesList object
(aka the group names) are the internal ids of the features used for grouping (aka
the grouping features), which are guaranteed to be unique. If use.names is
TRUE, then the names of the grouping features are used instead of their internal
ids. For example, when grouping by transcript (by="tx"), the default group
names are the transcript internal ids ("tx_id"). But, if use.names=TRUE,
the group names are the transcript names ("tx_name"). Note that, unlike the
feature ids, the feature names are not guaranteed to be unique or even defined
(they could be all NAs). A warning is issued when this happens. See ?id2name
for more information about feature internal ids and feature external names and
how to map the formers to the latters.
Finally, use . name s=TRUE cannot be used when grouping by gene by="gene".
This is because, unlike for the other features, the gene ids are external ids (e.g.
Entrez Gene or Ensembl ids) so the db doesn’t have a "gene_name" column
for storing alternate gene names.

Details

These functions return a GRangesList object where the ranges within each of the elements are
ordered according to the following rule:

When using exonsBy and cdsBy with by = "tx", the ranges are returned in the order they
appear in the transcript, i.e. order by the splicing.exon_rank field in x’s internal database. In all
other cases, the ranges will be ordered by chromosome, strand, start, and end values.

Value

A GRangesList object.

Author(s)

M. Carlson, P. Aboyoun and H. Pages

transcriptsByOverlaps 23

See Also

TranscriptDb, transcripts, id2name, transcriptsByOverlaps

Examples

txdb_file <- system.file("extdata", "UCSC_knownGene_sample.sglite",
package="GenomicFeatures")
txdb <- loadFeatures (txdb_file)

Get the transcripts grouped by gene:
transcriptsBy (txdb, "gene")

Get the exons grouped by gene:
exonsBy (txdb, "gene")

Get the cds grouped by transcript:

cds_by_tx0 <- cdsBy (txdb, "tx")

With more informative group names:

cds_by_txl <- cdsBy (txdb, "tx", use.names=TRUE)

Note that 'cds_by_txl' can also be obtained with:

names (cds_by_tx0) <- id2name (txdb, feature.type="tx") [names (cds_by_tx0)]
stopifnot (identical (cds_by_tx0, cds_by_txl))

Get the introns grouped by transcript:
intronsByTranscript (txdb)

Get the 5' UTRs grouped by transcript:
fiveUTRsByTranscript (txdb)
fiveUTRsByTranscript (txdb, use.names=TRUE) # more informative group names

transcriptsByOverlaps
Extract genomic features from an object based on their by genomic
location

Description

Generic functions to extract genomic features for specified genomic locations. This page documents
the methods for TranscriptDb objects only.

Usage

transcriptsByOverlaps (x, ranges,

maxgap = 0L, minoverlap = 1L,

type = c("any", "start", "end"), ...)
S4 method for signature 'TranscriptDb'
transcriptsByOverlaps (x, ranges,

maxgap = 0L, minoverlap = 1L,
type = c("any", "start", "end"),
columns = c("tx_id", "tx_name"))

exonsByOverlaps (x, ranges,
maxgap = 0L, minoverlap = 1L,

24 transcriptsByOverlaps

type = c("any", "start", "end"), ...)
S4 method for signature 'TranscriptDb'
exonsByOverlaps (x, ranges,

maxgap = 0L, minoverlap = 1L,
type = c("any", "start", "end"),
columns = "exon_id")

cdsByOverlaps (x, ranges,

maxgap = 0L, minoverlap = 1L,

type = c("any", "start", "end"), ...)
S4 method for signature 'TranscriptDb'
cdsByOverlaps (x, ranges,

maxgap = 0L, minoverlap = 1L,
type = c("any", "start", "end"),
columns = "cds_id")
Arguments
X A TranscriptDb object.
Arguments to be passed to or from methods.
ranges A GRanges object to restrict the output.
type How to perform the interval overlap operations of the ranges. Seethe findOverlaps
manual page in the GRanges package for more information.
maxgap A non-negative integer representing the maximum distance between a query

interval and a subject interval.
minoverlap Ignored.
columns Columns to include in the output. See ?t ranscripts for the possible values.
Details

These functions subset the results of transcripts, exons, and cds function calls with using
the results of findOverlaps calls based on the specified ranges.

Value

a GRanges object

Author(s)

P. Aboyoun

See Also

TranscriptDb, transcripts

Examples

txdb <- loadFeatures (system.file ("extdata", "UCSC_knownGene_sample.sglite",
package="GenomicFeatures"))

gr <- GRanges (segnames = rep("chrl",2),
ranges = IRanges (start=c(500,10500), end=c(10000,30000)),
strand = strand(rep("-",2)))

transcriptsByOverlaps (txdb, gr)

Index

*Topic datasets
DEFAULT_CIRC_SEQS, 1

+Topic manip
extractTranscriptsFromGenome,

3

as.list, TranscriptDb-method
(TranscriptDb—-class), 1
available.genomes, 4

BSgenome, 4

cds, 24

cds (transcripts), 20

cds, TranscriptDb-method
(transcripts), 20

cdsBy (transcriptsBy), 21

cdsBy, TranscriptDb-method
(transcriptsBy), 21

cdsByOverlaps, 21

cdsByOverlaps
(transcriptsByOverlaps), 23

cdsByOverlaps, TranscriptDb-method
(transcriptsByOverlaps), 23

class:FeatureDb
(TranscriptDb-class), 1

class:TranscriptDb
(TranscriptDb-class), 1

cols, TranscriptDb-method
(TranscriptDb-class), 1

DEFAULT_CIRC_SEQS, 1, 14, 15,18
DNAString, 4

DNAStringSet, 4
DNAStringSet—-class, 4

exons, I8, 19, 24

exons (transcripts), 20

exons,data.frame-method
(transcripts), 20

exons, TranscriptDb-method
(transcripts), 20

exons_deprecated (regions), 18

exonsBy (transcriptsBy), 21

25

exonsBy, TranscriptDb-method
(transcriptsBy), 21

exonsByOverlaps, 21/

exonsByOverlaps
(transcriptsByOverlaps), 23

exonsByOverlaps, TranscriptDb-method
(transcriptsByOverlaps), 23

extractTranscripts
(extractTranscriptsFromGenome),
3

extractTranscriptsFromGenome, 3

FeatureDb, 6-9

FeatureDb (TranscriptDb-class), 1

FeatureDb-class
(TranscriptDb—-class), 1

features, 6

features, FeatureDb-method
(features), 6

findOverlaps, 24

fiveUTRsByTranscript
(transcriptsBy), 21

fiveUTRsByTranscript, TranscriptDb-method

(transcriptsBy), 21

getChromInfoFromBiomart
(makeTranscriptDbFromBiomart),
12

getChromInfoFromUCSC
(makeTranscriptDbFromUCSC),
14

GRanges, 24

GRangesList, 3, 4, 22

GRangesList-class, 4

id2name, 2,7, 21-23

IntegerList, 4

introns_deprecated (regions), 18

intronsByTranscript, I8, 19

intronsByTranscript
(transcriptsBy), 21

intronsByTranscript, TranscriptDb-method

(transcriptsBy), 21

26

isActiveSeq(TranscriptDb-class),
1
isActiveSeq, TranscriptDb-method
(TranscriptDb-class), 1
isActiveSeqg<-—
(TranscriptDb—-class), 1
isActiveSeqg<-, TranscriptDb-method
(TranscriptDb-class), 1

keys, TranscriptDb-method
(TranscriptDb-class), 1

keytypes, TranscriptDb-method
(TranscriptDb-class), 1

listDatasets, I4
listMarts, 13, 14,17

loadDb, I

loadFeatures, 2

loadFeatures (saveFeatures), 19

makeFeatureDbFromUCSC, /, 8
makeTranscriptDb, 10, 13-15, I8
makeTranscriptDbFromBiomart, I, 2,
10,12,12,15,17, 18
makeTranscriptDbFromUCSC, I, 2, 10,
12-14,14,17, 18
makeTxDbPackage, 16, 17
makeTxDbPackageFromBiomart
(makeTxDbPackage), 16
makeTxDbPackageFromUCSC
(makeTxDbPackage), 16
MaskedDNAString, 4
metadata, FeatureDb-method
(TranscriptDb-class), 1
metadata, TranscriptDb-method
(TranscriptDb—-class), 1

RangedData, 19
regions, 18

saveDb, /

saveFeatures, 19

saveFeatures, FeatureDb-method
(saveFeatures), 19

saveFeatures, TranscriptDb-method
(saveFeatures), 19

select, TranscriptDb-method
(TranscriptDb-class), 1

Seqginfo, 2

seqginfo, TranscriptDb-method
(TranscriptDb—-class), 1

Seqginfo-class, 2

show, FeatureDb-method
(TranscriptDb-class), 1

INDEX

show, TranscriptDb-method
(TranscriptDb-class), 1

supportedUCSCFeatureDbTables
(makeFeatureDbFromUCSC), 8

supportedUCSCFeatureDbTracks
(makeFeatureDbFromUCSC), 8

supportedUCSCtables
(makeTranscriptDbFromUCSC),
14

threeUTRsByTranscript
(transcriptsBy), 21

threeUTRsByTranscript, TranscriptDb-method
(transcriptsBy), 21

TranscriptDb, 3, 4,7, 8, 10, 12-18, 20-24

TranscriptDb
(TranscriptDb-class), 1

TranscriptDb-class, 1,4, 19

transcriptLocs2reflocs
(extractTranscriptsFromGenome),
3

transcripts, 2,8, 18, 19, 20, 23, 24

transcripts,data.frame-method
(transcripts), 20

transcripts, TranscriptDb-method
(transcripts), 20

transcripts_deprecated (regions),
18

transcriptsBy, 2,8, 21,21

transcriptsBy, TranscriptDb-method
(transcriptsBy), 21

transcriptsByOverlaps, 2, 21, 23,23

transcriptsByOverlaps, TranscriptDb-method
(transcriptsByOverlaps), 23

transcriptWidths
(extractTranscriptsFromGenome),

3

UCSCFeatureDbTableSchema
(makeFeatureDbFromUCSC), 8

ucscGenomes, 9, 15,17, 18

useMart, 14

	DEFAULT_CIRC_SEQS
	TranscriptDb-class
	extractTranscriptsFromGenome
	features
	id2name
	makeFeatureDbFromUCSC
	makeTranscriptDb
	makeTranscriptDbFromBiomart
	makeTranscriptDbFromUCSC
	makeTxDbPackage
	regions
	saveFeatures
	transcripts
	transcriptsBy
	transcriptsByOverlaps
	Index

