
GWASTools
March 24, 2012

BAFfromClusterMeans
B Allele Frequency & Log R Ratio Calculation

Description

This function calculates the B allele frequency and the log R ratio values from the mean R and
theta values for each cluster. The values are written to a netCDF file which is assumed to exist with
proper variables and size.

Usage

BAFfromClusterMeans(intenData, bl.ncdf.filename,
clusterMeanVars = c("tAA","tAB","tBB","rAA","rAB","rBB"),
verbose = TRUE)

Arguments

intenData IntensityData object holding the X and Y intensity data from which the B
allele frequency and log R ratio are calculated.

bl.ncdf.filename
The filepath for a previously created netCDF file to hold the B allele frequency
and log R ratio values.

clusterMeanVars
Character vector indicating the names of the cluster mean columns in the SNP
annotation of intenData. Must be in order (tAA,tAB,tBB,rAA,rAB,rBB).

verbose Logical value specifying whether to show progress information.

Details

Because this function can take a considerable amount of time and space, sufficient attention should
be given to the value used for block.size. The file specified by bl.ncdf.filename is
assumed to have variables ’BAlleleFreq’ and ’LogRRatio’ to which the proper values are written.

Value

The netCDF file stored in the bl.ncdf.filename path is populated with values of B allele
frequency and the log R ratio at the completion of this function.

1

2 BAFfromGenotypes

Author(s)

Stephanie Gogarten, Caitlin McHugh

References

Peiffer D.A., Le J.M., Steemers F.J., Chang W., Jenniges T., and et al. High-resolution genomic pro-
filing of chromosomal aberrations using infinium whole-genome genotyping. Genome Research,
16:1136-1148, 2006.

See Also

IntensityData, BAFfromClusterMeans

Examples

create IntensityData object from netCDF
library(GWASdata)
xyfile <- system.file("extdata", "illumina_qxy.nc", package="GWASdata")
xyNC <- NcdfIntensityReader(xyfile)
data(illumina_snp_annot)
snpAnnot <- SnpAnnotationDataFrame(illumina_snp_annot)
xyData <- IntensityData(xyNC, snpAnnot=snpAnnot)
nsamp <- nscan(xyData)

create netCDF file to hold BAF/LRR data
blfile <- tempfile()
ncdfCreate(illumina_snp_annot, blfile, variables=c("BAlleleFreq","LogRRatio"), n.samples=nsamp)

calculate BAF and LRR
BAFfromClusterMeans(xyData, blfile, verbose=FALSE)

read output
blNC <- NcdfIntensityReader(blfile)
blData <- IntensityData(blNC)
baf <- getBAlleleFreq(blData)
lrr <- getLogRRatio(blData)

close(xyNC)
close(blNC)
file.remove(blfile)

BAFfromGenotypes B Allele Frequency & Log R Ratio Calculation

Description

This function calculates the B allele frequency and the log R ratio values for samples by either plate
or by study. The values are written to a netCDF file which is assumed to exist with proper variables
and size.

BAFfromGenotypes 3

Usage

BAFfromGenotypes(intenData, genoData,
bl.ncdf.filename, min.n.genotypes = 2,
call.method = c("by.plate", "by.study"),
plate.name = "plate",
block.size = 5000, verbose = TRUE)

Arguments

intenData IntensityData object holding the X and Y intensity data from which the B
allele frequency and log R ratio are calculated.

genoData GenotypeData object.
bl.ncdf.filename

The filepath for a previously created netCDF file to hold the B allele frequency
and log R ratio values.

min.n.genotypes
The minimum number of samples for each genotype at any SNP in order to have
non-missing B allele freqency and log R ratio. Setting this parameter to 2 or a
similar value is recommended.

call.method If call.method is ’by.plate’, the B allele frequency and log R ratio are calculated
for samples delineated by plates. This is the default method. If call.method is
’by.study’, the calculation uses all samples at once. If a study does not have
plate specifications, ’by.study’ is the call.method that must be used.

plate.name Character string specifying the name of the plate variable in intenData or gen-
oData. By default, the plate.name is simply ’plate’ but oftentimes there are
variations, such as ’plateID’ or ’plate.num’.

block.size An integer specifying the number of SNPs to be loaded from the netCDF file at
one time. The recommended value is around 1000, but should vary depending
on computing power.

verbose Logical value specifying whether to show progress information.

Details

Because this function can take a considerable amount of time and space, sufficient attention should
be given to the value used for block.size. The file specified by bl.ncdf.filename is
assumed to have variables ’BAlleleFreq’ and ’LogRRatio’ to which the proper values are written.

Value

The netCDF file stored in the bl.ncdf.filename path is populated with values of B allele
frequency and the log R ratio at the completion of this function.

Author(s)

Caitlin McHugh

References

Peiffer D.A., Le J.M., Steemers F.J., Chang W., Jenniges T., and et al. High-resolution genomic pro-
filing of chromosomal aberrations using infinium whole-genome genotyping. Genome Research,
16:1136-1148, 2006.

4 GWASTools-package

See Also

IntensityData, GenotypeData, chromIntensityPlot, BAFfromClusterMeans

Examples

Not run:
create IntensityData and GenotypeData objects from netCDF
library(GWASdata)
data(affy_scan_annot)
scanAnnot <- ScanAnnotationDataFrame(affy_scan_annot)
nsamp <- nrow(scanAnnot)

data(affy_snp_annot)
snpAnnot <- SnpAnnotationDataFrame(affy_snp_annot)

xyfile <- system.file("extdata", "affy_qxy.nc", package="GWASdata")
xyNC <- NcdfIntensityReader(xyfile)
xyData <- IntensityData(xyNC, snpAnnot=snpAnnot, scanAnnot=scanAnnot)

genofile <- system.file("extdata", "affy_geno.nc", package="GWASdata")
genoNC <- NcdfGenotypeReader(genofile)
genoData <- GenotypeData(genoNC, snpAnnot=snpAnnot, scanAnnot=scanAnnot)

create netCDF file to hold BAF/LRR data
blfile <- tempfile()
ncdfCreate(affy_snp_annot, blfile, variables=c("BAlleleFreq","LogRRatio"), n.samples=nsamp)

calculate BAF and LRR
BAFfromGenotypes(xyData, genoData, blfile, min.n.genotypes=2,

call.method="by.plate", plate.name="plate")

blNC <- NcdfIntensityReader(blfile)
baf <- getBAlleleFreq(blNC)
lrr <- getLogRRatio(blNC)

close(xyData)
close(genoData)
close(blNC)
file.remove(blfile)

End(Not run)

GWASTools-package Tools for Genome Wide Association Studies

Description

This package contains tools for facilitating cleaning (quality control and quality assurance) and
analysis of GWAS data.

GenotypeData-class 5

Details

GWASTools provides a set of classes for storing data and annotation from Genome Wide Associa-
tion studies, and a set of functions for data cleaning and analysis that operate on those classes.

Genotype and intensity data are stored in NetCDF files, so it is possible to analyze data sets
that are too large to be contained in memory. The NcdfReader class provides a generic in-
terface to the NetCDF files (utilizing the ncdf package), and the NcdfGenotypeReader and
NcdfIntensityReader classes provide specific methods to access genotype and intensity data.

Two sets of classes for annotation are provided. SnpAnnotationDataFrame and ScanAnnotationDataFrame
extend AnnotatedDataFrame and provide in-memory containers for SNP and scan annotation
and metadata. SnpAnnotationSQLite and ScanAnnotationSQLite provide interfaces to
SNP and scan annotation and metadata stored in SQLite databases.

The GenotypeData and IntensityData classes combine genotype or intensity data with
SNP and scan annotation, ensuring that the data in the NetCDF files is consistent with annotation
through unique SNP and scan IDs. A majority of the functions in the GWASTools package take
GenotypeData and/or IntensityData objects as arguments.

Author(s)

Stephanie Gogarten, Cathy Laurie, Tushar Bhangale, Matt Conomos, Cecilia Laurie, Caitlin McHugh,
Ian Painter, Xiuwen Zheng, Rohit Swarnkar

Maintainer: Stephanie Gogarten <sdmorris@u.washington.edu>

References

Laurie, C. C., Doheny, K. F., Mirel, D. B., Pugh, E. W., Bierut, L. J., Bhangale, T., Boehm, F., Ca-
poraso, N. E., Cornelis, M. C., Edenberg, H. J., Gabriel, S. B., Harris, E. L., Hu, F. B., Jacobs, K. B.,
Kraft, P., Landi, M. T., Lumley, T., Manolio, T. A., McHugh, C., Painter, I., Paschall, J., Rice, J. P.,
Rice, K. M., Zheng, X., and Weir, B. S., for the GENEVA Investigators (2010), Quality control and
quality assurance in genotypic data for genome-wide association studies. Genetic Epidemiology,
34: 591-602. doi: 10.1002/gepi.20516

GenotypeData-class Class GenotypeData

Description

The GenotypeData class is a container for storing genotype data from a genome-wide association
study together with the metadata associated with the subjects and SNPs involved in the study.

Details

The GenotypeData class consists of three slots: data, snp annotation, and scan annotation. There
may be multiple scans associated with a subject (e.g. duplicate scans for quality control), hence the
use of "scan" as one dimension of the data. Snp and scan annotation are optional, but if included in
the GenotypeData object, their unique integer ids (snpID and scanID) are checked against the ids
stored in the data slot to ensure consistency.

6 GenotypeData-class

Constructor

GenotypeData(data, snpAnnot=NULL, scanAnnot=NULL):
data must be an NcdfGenotypeReader or MatrixGenotypeReader object.
snpAnnot, if not NULL, must be a SnpAnnotationDataFrame or SnpAnnotationSQLite
object.
scanAnnot, if not NULL, must be a ScanAnnotationDataFrame or ScanAnnotationSQLite
object.
The GenotypeData constructor creates and returns a GenotypeData instance, ensuring that
data, snpAnnot, and scanAnnot are internally consistent.

Accessors

In the code snippets below, object is a GenotypeData object. snp and scan indicate which
elements to return along the snp and scan dimensions. They must be integer vectors of the form
(start, count), where start is the index of the first data element to read and count is the number of
elements to read. A value of ’-1’ for count indicates that the entire dimension should be read. If snp
and/or is scan omitted, the entire variable is read.

nsnp(object): The number of SNPs in the data.

nscan(object): The number of scans in the data.

getSnpID(object, index): A unique integer vector of snp IDs. The optional index is a
logical or integer vector specifying elements to extract.

getChromosome(object, index, char=FALSE): A vector of chromosomes. The op-
tional index is a logical or integer vector specifying elements to extract. If char=FALSE
(default), returns an integer vector. If char=TRUE, returns a character vector with elements
in (1:22,X,XY,Y,M,U).

getPosition(object, index): An integer vector of base pair positions. The optional
index is a logical or integer vector specifying elements to extract.

getScanID(object, index): A unique integer vector of scan IDs. The optional index is
a logical or integer vector specifying elements to extract.

getSex(object, index): A character vector of sex, with values ’M’ or ’F’. The optional
index is a logical or integer vector specifying elements to extract.

hasSex(object): Returns TRUE if the column ’sex’ is present in object.

getGenotype(object, snp, scan): Extracts genotype values (number of A alleles).
The result is a vector or matrix, depending on the number of dimensions in the returned values.
Missing values are represented as NA.

getSnpVariable(object, varname, index): Returns the snp annotation variable varname.
The optional index is a logical or integer vector specifying elements to extract.

getSnpVariableNames(object): Returns a character vector with the names of the columns
in the snp annotation.

hasSnpVariable(object, varname): Returns TRUE if the variable varname is present
in the snp annotation.

getScanVariable(object, varname, index): Returns the scan annotation variable
varname. The optional index is a logical or integer vector specifying elements to extract.

getScanVariableNames(object): Returns a character vector with the names of the columns
in the scan annotation.

hasScanVariable(object, varname): Returns TRUE if the variable varname is present
in the scan annotation.

GenotypeData-class 7

getVariable(object, varname, snp, scan): Extracts the contents of the variable
varname from the data. The result is a vector or matrix, depending on the number of dimen-
sions in the returned values. Missing values are represented as NA. If the variable is not found,
returns NULL.

hasVariable(object, varname): Returns TRUE if the data contains contains varname,
FALSE if not.

hasSnpAnnotation(object): Returns TRUE if the snp annotation slot is not NULL.

hasScanAnnotation(object): Returns TRUE if the scan annotation slot is not NULL.

open(object): Opens a connection to the data.

close(object): Closes the data connection.

XchromCode(object): Returns the integer code for the X chromosome.

XYchromCode(object): Returns the integer code for the pseudoautosomal region.

YchromCode(object): Returns the integer code for the Y chromosome.

MchromCode(object): Returns the integer code for mitochondrial SNPs.

Author(s)

Stephanie Gogarten

See Also

SnpAnnotationDataFrame, SnpAnnotationSQLite, ScanAnnotationDataFrame,
ScanAnnotationSQLite, NcdfReader, NcdfGenotypeReader, MatrixGenotypeReader,
IntensityData

Examples

library(GWASdata)
file <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(file)

object without annotation
genoData <- GenotypeData(nc)

object with annotation
data(affy_snp_annot)
snpAnnot <- SnpAnnotationDataFrame(affy_snp_annot)
data(affy_scan_annot)
scanAnnot <- ScanAnnotationDataFrame(affy_scan_annot)
genoData <- GenotypeData(nc, snpAnnot=snpAnnot, scanAnnot=scanAnnot)

dimensions
nsnp(genoData)
nscan(genoData)

get snpID and chromosome
snpID <- getSnpID(genoData)
chrom <- getChromosome(genoData)

get positions only for chromosome 22
pos22 <- getPosition(genoData, index=(chrom == 22))

get other annotations

8 HLA

if (hasSex(genoData)) sex <- getSex(genoData)
plate <- getScanVariable(genoData, "plate")
rsID <- getSnpVariable(genoData, "rsID")

get all snps for first scan
geno <- getGenotype(genoData, snp=c(1,-1), scan=c(1,1))

starting at snp 100, get 10 snps for the first 5 scans
geno <- getGenotype(genoData, snp=c(100,10), scan=c(1,5))

close(genoData)

HLA HLA region base positions

Description

HLA region base positions from the GRCh36/hg18 and GRCh37/hg19 genome builds.

Usage

HLA.hg18
HLA.hg19

Format

A data.frame with the following columns.

chrom chromsome

start.base starting base position of region

end.base ending base position of region

Source

UCSC genome browser (http://genome.ucsc.edu).

References

Mehra, Narinder K. and Kaur, Gurvinder (2003), MHC-based vaccination approaches: progress and
perspectives. Expert Reviews in Molecular Medicine, Vol. 5: 24. doi:10.1017/S1462399403005957

Examples

data(HLA.hg18)
data(HLA.hg19)

http://genome.ucsc.edu

IntensityData-class 9

IntensityData-class
Class IntensityData

Description

The IntensityData class is a container for storing intensity data from a genome-wide association
study together with the metadata associated with the subjects and SNPs involved in the study.

Details

The IntensityData class consists of three slots: data, snp annotation, and scan annotation. There
may be multiple scans associated with a subject (e.g. duplicate scans for quality control), hence the
use of "scan" as one dimension of the data. Snp and scan annotation are optional, but if included
in the IntensityData object, their unique integer ids (snpID and scanID) are checked against the ids
stored in the data file to ensure consistency.

Constructor

IntensityData(data, snpAnnot=NULL, scanAnnot=NULL):
data must be an NcdfIntensityReader object.
snpAnnot, if not NULL, must be a SnpAnnotationDataFrame or SnpAnnotationSQLite
object.
scanAnnot, if not NULL, must be a ScanAnnotationDataFrame or ScanAnnotationSQLite
object.
The IntensityData constructor creates and returns a IntensityData instance, ensuring that
data, snpAnnot, and scanAnnot are internally consistent.

Accessors

In the code snippets below, object is an IntensityData object. snp and scan indicate which
elements to return along the snp and scan dimensions. They must be integer vectors of the form
(start, count), where start is the index of the first data element to read and count is the number of
elements to read. A value of ’-1’ for count indicates that the entire dimension should be read. If snp
and/or is scan omitted, the entire variable is read.

nsnp(object): The number of SNPs in the data.

nscan(object): The number of scans in the data.

getSnpID(object, index): A unique integer vector of snp IDs. The optional index is a
logical or integer vector specifying elements to extract.

getChromosome(object, index, char=FALSE): A vector of chromosomes. The op-
tional index is a logical or integer vector specifying elements to extract. If char=FALSE
(default), returns an integer vector. If char=TRUE, returns a character vector with elements
in (1:22,X,XY,Y,M,U).

getPosition(object, index): An integer vector of base pair positions. The optional
index is a logical or integer vector specifying elements to extract.

getScanID(object, index): A unique integer vector of scan IDs. The optional index is
a logical or integer vector specifying elements to extract.

10 IntensityData-class

getSex(object, index): A character vector of sex, with values ’M’ or ’F’. The optional
index is a logical or integer vector specifying elements to extract.

hasSex(object): Returns TRUE if the column ’sex’ is present in object.

getQuality(object, snp, scan): Extracts quality scores. The result is a vector or ma-
trix, depending on the number of dimensions in the returned values. Missing values are repre-
sented as NA.

getX(object, snp, scan): Extracts X intensity values. The result is a vector or matrix,
depending on the number of dimensions in the returned values. Missing values are represented
as NA.

getY(object, snp, scan): Extracts Y intensity values. The result is a vector or matrix,
depending on the number of dimensions in the returned values. Missing values are represented
as NA.

getBAlleleFreq(object, snp, scan): Extracts B allele frequency values. The result
is a vector or matrix, depending on the number of dimensions in the returned values. Missing
values are represented as NA.

getLogRRatio(object, snp, scan): Extracts Log R Ratio values. The result is a vector
or matrix, depending on the number of dimensions in the returned values. Missing values are
represented as NA.

getSnpVariable(object, varname, index): Returns the snp annotation variable varname.
The optional index is a logical or integer vector specifying elements to extract.

getSnpVariableNames(object): Returns a character vector with the names of the columns
in the snp annotation.

hasSnpVariable(object, varname): Returns TRUE if the variable varname is present
in the snp annotation.

getScanVariable(object, varname, index): Returns the scan annotation variable
varname. The optional index is a logical or integer vector specifying elements to extract.

getScanVariableNames(object): Returns a character vector with the names of the columns
in the scan annotation.

hasScanVariable(object, varname): Returns TRUE if the variable varname is present
in the scan annotation.

getVariable(object, varname, snp, scan): Extracts the contents of the variable
varname from the data. The result is a vector or matrix, depending on the number of dimen-
sions in the returned values. Missing values are represented as NA. If the variable is not found,
returns NULL.

hasVariable(object, varname): Returns TRUE if the data contains contains varname,
FALSE if not.

hasSnpAnnotation(object): Returns TRUE if the snp annotation slot is not NULL.

hasScanAnnotation(object): Returns TRUE if the scan annotation slot is not NULL.

open(object): Opens a connection to the data.

close(object): Closes the data connection.

XchromCode(object): Returns the integer code for the X chromosome.

XYchromCode(object): Returns the integer code for the pseudoautosomal region.

YchromCode(object): Returns the integer code for the Y chromosome.

MchromCode(object): Returns the integer code for mitochondrial SNPs.

MatrixGenotypeReader 11

Author(s)

Stephanie Gogarten

See Also

SnpAnnotationDataFrame, SnpAnnotationSQLite, ScanAnnotationDataFrame,
ScanAnnotationSQLite, ScanAnnotationDataFrame, NcdfReader, NcdfIntensityReader,
GenotypeData

Examples

library(GWASdata)
file <- system.file("extdata", "affy_qxy.nc", package="GWASdata")
nc <- NcdfIntensityReader(file)

object without annotation
intenData <- IntensityData(nc)

object with annotation
data(affy_snp_annot)
snpAnnot <- SnpAnnotationDataFrame(affy_snp_annot)
data(affy_scan_annot)
scanAnnot <- ScanAnnotationDataFrame(affy_scan_annot)
intenData <- IntensityData(nc, snpAnnot=snpAnnot, scanAnnot=scanAnnot)

dimensions
nsnp(intenData)
nscan(intenData)

get snpID and chromosome
snpID <- getSnpID(intenData)
chrom <- getChromosome(intenData)

get positions only for chromosome 22
pos22 <- getPosition(intenData, index=(chrom == 22))

get other annotations
if (hasSex(intenData)) sex <- getSex(intenData)
plate <- getScanVariable(intenData, "plate")
rsID <- getSnpVariable(intenData, "rsID")

get all snps for first scan
x <- getX(intenData, snp=c(1,-1), scan=c(1,1))

starting at snp 100, get 10 snps for the first 5 scans
x <- getX(intenData, snp=c(100,10), scan=c(1,5))

close(intenData)

MatrixGenotypeReader
Class MatrixGenotypeReader

12 MatrixGenotypeReader

Description

The MatrixGenotypeReader class stores a matrix of genotypes as well as SNP and scan IDs, chro-
mosome, and position.

Constructor

MatrixGenotypeReader(genotype=genotype, snpID=snpID, chromosome=chromosome,
position=position, scanID=scanID):
genotype must be a matrix with dimensions (’snp’,’scan’) containing the number of A alle-
les : 2=AA, 1=AB, 0=BB.
snp must be a unique integer vector of SNP ids.
chromosome must be an integer vector of chromosomes. Default values for chromosome
codes are 1-22, 23=X, 24=XY, 25=Y, 26=M. The defaults may be changed with the arguments
XchromCode, XYchromCode, YchromCode, and MchromCode.
position must be an integer vector of base positions
scanID must be a unique integer vector of scan ids .
The MatrixGenotypeReader constructor creates and returns a MatrixGenotypeReader
instance.

Accessors

In the code snippets below, object is a MatrixGenotypeReader object. snp and scan indicate
which elements to return along the snp and scan dimensions. They must be integer vectors of the
form (start, count), where start is the index of the first data element to read and count is the number
of elements to read. A value of ’-1’ for count indicates that the entire dimension should be read. If
snp and/or is scan omitted, the entire variable is returned.

See NcdfReader for additional methods.

nsnp(object): The number of SNPs.

nscan(object): The number of scans.

getSnpID(object, index): A unique integer vector of snp IDs. The optional index is a
logical or integer vector specifying elements to extract.

getChromosome(object, index, char=FALSE): A vector of chromosomes. The op-
tional index is a logical or integer vector specifying elements to extract. If char=FALSE
(default), returns an integer vector. If char=TRUE, returns a character vector with elements
in (1:22,X,XY,Y,M,U). "U" stands for "Unknown" and is the value given to any chromosome
code not falling in the other categories.

getPosition(object, index): An integer vector of base pair positions. The optional
index is a logical or integer vector specifying elements to extract.

getScanID(object, index): A unique integer vector of scan IDs. The optional index is
a logical or integer vector specifying elements to extract.

getGenotype(object, snp, scan): Extracts genotype values (number of A alleles).
The result is a vector or matrix, depending on the number of dimensions in the returned values.
Missing values are represented as NA.

XchromCode(object): Returns the integer code for the X chromosome.

XYchromCode(object): Returns the integer code for the pseudoautosomal region.

YchromCode(object): Returns the integer code for the Y chromosome.

MchromCode(object): Returns the integer code for mitochondrial SNPs.

NcdfGenotypeReader 13

Author(s)

Stephanie Gogarten

See Also

NcdfGenotypeReader, GenotypeData

Examples

snpID <- 1:100
chrom <- rep(1:20, each=5)
pos <- 1001:1100
scanID <- 1:20
geno <- matrix(sample(c(0,1,2,NA), 2000, replace=TRUE), nrow=100, ncol=20)

mgr <- MatrixGenotypeReader(genotype=geno, snpID=snpID,
chromosome=chrom, position=pos, scanID=scanID)

dimensions
nsnp(mgr)
nscan(mgr)

get snpID and chromosome
snpID <- getSnpID(mgr)
chrom <- getChromosome(mgr)

get positions only for chromosome 10
pos10 <- getPosition(mgr, index=(chrom == 10))

get all snps for first scan
geno <- getGenotype(mgr, snp=c(1,-1), scan=c(1,1))

starting at snp 50, get 10 snps for the first 5 scans
geno <- getGenotype(mgr, snp=c(50,10), scan=c(1,5))

NcdfGenotypeReader Class NcdfGenotypeReader

Description

The NcdfGenotypeReader class is an extension of the NcdfReader class specific to reading genotype
data stored in NetCDF files.

Extends

NcdfReader

Constructor

NcdfGenotypeReader(filename):
filename must be the path to a NetCDF file. The NetCDF file must contain the following
variables:

• ’snp’: a coordinate variable with a unique integer vector of snp ids

14 NcdfGenotypeReader

• ’chromosome’: integer chromosome codes of dimension ’snp’
• ’position’: integer position values of dimension ’snp’
• ’sampleID’: a unique integer vector of scan ids with dimension ’sample’
• ’genotype’: a matrix of bytes with dimensions (’snp’,’sample’). The byte values must be

the number of A alleles : 2=AA, 1=AB, 0=BB.

Default values for chromosome codes are 1-22, 23=X, 24=XY, 25=Y, 26=M. The defaults
may be changed with the arguments XchromCode, XYchromCode, YchromCode, and
MchromCode.
The NcdfGenotypeReader constructor creates and returns a NcdfGenotypeReader in-
stance pointing to this file.

Accessors

In the code snippets below, object is a NcdfGenotypeReader object. snp and scan indicate
which elements to return along the snp and scan dimensions. They must be integer vectors of the
form (start, count), where start is the index of the first data element to read and count is the number
of elements to read. A value of ’-1’ for count indicates that the entire dimension should be read. If
snp and/or is scan omitted, the entire variable is read.

See NcdfReader for additional methods.

nsnp(object): The number of SNPs in the NetCDF file.

nscan(object): The number of scans in the NetCDF file.

getSnpID(object, index): A unique integer vector of snp IDs. The optional index is a
logical or integer vector specifying elements to extract.

getChromosome(object, index, char=FALSE): A vector of chromosomes. The op-
tional index is a logical or integer vector specifying elements to extract. If char=FALSE
(default), returns an integer vector. If char=TRUE, returns a character vector with elements
in (1:22,X,XY,Y,M,U). "U" stands for "Unknown" and is the value given to any chromosome
code not falling in the other categories.

getPosition(object, index): An integer vector of base pair positions. The optional
index is a logical or integer vector specifying elements to extract.

getScanID(object, index): A unique integer vector of scan IDs. The optional index is
a logical or integer vector specifying elements to extract.

getGenotype(object, snp, scan): Extracts genotype values (number of A alleles).
The result is a vector or matrix, depending on the number of dimensions in the returned values.
Missing values are represented as NA.

getVariable(object, varname, snp, scan): Extracts the contents of the variable
varname. The result is a vector or matrix, depending on the number of dimensions in the
returned values. Missing values are represented as NA. If the variable is not found in the
NetCDF file, returns NULL.

XchromCode(object): Returns the integer code for the X chromosome.

XYchromCode(object): Returns the integer code for the pseudoautosomal region.

YchromCode(object): Returns the integer code for the Y chromosome.

MchromCode(object): Returns the integer code for mitochondrial SNPs.

Author(s)

Stephanie Gogarten

NcdfIntensityReader 15

See Also

NcdfReader, NcdfIntensityReader, GenotypeData, IntensityData

Examples

file <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(file)

dimensions
nsnp(nc)
nscan(nc)

get snpID and chromosome
snpID <- getSnpID(nc)
chrom <- getChromosome(nc)

get positions only for chromosome 22
pos22 <- getPosition(nc, index=(chrom == 22))

get all snps for first scan
geno <- getGenotype(nc, snp=c(1,-1), scan=c(1,1))

starting at snp 100, get 10 snps for the first 5 scans
geno <- getGenotype(nc, snp=c(100,10), scan=c(1,5))

close(nc)

NcdfIntensityReader
Class NcdfIntensityReader

Description

The NcdfIntensityReader class is an extension of the NcdfReader class specific to reading genotype
data stored in NetCDF files.

Extends

NcdfReader

Constructor

NcdfIntensityReader(filename):
filename must be the path to a NetCDF file. The NetCDF file must contain the following
variables:

• ’snp’: a coordinate variable with a unique integer vector of snp ids
• ’chromosome’: integer chromosome values of dimension ’snp’
• ’position’: integer position values of dimension ’snp’
• ’sampleID’: a unique integer vector of scan ids with dimension ’sample’

16 NcdfIntensityReader

Default values for chromosome codes are 1-22, 23=X, 24=XY, 25=Y, 26=M. The defaults
may be changed with the arguments XchromCode, XYchromCode, YchromCode, and
MchromCode.
The NetCDF file should also contain at least one of the following variables with dimensions
(’snp’,’sample’):

• ’quality’: quality score
• ’X’: X intensity
• ’Y’: Y intensity
• ’BAlleleFreq’: B allele frequency
• ’LogRRatio’: Log R Ratio

The NcdfIntensityReader constructor creates and returns a NcdfIntensityReader in-
stance pointing to this file.

Accessors

In the code snippets below, object is a NcdfIntensityReader object. snp and scan indicate
which elements to return along the snp and scan dimensions. They must be integer vectors of the
form (start, count), where start is the index of the first data element to read and count is the number
of elements to read. A value of ’-1’ for count indicates that the entire dimension should be read. If
snp and/or is scan omitted, the entire variable is read.

See NcdfReader for additional methods.

nsnp(object): The number of SNPs in the NetCDF file.

nscan(object): The number of scans in the NetCDF file.

getSnpID(object, index): A unique integer vector of snp IDs. The optional index is a
logical or integer vector specifying elements to extract.

getChromosome(object, index, char=FALSE): A vector of chromosomes. The op-
tional index is a logical or integer vector specifying elements to extract. If char=FALSE
(default), returns an integer vector. If char=TRUE, returns a character vector with elements
in (1:22,X,XY,Y,M,U). "U" stands for "Unknown" and is the value given to any chromosome
code not falling in the other categories.

getPosition(object, index): An integer vector of base pair positions. The optional
index is a logical or integer vector specifying elements to extract.

getScanID(object, index): A unique integer vector of scan IDs. The optional index is
a logical or integer vector specifying elements to extract.

getQuality(object): Extracts quality scores. The result is a vector or matrix, depending on
the number of dimensions in the returned values. Missing values are represented as NA.

Returns TRUE if the NetCDF file contains a variable ’quality’. hasQuality(object):

getX(object): Extracts X intensity. The result is a vector or matrix, depending on the number
of dimensions in the returned values. Missing values are represented as NA.

Returns TRUE if the NetCDF file contains a variable ’X’. hasX(object):

getY(object): Extracts Y intensity. The result is a vector or matrix, depending on the number
of dimensions in the returned values. Missing values are represented as NA.

Returns TRUE if the NetCDF file contains a variable ’Y’. hasY(object):

getBAlleleFreq(object): Extracts B allele frequency. The result is a vector or matrix,
depending on the number of dimensions in the returned values. Missing values are represented
as NA.

NcdfIntensityReader 17

Returns TRUE if the NetCDF file contains a variable ’BAlleleFreq’. hasBAlleleFreq(object):

getLogRRatio(object): Extracts Log R Ratio. The result is a vector or matrix, depending
on the number of dimensions in the returned values. Missing values are represented as NA.

Returns TRUE if the NetCDF file contains a variable ’LogRRatio’. hasLogRRatio(object):

getVariable(object, varname, snp, scan): Returns the contents of the variable
varname. The result is a vector or matrix, depending on the number of dimensions in the
returned values. Missing values are represented as NA. If the variable is not found in the
NetCDF file, returns NULL.

XchromCode(object): Returns the integer code for the X chromosome.

XYchromCode(object): Returns the integer code for the pseudoautosomal region.

YchromCode(object): Returns the integer code for the Y chromosome.

MchromCode(object): Returns the integer code for mitochondrial SNPs.

Author(s)

Stephanie Gogarten

See Also

NcdfReader, NcdfGenotypeReader, GenotypeData, IntensityData

Examples

file <- system.file("extdata", "affy_qxy.nc", package="GWASdata")
nc <- NcdfIntensityReader(file)

dimensions
nsnp(nc)
nscan(nc)

get snpID and chromosome
snpID <- getSnpID(nc)
chrom <- getChromosome(nc)

get positions only for chromosome 22
pos22 <- getPosition(nc, index=(chrom == 22))

get all snps for first scan
x <- getX(nc, snp=c(1,-1), scan=c(1,1))

starting at snp 100, get 10 snps for the first 5 scans
x <- getX(nc, snp=c(100,10), scan=c(1,5))

close(nc)

18 NcdfReader

NcdfReader Class NcdfReader

Description

The NcdfReader class is a wrapper for the ncdf library that provides an interface for reading
NetCDF files.

Constructor

NcdfReader(filename):
filename must be the path to a NetCDF file.
The NcdfReader constructor creates and returns a NcdfReader instance pointing to this file.

Accessors

In the code snippets below, object is a NcdfReader object.

getVariable(object, varname, start, count): Returns the contents of the vari-
able varname.

• start is a vector of integers indicating where to start reading values. The length of this
vector must equal the number of dimensions the variable has. If not specified, reading
starts at the beginning of the file (1,1,...).

• count is a vector of integers indicating the count of values to read along each dimension.
The length of this vector must equal the number of dimensions the variable has. If not
specified and the variable does NOT have an unlimited dimension, the entire variable
is read. As a special case, the value "-1" indicates that all entries along that dimension
should be read.

The result is a vector, matrix, or array, depending on the number of dimensions in the returned
values. Missing values are represented as NA. If the variable is not found in the NetCDF file,
returns NULL.

getVariableNames(object): Returns names of variables in the NetCDF file.
getDimensionNames(object, varname): Returns names of dimensions in the NetCDF

file. If varname is provided, returns dimension names for NetCDF variable varname.
getAttribute(object, attname, varname): Returns the attribute attname associ-

ated with the variable varname. If varname is not specified, attname is assumed to be a
global attribute.

hasCoordVariable(object, varname): Returns TRUE if varname is a coordinate
variable (a variable with the same name as a dimension).

hasVariable(object, varname): Returns TRUE if varname is a variable in the NetCDF
file (including coordinate variables).

open(object): Opens a connection to the NetCDF file.
close(object): Closes the NetCDF file connection.

Standard Generic Methods

In the code snippets below, object is a NcdfReader object.

open(object): Opens a connection to a NetCDF file.
close(object): Closes the connection to a NetCDF file.

ScanAnnotationDataFrame 19

Author(s)

Stephanie Gogarten

See Also

ncdf, NcdfGenotypeReader, NcdfIntensityReader

Examples

file <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfReader(file)

getDimensionNames(nc)
getVariableNames(nc)

hasVariable(nc, "genotype")
geno <- getVariable(nc, "genotype", start=c(1,1), count=c(10,10))

close(nc)

ScanAnnotationDataFrame
Class ScanAnotationDataFrame

Description

The ScanAnnotationDataFrame class stores annotation data associated with subjects in a genotyp-
ing study, where there may be multiple scans per subject, as well as metadata describing each
column. It extends the AnnotatedDataFrame class.

Extends

AnnotatedDataFrame

Constructor

ScanAnnotationDataFrame(data, metadata):
data must be a data.frame containing the scan annotation. It must contain at least the follow-
ing column:

• "scanID": integer vector containing unique scan ids.

If a column representing sex is present, it must have the following format:

• "sex": character vector with values ’M’ or ’F’.

metadata is an optional data.frame containing a description for each column in data. It
should contain a column "labelDescription", with row.names(metadata) == names(data).
The ScanAnnotationDataFrame constructor creates and returns a ScanAnnotationDataFrame
instance.

20 ScanAnnotationDataFrame

Accessors

In the code snippets below, object is a ScanAnnotationDataFrame object.

getScanID(object, index): A unique integer vector of scan IDs. The optional index is
a logical or integer vector specifying elements to extract.

getSex(object, index): A character vector of sex, with values ’M’ or ’F’. The optional
index is a logical or integer vector specifying elements to extract.

hasSex(object): Returns TRUE if the column ’sex’ is present in object.

getVariable(object, varname, index): A vector of the column varname. The op-
tional index is a logical or integer vector specifying elements to extract. If varname is
itself a vector, returns a data.frame. Returns NULL if varname is not found in object.

hasVariable(object, varname): Returns TRUE if varname is a column in object,
FALSE if not.

getVariableNames(object): Returns a character vector with the names of all columns in
object.

getAnnotation(object): Returns all annotation variables as a data frame.

getMetadata(object): Returns metadata describing the annotation variables as a data frame.
Inherited methods from AnnotatedDataFrame:

varLabels(object): Returns a character vector with the names of all columns in object.

pData(object): Returns all annotation variables as a data frame, or sets the annotation vari-
ables with pData(object) <- df.

varMetadata(object): Returns metadata describing the annotation variables as a data frame,
or sets the metadata with varMetadata(object) <- df.

The operators $ and [work just as they do in standard data frames, for both retrieval and assign-
ment.

Author(s)

Stephanie Gogarten

See Also

AnnotatedDataFrame, SnpAnnotationDataFrame, GenotypeData, IntensityData

Examples

library(GWASdata)
data(affy_scan_annot)
scanAnnot <- ScanAnnotationDataFrame(affy_scan_annot)

scanID <- getScanID(scanAnnot)
sex <- getSex(scanAnnot)
if (hasVariable(scanAnnot, "plate")) plate <- getVariable(scanAnnot, "plate")
subjectID <- getVariable(scanAnnot, "subjectID", index=(sex == "M"))

list columns
varLabels(scanAnnot)

add metadata
meta <- varMetadata(scanAnnot)

ScanAnnotationSQLite 21

meta["scanID", "labelDescription"] <- "unique integer ID"
varMetadata(scanAnnot) <- meta

display data
head(pData(scanAnnot))

standard operators
scanID <- scanAnnot$scanID
sex <- scanAnnot[["sex"]]
subset <- scanAnnot[1:10, 1:5]
scanAnnot$newVar <- rep(1, nrow(scanAnnot))

replace data
df <- pData(scanAnnot)
pData(scanAnnot) <- df

ScanAnnotationSQLite
Class ScanAnotationSQLite

Description

The ScanAnnotationSQLite class stores annotation data associated with scans, as well as metadata
describing each column, in an SQLite database.

Constructor

ScanAnnotationSQLite(dbpath):
dbpath is the path to a SQLite database with tables "Annotation" and "Metadata." "Annota-
tion" must contain at least the following column:

• "scanID": integer vector containing unique scan ids.

If a column representing sex is present, it must have the following format:

• "sex": character vector with values ’M’ or ’F’.

"Metadata" must contain at least the following columns:

• "varname": name of variable in annotation
• "description": description of column in annotation

If the database does not yet exist, a database is created with tables "Annotation" and "Meta-
data."
The ScanAnnotationSQLite constructor creates and returns a ScanAnnotationSQLite
instance.

Accessors

In the code snippets below, object is a ScanAnnotationSQLite object.

open(object): Opens a connection to the database.

close(object): Closes the database connection.

nscan(object): The number of scans in the database.

22 ScanAnnotationSQLite

getScanID(object, index, condition): A unique integer vector of scan IDs. The
optional index is a logical or integer vector specifying elements to extract. The optional
condition is a character string with an SQL clause used to select data (e.g., "LIMIT 10",
"WHERE sex=’M’").

getSex(object, index, condition): A character vector of sex, with values ’M’ or ’F’.
The optional index is a logical or integer vector specifying elements to extract. The optional
condition is a character string with an SQL clause used to select data.

hasSex(object): Returns TRUE if the column ’sex’ is present in object.

getVariable(object, varname, index, condition): A vector of the column varname.
The optional index is a logical or integer vector specifying elements to extract. The optional
condition is a character string with an SQL clause used to select data (e.g., "LIMIT 10",
"WHERE sex=’M’"). Returns NULL if varname is not found in object.

hasVariable(object, varname): Returns TRUE if varname is a column in object,
FALSE if not.

getVariableNames(object): Returns a character vector with the names of all columns in
object.

getAnnotation(object): Returns all annotation variables as a data frame.

getMetadata(object): Returns metadata describing the annotation variables as a data frame.

getQuery(object, statement): Returns result of the SQL query statement.

writeAnnotation(object, value, append=FALSE, overwrite=TRUE): Writes
value to the scan annotation table. value must be a data.frame containing a column
"scanID".

writeMetadata(object, value, append=FALSE, overwrite=TRUE): Writes value
to the metadata table. value should be a data.frame containing columns "varname" and "de-
scription".

Author(s)

Stephanie Gogarten

See Also

SnpAnnotationSQLite, ScanAnnotationDataFrame, GenotypeData, IntensityData

Examples

library(GWASdata)
dbpath <- tempfile()
scanAnnot <- ScanAnnotationSQLite(dbpath)

data(affy_scan_annot)
writeAnnotation(scanAnnot, affy_scan_annot)

list columns
vars <- getVariableNames(scanAnnot)

add metadata
metadf <- data.frame(varname=vars, description=rep(NA, length(vars)),
row.names=vars, stringsAsFactors=FALSE)

metadf["scanID", "description"] <- "integer id"
writeMetadata(scanAnnot, metadf)

SnpAnnotationDataFrame 23

scanID <- getScanID(scanAnnot)
sex <- getSex(scanAnnot)
if (hasVariable(scanAnnot, "plate")) plate <- getVariable(scanAnnot, "plate")
subjectID <- getVariable(scanAnnot, "subjectID", condition="WHERE sex='M'")

display data
head(getAnnotation(scanAnnot))
getMetadata(scanAnnot)

close(scanAnnot)
file.remove(dbpath)

SnpAnnotationDataFrame
Class SnpAnotationDataFrame

Description

The SnpAnnotationDataFrame class stores annotation data associated with SNPs, as well as meta-
data describing each column. It extends the AnnotatedDataFrame class.

Extends

AnnotatedDataFrame

Constructor

SnpAnnotationDataFrame(data, metadata):
data must be a data.frame containing the SNP annotation. It must contain at least the fol-
lowing columns:

• "snpID": integer vector containing unique SNP ids.
• "chromosome": integer vector containing chromosome codes.
• "position": integer vector containing position (in base pairs) on the chromosome.

Default values for chromosome codes are 1-22, 23=X, 24=XY, 25=Y, 26=M. The defaults
may be changed with the arguments XchromCode, XYchromCode, YchromCode, and
MchromCode.
metadata is an optional data.frame containing a description for each column in data. It
should contain a column "labelDescription", with row.names(metadata) == names(data).
The SnpAnnotationDataFrame constructor creates and returns a SnpAnnotationDataFrame
instance.

Accessors

In the code snippets below, object is a SnpAnnotationDataFrame object.

getSnpID(object, index): A unique integer vector of snp IDs. The optional index is a
logical or integer vector specifying elements to extract.

24 SnpAnnotationDataFrame

getChromosome(object, index, char=FALSE): A vector of chromosomes. The op-
tional index is a logical or integer vector specifying elements to extract. If char=FALSE
(default), returns an integer vector. If char=TRUE, returns a character vector with elements
in (1:22,X,XY,Y,M,U). "U" stands for "Unknown" and is the value given to any chromosome
code not falling in the other categories.

getPosition(object, index): An integer vector of base pair positions. The optional
index is a logical or integer vector specifying elements to extract.

getVariable(object, varname, index): A vector of the column varname. The op-
tional index is a logical or integer vector specifying elements to extract. If varname is
itself a vector, returns a data.frame. Returns NULL if varname is not found in object.

hasVariable(object, varname): Returns TRUE if varname is a column in object,
FALSE if not.

getVariableNames(object): Returns a character vector with the names of all columns in
object.

getAnnotation(object): Returns all annotation variables as a data frame.

getMetadata(object): Returns metadata describing the annotation variables as a data frame.
Inherited methods from AnnotatedDataFrame:

varLabels(object): Returns a character vector with the names of all columns in object.

pData(object): Returns all annotation variables as a data frame, or sets the annotation vari-
ables with pData(object) <- df.

varMetadata(object): Returns metadata describing the annotation variables as a data frame,
or sets the metadata with varMetadata(object) <- df.

The operators [, $, and [[work just as they do in standard data frames, for both retrieval and
assignment.

XchromCode(object): Returns the integer code for the X chromosome.

XYchromCode(object): Returns the integer code for the pseudoautosomal region.

YchromCode(object): Returns the integer code for the Y chromosome.

MchromCode(object): Returns the integer code for mitochondrial SNPs.

Author(s)

Stephanie Gogarten

See Also

AnnotatedDataFrame, ScanAnnotationDataFrame, GenotypeData, IntensityData

Examples

library(GWASdata)
data(affy_snp_annot)
snpAnnot <- SnpAnnotationDataFrame(affy_snp_annot)

list columns
varLabels(snpAnnot)

add metadata
meta <- varMetadata(snpAnnot)
meta["snpID", "labelDescription"] <- "unique integer ID"
varMetadata(snpAnnot) <- meta

SnpAnnotationSQLite 25

get snpID and chromosome
snpID <- getSnpID(snpAnnot)
chrom <- getChromosome(snpAnnot)

get positions only for chromosome 22
pos22 <- getPosition(snpAnnot, index=(chrom == 22))

get rsID
if (hasVariable(snpAnnot, "rsID")) rsID <- getVariable(snpAnnot, "rsID")

display data
head(pData(snpAnnot))

standard operators
snpID <- snpAnnot$snpID
chrom <- snpAnnot[["chromosome"]]
subset <- snpAnnot[1:10, 1:5]
snpAnnot$newVar <- rep(1, nrow(snpAnnot))

replace data
df <- pData(snpAnnot)
pData(snpAnnot) <- df

PLINK chromosome coding
snpID <- 1:10
chrom <- c(rep(1L,5), 23:27)
pos <- 101:110
df <- data.frame(snpID=snpID, chromosome=chrom, position=pos)
snpAnnot <- SnpAnnotationDataFrame(df, YchromCode=24L, XYchromCode=25L)
getChromosome(snpAnnot, char=TRUE)

SnpAnnotationSQLite
Class SnpAnotationSQLite

Description

The SnpAnnotationSQLite class stores annotation data associated with SNPs, as well as metadata
describing each column, in an SQLite database.

Constructor

SnpAnnotationSQLite(dbpath):
dbpath is the path to a SQLite database with tables "Annotation" and "Metadata." "Annota-
tion" must contain at least the following columns:

• "snpID": integer vector containing unique SNP ids.
• "chromosome": integer vector containing chromosome codes.
• "position": integer vector containing position (in base pairs) on the chromosome.

Default values for chromosome codes are 1-22, 23=X, 24=XY, 25=Y, 26=M. The defaults
may be changed with the arguments XchromCode, XYchromCode, YchromCode, and
MchromCode.
"Metadata" must contain at least the following columns:

26 SnpAnnotationSQLite

• "varname": name of variable in annotation
• "description": description of column in annotation

If the database does not yet exist, a database is created with tables "Annotation" and "Meta-
data."
The SnpAnnotationSQLite constructor creates and returns a SnpAnnotationSQLite in-
stance.

Accessors

In the code snippets below, object is a SnpAnnotationSQLite object.

open(object): Opens a connection to the database.
close(object): Closes the database connection.
nsnp(object): The number of SNPs in the database.
getSnpID(object, index, condition): A unique integer vector of snp IDs. The op-

tional index is a logical or integer vector specifying elements to extract. The optional
condition is a character string with an SQL clause used to select data (e.g., "LIMIT 10",
"WHERE chromosome=1").

getChromosome(object, index, condition, char=FALSE): A vector of chromo-
somes. The optional index is a logical or integer vector specifying elements to extract.
The optional condition is a character string with an SQL clause used to select data (e.g.,
"LIMIT 10", "WHERE chromosome=1"). If char=FALSE (default), returns an integer vec-
tor. If char=TRUE, returns a character vector with elements in (1:22,X,XY,Y,M,U). "U"
stands for "Unknown" and is the value given to any chromosome code not falling in the other
categories.

getPosition(object, index, condition): An integer vector of base pair positions.
The optional index is a logical or integer vector specifying elements to extract. The optional
condition is a character string with an SQL clause used to select data (e.g., "LIMIT 10",
"WHERE chromosome=1").

getVariable(object, varname, index, condition): A vector of the column varname.
The optional index is a logical or integer vector specifying elements to extract. The optional
condition is a character string with an SQL clause used to select data (e.g., "LIMIT 10",
"WHERE chromosome=1"). Returns NULL if varname is not found in object.

hasVariable(object, varname): Returns TRUE if varname is a column in object,
FALSE if not.

getVariableNames(object): Returns a character vector with the names of all columns in
object.

getAnnotation(object): Returns all annotation variables as a data frame.
getMetadata(object): Returns metadata describing the annotation variables as a data frame.
getQuery(object, statement): Returns result of the SQL query statement.
writeAnnotation(object, value, append=FALSE, overwrite=TRUE): Writes

value to the SNP annotation table. valuemust be a data.frame containing columns "snpID",
"chromosome", and "position".

writeMetadata(object, value, append=FALSE, overwrite=TRUE): Writes value
to the metadata table. value should be a data.frame containing columns "varname" and "de-
scription".

XchromCode(object): Returns the integer code for the X chromosome.
XYchromCode(object): Returns the integer code for the pseudoautosomal region.
YchromCode(object): Returns the integer code for the Y chromosome.
MchromCode(object): Returns the integer code for mitochondrial SNPs.

alleleFrequency 27

Author(s)

Stephanie Gogarten

See Also

ScanAnnotationSQLite, SnpAnnotationDataFrame, GenotypeData, IntensityData

Examples

library(GWASdata)
dbpath <- tempfile()
snpAnnot <- SnpAnnotationSQLite(dbpath)

data(affy_snp_annot)
writeAnnotation(snpAnnot, affy_snp_annot)

list columns
vars <- getVariableNames(snpAnnot)

add metadata
metadf <- data.frame(varname=vars, description=rep(NA, length(vars)),
row.names=vars, stringsAsFactors=FALSE)

metadf["snpID", "description"] <- "integer id"
writeMetadata(snpAnnot, metadf)

get snpID and chromosome
snpID <- getSnpID(snpAnnot)
chrom <- getChromosome(snpAnnot)

get positions only for chromosome 22
pos22 <- getPosition(snpAnnot, condition="WHERE chromosome = 22")

get rsID
if (hasVariable(snpAnnot, "rsID")) rsID <- getVariable(snpAnnot, "rsID")

display data
head(getAnnotation(snpAnnot))
getMetadata(snpAnnot)

close(snpAnnot)
file.remove(dbpath)

alleleFrequency Allelic frequency

Description

Calculates the frequency of the A allele over the specifed scans.

Usage

alleleFrequency(genoData, scan.exclude,
verbose = TRUE)

28 allequal

Arguments

genoData GenotypeData object.

scan.exclude Integer vector with IDs of scans to exclude.

verbose Logical value specifying whether to show progress information.

Details

Counts male heterozygotes on the X and Y chromosomes as missing values, and any genotype for
females on the Y chromosome as missing values. A "sex" variable must be present in the scan
annotation slot of genoData.

Value

A matrix of allelic frequencies with snps as rows and 3 columns ("M" for males, "F" for females,
"all" for all scans).

Author(s)

Cathy Laurie

See Also

GenotypeData

Examples

library(GWASdata)
file <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(file)

need scan annotation with sex
data(affy_scan_annot)
scanAnnot <- ScanAnnotationDataFrame(affy_scan_annot)
genoData <- GenotypeData(nc, scanAnnot=scanAnnot)

afreq <- alleleFrequency(genoData, scan.exclude=(scanAnnot$race != "CEU"))
close(genoData)

allequal Test if two objects have the same elements

Description

allequal tests if two objects have all the same elements, including whether they have NAs in the
same place.

Usage

allequal(x, y)

anomDetectBAF 29

Arguments

x first object to compare

y second object to compare

Details

Unlike all(x == y), allequal will return FALSE if either object is NULL. Does not check
class types, so allequal will return TRUE in some cases where identical will return FALSE
(e.g. if two objects are identical when coerced to the same class). allequal always retuns a
logical value, so it can be used safely in if expressions.

Value

Returns TRUE if x and y exist and all elements are equal, FALSE if some elements are unequal. If
there are NA values, returns TRUE if is.na(x) == is.na(y) and all other elements are equal. Returns
FALSE if is.na(x) != is.na(y). Retuns FALSE if x or y (but not both) is NULL.

Author(s)

Stephanie Gogarten

See Also

identical, all, all.equal

Examples

x <- c(1,2,NA,4); y <- c(1,2,NA,4);
allequal(x, y) ## TRUE
allequal(1, as.integer(1)) ## TRUE
allequal(1, "1") ## TRUE

anomDetectBAF BAF Method for Chromosome Anomaly Detection

Description

anomSegmentBAF for each sample and chromosome, breaks the chromosome up into segments
marked by change points of a metric based on B Allele Frequency (BAF) values.

anomFilterBAF selects segments which are likely to be anomalous.

anomDetectBAF is a wrapper to run anomSegmentBAF and anomFilterBAF in one step.

Usage

anomSegmentBAF(intenData, genoData, scan.ids, chrom.ids, snp.ids,
smooth = 50, min.width = 5, nperm = 10000, alpha = 0.001,
verbose = TRUE)

anomFilterBAF(intenData, genoData, segments, snp.ids, centromere,
low.qual.ids = NULL, num.mark.thresh = 15, long.num.mark.thresh = 200,
sd.reg = 2, sd.long = 1, low.frac.used = 0.1, run.size = 10,

30 anomDetectBAF

inter.size = 2, low.frac.used.num.mark = 30, very.low.frac.used = 0.01,
low.qual.frac.num.mark = 150, lrr.cut = -2, ct.thresh = 10,
frac.thresh = 0.1, verbose=TRUE)

anomDetectBAF(intenData, genoData, scan.ids, chrom.ids, snp.ids,
centromere, low.qual.ids = NULL, ...)

Arguments

intenData An IntensityData object containing the B Allele Frequency. The order of
the rows of intenData and the snp annotation are expected to be by chromosome
and then by position within chromosome. The scan annotation should contain
sex, coded as "M" for male and "F" for female.

genoData A GenotypeData object. The order of the rows of genoData and the snp
annotation are expected to be by chromosome and then by position within chro-
mosome.

scan.ids vector of scan ids (sample numbers) to process
chrom.ids vector of (unique) chromosomes to process. Recommended to include all auto-

somes.
snp.ids vector of eligible snp ids. Usually exclude failed and intensity-only SNPs. Also

recommended to exclude an HLA region on chromosome 6 and XTR region on
chromosome 23 (X). See HLA and pseudoautosomal.

smooth number of markers for smoothing region. See smooth.CNA in the DNAcopy
package.

min.width minimum number of markers for a segment. See segment in the DNAcopy
package.

nperm number of permutations for deciding significance in segmentation. See segment
in the DNAcopy package.

alpha significance level. See segment in the DNAcopy package.
verbose logical indicator whether to print information about the scan id currently being

processed. anomSegmentBAF prints each scan id; anomFilterBAF prints a mes-
sage after every 10 samples: "processing ith scan id out of n" where "ith" with
be 10, 10, etc. and "n" is the total number of samples

segments data.frame of segments from anomSegmentBAF. Names must include "scanID",
"chromosome", "num.mark", "left.index", "right.index", "seg.mean". Here "left.index"
and "right.index" are row indices of intenData. Left and right refer to start and
end of anomaly,respectively, in position order.

centromere data.frame with centromere position information. Names must include "chrom",
"left.base", "right.base". Valid values for "chrom" are 1:22, "X", "Y", "XY".
Here "left.base" and "right.base" are base positions of start and end of cen-
tromere location in position order.

low.qual.ids scan ids determined to be low quality for which some segments are filtered based
on more stringent criteria. Default is NULL. Usual choice are scan ids for which
median BAF across autosomes > 0.05. See sdByScanChromWindow and
medianSdOverAutosomes.

num.mark.thresh
minimum number of SNP markers in a segment to be considered for anomaly

long.num.mark.thresh
min number of markers for "long" segment to be considered for anomaly for
which significance threshold criterion is allowed to be less stringent

anomDetectBAF 31

sd.reg number of baseline standard deviations of segment mean from a baseline mean
for "normal" needed to declare segment anomalous. This number is given by
abs(mean of segment - baseline mean)/(baseline standard deviation)

sd.long same meaning as sd.reg but applied to "long" segments
low.frac.used

if fraction of heterozygous or missing SNP markers compared with number of
eligible SNP markers in segment is below this, more stringent criteria are applied
to declare them anomalous.

run.size min length of run of missing or heterozygous SNP markers for possible deter-
mination of homozygous deletions

inter.size number of homozygotes allowed to "interrupt" run for possible determination of
homozygous deletions

low.frac.used.num.mark
number of markers threshold for low.frac.used segments (which are not
declared homozygous deletions

very.low.frac.used
any segments with (num.mark)/(number of markers in interval) less than this are
filtered out since they tend to be false positives

low.qual.frac.num.mark
minimum num.mark threshold for low quality scans (low.qual.ids) for seg-
ments that are also below low.frac.used threshold

lrr.cut look for runs of LRR values below lrr.cut to adjust homozygous deletion
endpoints

ct.thresh minimum number of LRR values below lrr.cut needed in order to adjust

frac.thresh investigate interval for homozygous deletion only if lrr.cut and ct.thresh
thresholds met and (# LRR values below lrr.cut)/(# eligible SNPs in seg-
ment) > frac.thresh

... arguments to pass to anomFilterBAF

Details

anomSegmentBAF uses the function segment from the DNAcopy package to perform circular
binary segmentation on a metric based on BAF values. The metric for a given sample/chromosome
is sqrt(min(BAF,1-BAF,abs(BAF-median(BAF))) where the median is across BAF values on the
chromosome. Only BAF values for heterozygous or missing SNPs are used.

anomFilterBAF determines anomalous segments based on a combination of thresholds for num-
ber of SNP markers in the segment and on deviation from a "normal" baseline. (See num.mark.thresh,long.num.mark.thresh,
sd.reg, and sd.long.) The "normal" baseline metric mean and standard deviation are found
across all autosomes not segmented by anomSegmentBAF. This is why it is recommended to
include all autosomes for the argument chrom.ids to ensure a more accurate baseline.

Some initial filtering is done, including possible merging of consecutive segments meeting sd.reg
threshold along with other criteria (such as not spanning the centromere) and adjustment for accu-
rate break points for possible homozygous deletions (see lrr.cut, ct.thresh, frac.thresh,
run.size, and inter.size). Male samples for chromosome 23 (X) are not processed.

More stringent criteria are applied to some segments (see low.frac.used,low.frac.used.num.mark,
very.low.frac.used, low.qual.ids, and low.qual.frac.num.mark).

anomDetectBAF runs anomSegmentBAFwith default values and then runs anomFilterBAF.
Additional parameters for anomFilterBAF may be passed as arguments.

32 anomDetectBAF

Value

anomSegmentBAF returns a data.frame with the following elements: Left and right refer to start
and end of anomaly, respectively, in position order.

scanID integer id of scan

chromosome chromosome as integer where 23 refers to X chromosome

left.index row index of intenData indicating left endpoint of segment

right.index row index of intenData indicating right endpoint of segment

num.mark number of heterozygous or missing SNPs in the segment

seg.mean mean of the BAF metric over the segment

anomFilterBAF and anomDetectBAF return a list with the following elements:

raw data.frame of raw segmentation data, with same output as anomSegmentBAF
as well as:

• left.base: base position of left endpoint of segment
• right.base: base position of right endpoint of segment
• sex: sex of scan.id coded as "M" or "F"
• sd.fac: measure of deviation from baseline equal to abs(mean of seg-

ment - baseline mean)/(baseline standard deviation); used in determining
anomalous segments

filtered data.frame of the segments identified as anomalies, with the same columns as
raw as well as:

• merge: TRUE if segment was a result of merging. Consecutive segments
from output of anomSegmentBAF that meet certain criteria are merged.

• homodel.adjust: TRUE if original segment was adjusted to narrow in
on a homozygous deletion

• frac.used: fraction of (eligible) heterozygous or missing SNP markers
compared with total number of eligible SNP markers in segment

base.info data frame with columns:

• scanID: integer id of scan
• base.mean: mean of non-anomalous baseline. This is the mean of the

BAF metric for heterozygous and missing SNPs over all unsegmented au-
tosomes that were considered.

• base.sd: standard deviation of non-anomalous baseline
• chr.ct: number of unsegmented chromosomes used in determining the

non-anomalous baseline

seg.info data frame with columns:

• scanID: integer id of scan
• chromosome: chromosome as integer
• num.segs: number of segments produced by anomSegmentBAF

Note

It is recommended to include all autosomes as input. This ensures a more accurate determination
of baseline information.

anomDetectLOH 33

Author(s)

Cecelia Laurie

References

See references in segment in the package DNAcopy. The BAF metric used is modified from
Itsara,A., et.al (2009) Population Analysis of Large Copy Number Variants and Hotspots of Human
Genetic Disease. American Journal of Human Genetics, 84, 148–161.

See Also

segment and smooth.CNA in the package DNAcopy, also findBAFvariance, anomDetectLOH

Examples

library(GWASdata)
data(illumina_scan_annot)
scanAnnot <- ScanAnnotationDataFrame(illumina_scan_annot)
data(illumina_snp_annot)
snpAnnot <- SnpAnnotationDataFrame(illumina_snp_annot)

blfile <- system.file("extdata", "illumina_bl.nc", package="GWASdata")
blnc <- NcdfIntensityReader(blfile)
blData <- IntensityData(blnc, scanAnnot=scanAnnot, snpAnnot=snpAnnot)

genofile <- system.file("extdata", "illumina_geno.nc", package="GWASdata")
genonc <- NcdfGenotypeReader(genofile)
genoData <- GenotypeData(genonc, scanAnnot=scanAnnot, snpAnnot=snpAnnot)

segment BAF
scan.ids <- scanAnnot$scanID[1:2]
chrom.ids <- unique(snpAnnot$chromosome)
snp.ids <- snpAnnot$snpID[snpAnnot$missing.n1 < 1]
seg <- anomSegmentBAF(blData, genoData, scan.ids=scan.ids,

chrom.ids=chrom.ids, snp.ids=snp.ids)

filter segments to detect anomalies
data(centromeres.hg18)
filt <- anomFilterBAF(blData, genoData, segments=seg, snp.ids=snp.ids,

centromere=centromeres.hg18)

alternatively, run both steps at once
anom <- anomDetectBAF(blData, genoData, scan.ids=scan.ids, chrom.ids=chrom.ids,

snp.ids=snp.ids, centromere=centromeres.hg18)

anomDetectLOH LOH Method for Chromosome Anomaly Detection

Description

anomDetectLOH breaks a chromosome up into segments of homozygous runs of SNP markers
determined by change points in Log R Ratio and selects segments which are likely to be anomalous.

34 anomDetectLOH

Usage

anomDetectLOH(intenData, genoData, scan.ids, chrom.ids, snp.ids,
known.anoms, smooth = 50, min.width = 5, nperm = 10000, alpha = 0.001,
run.size = 50, inter.size = 4, homodel.min.num = 10, homodel.thresh = 10,
small.num = 20, small.thresh = 2.25, medium.num = 50, medium.thresh = 2,
long.num = 100, long.thresh = 1.5, small.na.thresh = 2.5,
length.factor = 5, merge.fac = 0.85, min.lrr.num = 20, verbose = TRUE)

Arguments

intenData An IntensityData object containing the Log R Ratio. The order of the rows
of intenData and the snp annotation are expected to be by chromosome and then
by position within chromosome. The scan annotation should contain sex, coded
as "M" for male and "F" for female.

genoData A GenotypeData object. The order of the rows of genoData and the snp
annotation are expected to be by chromosome and then by position within chro-
mosome.

scan.ids vector of scan ids (sample numbers) to process

chrom.ids vector of (unique) chromosomes to process

snp.ids vector of eligible snp ids. Usually exclude failed and intensity-only snps. Also
recommended to exclude an HLA region on chromosome 6 and XTR region on
chromosome 23 (X). See HLA and pseudoautosomal.

known.anoms data.frame of known anomalies (usually from anomDetectBAF); must have
"scanID","chromosome","left.index","right.index". Here "left.index" and "right.index"
are row indices of intenData. Left and right refer to start and end of anomaly,
respectively, in position order.

smooth number of markers for smoothing region. See smooth.CNA in the DNAcopy
package.

min.width minimum number of markers for segmenting. See segment in the DNAcopy
package.

nperm number of permutations. See segment in the DNAcopy package.

alpha significance level. See segment in the DNAcopy package.

run.size number of markers to declare a ’homozygous’ run (here ’homozygous’ includes
homozygous and missing)

inter.size number of consecutive heterozygous markers allowed to interrupt a ’homozy-
gous’ run

homodel.min.num
minimum number of markers to detect extreme difference in lrr (for homozy-
gous deletion)

homodel.thresh
threshold for measure of deviation from non-anomalous needed to declare seg-
ment a homozygous deletion.

small.num minimum number of SNP markers to declare segment as an anomaly (other than
homozygous deletion)

small.thresh threshold for measure of deviation from non-anomalous to declare segment
anomalous if number of SNP markers is between small.num and medium.num.

medium.num threshold for number of SNP markers to identify ’medium’ size segment

anomDetectLOH 35

medium.thresh
threshold for measure of deviation from non-anomalous needed to declare seg-
ment anomalous if number of SNP markers is between medium.num and long.num.

long.num threshold for number of SNP markers to identify ’long’ size segment
long.thresh threshold for measure of deviation from non-anomalous when number of mark-

ers is bigger than long.num
small.na.thresh

threshold measure of deviation from non-anomalous when number of markers
is between small.num and medium.num and ’local mad.fac’ is NA. See
Details section for definition of ’local mad.fac’.

length.factor
window around anomaly defined as length.factor*(no. of markers in seg-
ment) on either side of the given segment. Used in determining ’local mad.fac’.
See Details section.

merge.fac threshold for ’sd.fac’= number of baseline standard deviations of segment mean
from baseline mean; consecutive segments with ’sd.fac’ above threshold are
merged

min.lrr.num if any ’non-anomalous’ interval has fewer markers than min.lrr.num, inter-
val is ignored in finding non-anomalous baseline unless it’s the only piece left

verbose logical indicator whether to print the scan id currently being processed

Details

Detection of anomalies with loss of heterozygosity accompanied by change in Log R Ratio. Male
samples for chromosome 23 (X) are not processed.

Circular binary segmentation (CBS) (using the R-package DNAcopy) is applied to LRR values and,
in parallel, runs of homozygous or missing genotypes of a certain minimal size (run.size) (and
allowing for some interruptions by no more than inter.size heterozygous SNPs) are identified.
Intervals from known.anoms are excluded from the identification of runs. After some possible
merging of consecutive CBS segments (based on satisfying a threshold merge.fac for deviation
from non-anomalous baseline), the homozygous runs are intersected with the segments from CBS.

Determination of anomalous segments is based on a combination of number-of-marker thresh-
olds and deviation from a non-anomalous baseline. Segments are declared anomalous if deviation
from non-anomalous is above corresponding thresholds. (See small.num, small.thresh,
medium.num,medium.thresh, long.num,long.thresh,and small.na.thresh.) Non-
anomalous median and MAD are defined for each sample-chromosome combination. Intervals from
known.anoms and the homozygous runs identified are excluded; remaining regions are the non-
anomalous baseline.

Deviation from non-anomalous is measured by a combination of a chromosome-wide ’mad.fac’
and a ’local mad.fac’ (both the average and the minimum of these two measures are used). Here
’mad.fac’ is (segment median-non-anomalous median)/(non-anomalous MAD) and ’local mad.fac’
is the same definition except the non-anomalous median and MAD are computed over a window
including the segment (see length.factor). Median and MADare found for eligible LRR
values.

Value

A list with the following elements:

raw raw homozygous run data, not including any regions present in known.anoms.
A data.frame with the following columns: Left and right refer to start and end
of anomaly, respectively, in position order.

36 anomDetectLOH

• left.index: row index of intenData indicating left endpoint of segment
• right.index: row index of intenData indicating right endpoint of seg-

ment
• left.base: base position of left endpoint of segment
• right.base: base position of right endpoint of segment
• scanID: integer id of scan
• chromosome: chromosome as integer with 23 representing X

raw.adjusted data.frame of runs after merging and intersecting with CBS segments, with the
following columns: Left and right refer to start and end of anomaly, respectively,
in position order.

• scanID: integer id of scan
• chromosome: chromosome as integer with 23 representing X
• left.index: row index of intenData indicating left endpoint of segment
• right.index: row index of intenData indicating right endpoint of seg-

ment
• left.base: base position of left endpoint of segment
• right.base: base position of right endpoint of segment
• num.mark: number of eligible SNP markers in segment
• seg.median: median of eligible LRR values in segment
• seg.mean: mean of eligible LRR values in segment
• mad.fac: measure of deviation from non-anomalous baseline, equal to

abs(median of segment - baseline median)/(baseline MAD); used in deter-
mining anomalous segments

• sd.fac: measure of deviation from non-anomalous baseline, equal to
abs(mean of segment - baseline mean)/(baseline standard deviation); used
in determining whether to merge

• local: measure of deviation from non-anomalous baseline used equal
to abs(median of segment - local baseline median)/(local baseline MAD);
local baseline consists of eligible LRR values in a window around segment;
used in determining anomalous segments

• num.segs: number of segments found by CBS for the given chromosome
• chrom.nonanom.mad: MAD of eligible LRR values in non-anomalous

regions across the chromosome
• chrom.nonanom.median: median of eligible LRR values in non-anomalous

regions across the chromosome
• chrom.nonanom.mean: mean of eligible LRR values in non-anomalous

regions across the chromosome
• chrom.nonanom.sd: standard deviation of eligible LRR values in non-

anomalous regions across the chromosome
• sex: sex of the scan id coded as "M" or "F"

filtered data.frame of the segments identified as anomalies. Columns are the same as in
raw.adjusted.

base.info data.frame with columns:

• chrom.nonanom.mad: MAD of eligible LRR values in non-anomalous
regions across the chromosome

• chrom.nonanom.median: median of eligible LRR values in non-anomalous
regions across the chromosome

anomDetectLOH 37

• chrom.nonanom.mean: mean of eligible LRR values in non-anomalous
regions across the chromosome

• chrom.nonanom.sd: standard deviation of eligible LRR values in non-
anomalous regions across the chromosome

• sex: sex of the scan id coded as "M" or "F"
• num.runs: number of original homozygous runs found for given scan/chromosome
• num.segs: number of segments for given scan/chromosome produced by

CBS
• scanID: integer id of scan
• chromosome: chromosome as integer, with 23 representing X
• sex: sex of the scan id coded as "M" or "F"

segments data.frame of the segmentation found by CBS with columns:

• scanID: integer id of scan
• chromosome: chromosome as integer, with 23 representing X
• left.index: row index of intenData indicating left endpoint of segment
• right.index: row index of intenData indicating right endpoint of seg-

ment
• left.base: base position of left endpoint of segment
• right.base: base position of right endpoint of segment
• num.mark: number of eligible SNP markers in the segment
• seg.mean: mean of eligible LRR values in the segment
• sd.fac: measure of deviation from baseline equal to abs(mean of segment

- baseline mean)/(baseline standard deviation) where the baseline is over
non-anomalous regions

merge data.frame of scan id/chromosome pairs for which merging occurred.

• scanID: integer id of scan
• chromosome: chromosome as integer, with 23 representing X

Author(s)

Cecelia Laurie

References

See references in segment in the package DNAcopy.

See Also

segment and smooth.CNA in the package DNAcopy, also findBAFvariance, anomDetectLOH

Examples

library(GWASdata)
data(illumina_scan_annot)
scanAnnot <- ScanAnnotationDataFrame(illumina_scan_annot)
data(illumina_snp_annot)
snpAnnot <- SnpAnnotationDataFrame(illumina_snp_annot)

blfile <- system.file("extdata", "illumina_bl.nc", package="GWASdata")
blnc <- NcdfIntensityReader(blfile)

38 anomIdentifyLowQuality

blData <- IntensityData(blnc, scanAnnot=scanAnnot, snpAnnot=snpAnnot)

genofile <- system.file("extdata", "illumina_geno.nc", package="GWASdata")
genonc <- NcdfGenotypeReader(genofile)
genoData <- GenotypeData(genonc, scanAnnot=scanAnnot, snpAnnot=snpAnnot)

scan.ids <- scanAnnot$scanID[1:2]
chrom.ids <- unique(snpAnnot$chromosome)
snp.ids <- snpAnnot$snpID[snpAnnot$missing.n1 < 1]

example for known.anoms, would get this from anomDetectBAF
known.anoms <- data.frame("scanID"=scan.ids[1],"chromosome"=21,
"left.index"=100,"right.index"=200)

LOH.anom <- anomDetectLOH(blData, genoData, scan.ids=scan.ids,
chrom.ids=chrom.ids, snp.ids=snp.ids, known.anoms=known.anoms)

anomIdentifyLowQuality
Identify low quality samples

Description

Identify low quality samples for which false positive rate for anomaly detection is likely to be high.
Measures of noise (high variance) and high segmentation are used.

Usage

anomIdentifyLowQuality(snp.annot, med.sd, seg.info,
sd.thresh, sng.seg.thresh, auto.seg.thresh)

Arguments

snp.annot SnpAnnotationDataFrame with column "eligible", where "eligible" is a
logical vector indicating whether a SNP is eligible for consideration in anomaly
detection (usually FALSE for HLA and XTR regions, failed SNPs, and intensity-
only SNPs). See HLA and pseudoautosomal.

med.sd data.frame of median standard deviation of BAlleleFrequency (BAF) or LogR-
Ratio (LRR) values across autosomes for each scan, with columns "scanID" and
"med.sd". Usually the result of medianSdOverAutosomes. Usually only
eligible SNPs are used in these computations. In addition, for BAF, homozy-
gous SNPS are excluded.

seg.info data.frame with segmentation information from anomDetectBAF or anomDetectLOH.
Columns must include "scanID", "chromosome", and "num.segs". (For anomDetectBAF,
segmentation information is found in $seg.info from output. For anomDetectLOH,
segmentation information is found in $base.info from output.)

sd.thresh Threshold for med.sd above which scan is identified as low quality. Suggested
values are 0.1 for BAF and 0.25 for LOH.

sng.seg.thresh
Threshold for segmentation factor for a given chromosome, above which the
chromosome is said to be highly segmented. See Details. Suggested values are
0.0008 for BAF and 0.0048 for LOH.

anomIdentifyLowQuality 39

auto.seg.thresh
Threshold for segmentation factor across autosome, above which the scan is said
to be highly segmented. See Details. Suggested values are 0.0001 for BAF and
0.0006 for LOH.

Details

Low quality samples are determined separately with regard to each of the two methods of segmen-
tation, anomDetectBAF and anomDetectLOH. BAF anomalies (respectively LOH anomalies)
found for samples identified as low quality for BAF (respectively LOH) tend to have a high false
positive rate.

A scan is identified as low quality due to high variance (noise), i.e. if med.sd is above a certain
threshold sd.thresh.

High segmentation is often an indication of artifactual patterns in the B Allele Frequency (BAF)
or Log R Ratio values (LRR) that are not always captured by high variance. Here segmentation
information is determined by anomDetectBAF or anomDetectLOH which use circular binary
segmentation implemented by the R-package DNAcopy. The measure for high segmentation is a
"segmentation factor" = (number of segments)/(number of eligible SNPS). A single chromosome
segmentation factor uses information for one chromosome. A segmentation factor across auto-
somes uses the total number of segments and eligible SNPs across all autosomes. See med.sd,
sd.thresh, sng.seg.thresh, and auto.seg.thresh.

Value

A data.frame with the following columns:

scanID integer id for the scan
chrX.num.segs

number of segments for chromosome X

chrX.fac segmentation factor for chromosome X

max.autosome autosome with highest single segmentation factor

max.auto.fac segmentation factor for chromosome = max.autosome
max.auto.num.segs

number of segments for chromosome = max.autosome

num.ch.segd number of chromosomes segmented, i.e. for which change points were found

fac.all.auto segmentation factor across all autosomes

med.sd median standard deviation of BAF (or LRR values) across autosomes. See
med.sd in Arguments section.

type one of the following, indicating reason for identification as low quality:

• auto.seg: segmentation factor fac.all.auto above auto.seg.thresh
but med.sd acceptable

• sd: standard deviation factor med.sd above sd.thresh but fac.all.auto
acceptable

• both.sd.seg: both high variance and high segmentation factors, fac.all.auto
and med.sd, are above respective thresholds

• sng.seg: segmentation factor max.auto.fac is above sng.seg.thresh
but other measures acceptable

• sng.seg.X: segmentation factor chrX.fac is above sng.seg.thresh
but other measures acceptable

40 anomSegStats

Author(s)

Cecelia Laurie

See Also

findBAFvariance, anomDetectBAF, anomDetectLOH

Examples

library(GWASdata)
data(illumina_scan_annot)
scanAnnot <- ScanAnnotationDataFrame(illumina_scan_annot)
data(illumina_snp_annot)
snpAnnot <- SnpAnnotationDataFrame(illumina_snp_annot)

blfile <- system.file("extdata", "illumina_bl.nc", package="GWASdata")
blnc <- NcdfIntensityReader(blfile)
blData <- IntensityData(blnc, scanAnnot=scanAnnot, snpAnnot=snpAnnot)

genofile <- system.file("extdata", "illumina_geno.nc", package="GWASdata")
genonc <- NcdfGenotypeReader(genofile)
genoData <- GenotypeData(genonc, scanAnnot=scanAnnot, snpAnnot=snpAnnot)

initial scan for low quality with median SD
baf.sd <- sdByScanChromWindow(blData, genoData)
med.baf.sd <- medianSdOverAutosomes(baf.sd)
low.qual.ids <- med.baf.sd$scanID[med.baf.sd$med.sd > 0.05]

segment and filter BAF
scan.ids <- scanAnnot$scanID[1:2]
chrom.ids <- unique(snpAnnot$chromosome)
snp.ids <- snpAnnot$snpID[snpAnnot$missing.n1 < 1]
data(centromeres.hg18)
anom <- anomDetectBAF(blData, genoData, scan.ids=scan.ids, chrom.ids=chrom.ids,
snp.ids=snp.ids, centromere=centromeres.hg18, low.qual.ids=low.qual.ids)

further screen for low quality scans
snpAnnot$eligible <- snpAnnot$missing.n1 < 1
low.qual <- anomIdentifyLowQuality(snpAnnot, med.baf.sd, anom$seg.info,

sd.thresh=0.1, sng.seg.thresh=0.0008, auto.seg.thresh=0.0001)

close(blData)
close(genoData)

anomSegStats Calculate LRR and BAF statistics for anomalous segments

Description

Calculate LRR and BAF statistics for anomalous segments and plot results

anomSegStats 41

Usage

anomSegStats(intenData, genoData, snp.ids, anom, centromere,
lrr.cut = -2, verbose = TRUE)

anomStatsPlot(intenData, genoData, anom.stats, snp.ineligible,
plot.ineligible = FALSE, centromere = NULL,
brackets = c("none", "bases", "markers"), brkpt.pct = 10,
whole.chrom = FALSE, win = 5, win.calc = FALSE, win.fixed = 1,
zoom = c("both", "left", "right"), info = NULL, cex = 0.5)

Arguments

intenData An IntensityData object containing BAlleleFreq and LogRRatio. The or-
der of the rows of intenData and the snp annotation are expected to be by chro-
mosome and then by position within chromosome.

genoData A GenotypeData object. The order of the rows of intenData and the snp
annotation are expected to be by chromosome and then by position within chro-
mosome.

snp.ids vector of eligible SNP ids. Usually exclude failed and intensity-only SNPS. Also
recommended to exclude an HLA region on chromosome 6 and XTR region on
chromosome 23 (X). See HLA and pseudoautosomal.

anom data.frame of detected chromosome anomalies. Names must include "scanID",
"chromosome", "left.index", "right.index", "sex", "method", "anom.id". Valid
values for "method" are "BAF" or "LOH" referring to whether the anomaly was
detected by BAF method (anomDetectBAF) or by LOH method (anomDetectLOH).
Here "left.index" and "right.index" are row indices of intenData with left.index
< right.index.

centromere data.frame with centromere position info. Names must include "chrom", "left.base",
"right.base". Valid values for "chrom" are 1:22, "X", "Y", "XY". Here "left.base"
and "right.base" are start and end base positions of the centromere location, re-
spectively.

lrr.cut count the number of eligible LRR values less than lrr.cut

verbose whether to print the scan id currently being processed

anom.stats data.frame of chromosome anomalies with statstics, usually the output of anomSegStats.
Names must include "anom.id", "scanID", "chromosome", "left.index", "right.index",
"method", "nmark.all", "nmark.elig", "left.base", "right.base", "nbase", "non.anom.baf.med",
"non.anom.lrr.med", "anom.baf.dev.med", "anom.baf.dev.5", "anom.lrr.med", "nmark.baf",
"nmark.lrr". Left and right refer to start and end, respectively, of the anomaly,
in position order.

snp.ineligible
vector of ineligible snp ids (e.g., intensity-only, failed snps, XTR and HLA re-
gions). See HLA and pseudoautosomal.

plot.ineligible
whether or not to include ineligible points in the plot for LogRRatio

brackets type of brackets to plot around breakpoints - none, use base length, use num-
ber of markers (note that using markers give asymmetric brackets); could be
used, along with brkpt.pct, to assess general accuracy of end points of the
anomaly

brkpt.pct percent of anomaly length in bases (or number of markers) for width of brackets

42 anomSegStats

whole.chrom logical to plot the whole chromosome or not (overrides win and zoom)

win size of the window (a multiple of anomaly length) surrounding the anomaly to
plot

win.calc logical to calculate window size from anomaly length; overrides win and gives
window of fixed length given by win.fixed

win.fixed number of megabases for window size when win.calc=TRUE

zoom indicates whether plot includes the whole anomaly ("both") or zooms on just the
left or right breakpoint; "both" is default

info character vector of extra information to include in the main title of the upper
plot

cex cex value for points on the plots

Details

anomSegStats computes various statistics of the input anomalies. Some of these are basic statis-
tics for the characteristics of the anomaly and for measuring deviation of LRR or BAF from ex-
pected. Other statistics are used in downstrean quality control analysis, including detecting terminal
anomalies and investigating centromere-spanning anomalies.

anomStatsPlot produces separate png images of each anomaly stored in the working directory
from which the program is called. Each image consists of an upper plot of LogRRatio values and a
lower plot of BAlleleFrequency values for a zoomed region around the anomaly or whole chromo-
some (depending up parameter choices). Each plot has vertical lines demarcating the anomaly and
horizontal lines displaying certain statistics from anomSegStats. The upper plot title includes
sample number and chromosome. Further plot annotation describes which anomaly statistics are
represented.

Value

anomSegStats produces a data.frame with the variables for anom plus the following columns:
Left and right refer to position order with left < right.

nmark.all total number of SNP markers on the array from left.index to right.index inclusive

nmark.elig total number of eligible SNP markers on the array from left.index to right.index,
inclusive. See snp.ids for definition of eligible SNP markers.

left.base base position corresponding to left.index

right.base base position corresponding to right.index

nbase number of bases from left.index to right.index, inclusive
non.anom.baf.med

BAF median of non-anomalous segments on all autosomes for the associated
sample, using eligible heterozygous or missing SNP markers

non.anom.lrr.med
LRR median of non-anomalous segments on all autosomes for the associated
sample, using eligible SNP markers

non.anom.lrr.mad
MAD for LRR of non-anomalous segments on all autosomes for the associated
sample, using eligible SNP markers

anom.baf.dev.med
BAF median of deviations from non.anom.baf.med of points used to detect
anomaly (eligible and heterozygous or missing)

anomSegStats 43

anom.baf.dev.5
median of BAF deviations from 0.5, using eligible heterozygous or missing SNP
markers in anomaly

anom.baf.dev.mean
mean of BAF deviations from non.anom.baf.med, using eligible heterozy-
gous or missing SNP markers in anomaly

anom.baf.sd standard deviation of BAF deviations from non.anom.baf.med, using eligi-
ble heterozygous or missing SNP markers in anomaly

anom.baf.mad MAD of BAF deviations from non.anom.baf.med, using eligible heterozy-
gous or missing SNP markers in anomaly

anom.lrr.med LRR median of eligible SNP markers within the anomaly

anom.lrr.sd standard deviation of LRR for eligible SNP markers within the anomaly

anom.lrr.mad MAD of LRR for eligible SNP markers within the anomaly

nmark.baf number of SNP markers within the anomaly eligible for BAF detection (eligible
markers that are heterozygous or missing)

nmark.lrr number of SNP markers within the anomaly eligible for LOH detection (eligible
markers)

cent.rel position relative to centromere - left, right, span

left.most T/F for whether the anomaly is the left-most anomaly for this sample-chromosome,
i.e. no other anomalies with smaller start base position

right.most T/F whether the anomaly is the right-most anomaly for this sample-chromosome,
i.e. no other anomalies with larger end base position

left.last.elig
T/F for whether the anomaly contains the last eligible SNP marker going to the
left (decreasing position)

right.last.elig
T/F for whether the anomaly contains the last eligible SNP marker going to the
right (increasing position)

left.term.lrr.med
median of LRR for all eligible SNP markers from left-most eligible marker to
the left telomere (only calculated for the most distal anom)

right.term.lrr.med
median of LRR for all eligible markers from right-most eligible marker to the
right telomere (only calculated for the most distal anom)

left.term.lrr.n
sample size for calculating left.term.lrr.med

right.term.lrr.n
sample size for calculating right.term.lrr.med

cent.span.left.elig.n
number of eligible markers on the left side of centromere-spanning anomalies

cent.span.right.elig.n
number of eligible markers on the right side of centromere-spanning anomalies

cent.span.left.bases
length of anomaly (in bases) covered by eligible markers on the left side of the
centromere

cent.span.right.bases
length of anomaly (in bases) covered by eligible markers on the right side of the
centromere

44 anomSegStats

cent.span.left.index
index of eligible marker left-adjacent to centromere; recall that index refers to
row indices of intenData

cent.span.right.index
index of elig marker right-adjacent to centromere

bafmetric.anom.mean
mean of BAF-metric values within anomaly, using eligible heterozygous or
missing SNP markers BAF-metric values were used in the detection of anoma-
lies. See anomDetectBAF for definition of BAF-metric

bafmetric.non.anom.mean
mean of BAF-metric values within non-anomalous segments across all auto-
somes for the associated sample, using eligible heterozygous or missing SNP
markers

bafmetric.non.anom.sd
standard deviation of BAF-metric values within non-anomalous segments across
all autosomes for the associated sample, using eligible heterozygous or missing
SNP markers

nmark.lrr.low
number of eligible markers within anomaly with LRR values less than lrr.cut

Note

The non-anomalous statistics are computed over all autosomes for the sample associated with an
anomaly. Therefore the accuracy of these statistics relies on the input anomaly data.frame including
all autosomal anomalies for a given sample.

Author(s)

Cathy Laurie

See Also

anomDetectBAF, anomDetectLOH

Examples

library(GWASdata)
data(illumina_scan_annot)
scanAnnot <- ScanAnnotationDataFrame(illumina_scan_annot)
data(illumina_snp_annot)
snpAnnot <- SnpAnnotationDataFrame(illumina_snp_annot)

blfile <- system.file("extdata", "illumina_bl.nc", package="GWASdata")
blnc <- NcdfIntensityReader(blfile)
blData <- IntensityData(blnc, scanAnnot=scanAnnot, snpAnnot=snpAnnot)

genofile <- system.file("extdata", "illumina_geno.nc", package="GWASdata")
genonc <- NcdfGenotypeReader(genofile)
genoData <- GenotypeData(genonc, scanAnnot=scanAnnot, snpAnnot=snpAnnot)

scan.ids <- scanAnnot$scanID[1:2]
chrom.ids <- unique(snpAnnot$chromosome)
snp.ids <- snpAnnot$snpID[snpAnnot$missing.n1 < 1]
snp.failed <- snpAnnot$snpID[snpAnnot$missing.n1 == 1]

apartSnpSelection 45

example results from anomDetectBAF
baf.anoms <- data.frame("scanID"=scan.ids[1],"chromosome"=21,
"left.index"=100,"right.index"=200, sex="M", method="BAF",
anom.id=1)

example results from anomDetectLOH
loh.anoms <- data.frame("scanID"=scan.ids[2],"chromosome"=22,

"left.index"=400,"right.index"=500, sex="F", method="LOH",
anom.id=2)

anoms <- rbind(baf.anoms, loh.anoms)
data(centromeres.hg18)
stats <- anomSegStats(blData, genoData, snp.ids=snp.ids, anom=anoms,

centromere=centromeres.hg18)

anomStatsPlot(blData, genoData, anom.stats=stats,
snp.ineligible=snp.failed, centromere=centromeres.hg18)

apartSnpSelection Random selection of SNPs

Description

Randomly selects SNPs for which each pair is at least as far apart as the specified basepair distance.

Usage

apartSnpSelection(chromosome, position, min.dist = 1e+05,
init.sel = NULL, max.n.chromosomes = -1,
verbose = TRUE)

Arguments

chromosome An integer vector containing the chromosome for each SNP. Valid values are
1-26, any other value will be interpreted as missing and not selected.

position A numeric vector of the positions (in basepairs) of the SNPs.

min.dist A numeric value to specify minimum distance required (in basepairs).

init.sel A logical vector indicating the initial SNPs to be included.
max.n.chromosomes

A numeric value specifying the maximum number of SNPs to return per chro-
mosome, "-1" means no number limit.

verbose A logical value specifying whether to show progress information while running.

Details

apartSnpSelection selects SNPs randomly with the condition that they are at least as far apart
as min.dist in basepairs. The starting set of SNPs can be specified with init.sel.

Value

A logical vector indicating which SNPs were selected.

46 assocTestCPH

Author(s)

Xiuwen Zheng

Examples

library(GWASdata)
data(affy_snp_annot)
pool <- affy_snp_annot$chromosome < 23
rsnp <- apartSnpSelection(affy_snp_annot$chromosome, affy_snp_annot$position,

min.dist=15000, init.sel=pool)

assocTestCPH Cox proportional hazards

Description

Fits Cox proportional hazards model

Usage

assocTestCPH(genoData, event, time.to.event,
covars, factor.covars,
scan.chromosome.filter = NULL,
scan.exclude = NULL,
maf.filter = FALSE,
GxE = NULL, stratum = NULL,
chromosome.set = NULL, block.size = 5000,
verbose = TRUE,
outfile = NULL)

Arguments

genoData GenotypeData object, should contain sex and phenotypes in scan annotation
event name of scan variable in genoData for event to analyze
time.to.event

name of scan variable in genoData for time to event
covars vector of covariate terms for model (can include interactions as ’a:b’, main ef-

fects correspond to scan variable names in genoData)
factor.covars

vector of names of covariates to be converted to factor
scan.chromosome.filter

a logical matrix that can be used to exclude some chromosomes, some scans,
or some specific scan-chromosome pairs. Entries should be TRUE if that scan-
chromosome pair should be included in the analysis, FALSE if not. The num-
ber of rows must be equal to the number of scans in genoData, and the
number of columns must be equal to the largest integer chromosome value in
genoData. The column number must match the chromosome number. e.g. A
scan.chromosome.filter matrix used for an analyis when genoData has SNPs
with chromosome=(1-24, 26, 27) (i.e. no Y (25) chromosome SNPs) must have
27 columns (all FALSE in the 25th column). But a scan.chromosome.filter ma-
trix used for an analysis genoData has SNPs chromosome=(1-26) (i.e no Un-
mapped (27) chromosome SNPs) must have only 26 columns.

assocTestCPH 47

scan.exclude an integer vector containing the IDs of entire scans to be excluded.

maf.filter whether to filter results returned using MAF*(1-MAF) > 75/(2*n) where
MAF = minor allele frequency and n = number of events

GxE name of the covariate to use for E if genotype-by-environment (i.e. SNP:E)
model is to be analyzed, in addition to the main effects (E can be a covariate
interaction)

stratum name of variable to stratify on for a stratified analysis (use NULL if no stratified
analysis needed)

chromosome.set
integer vector with chromosome(s) to be analyzed. Use 23, 24, 25, 26, 27 for X,
XY, Y, M, Unmapped respectively.

block.size number of SNPs from a given chromosome to read in one block from genoData

verbose Logical value specifying whether to show progress information.

outfile a character string to append in front of ".chr.i_k.RData" for naming the output
data-frames; where i is the first chromosome, and k is the last chromosome used
in that call to the function. "chr.i_k." will be omitted if chromosome.set=NULL.

Details

This function performs Cox proportional hazards regression of a survival object (using the Surv
function) on SNP genotype and other covariates. It uses the coxph function from the R survival
library.

Individual samples can be included or excluded from the analysis using the scan.exclude pa-
rameter. Individual chromosomes can be included or excluded by specifying the indices of the
chromosomes to be included in the chromosome.set parameter. Specific chromosomes for spe-
cific samples can be included or excluded using the scan.chromosome.filter parameter.

Both scan.chromosome.filter and scan.exclude may be used together. If a scan is
excluded in EITHER, then it will be excluded from the analysis, but it does NOT need to be ex-
cluded in both. This design allows for easy filtering of anomalous scan-chromosome pairs using the
scan.chromosome.filter matrix, but still allows easy exclusion of a specific group of scans
(e.g. males or Caucasians) using scan.exclude.

The argument maf.filter indicates whether to filter results returned using 2 * MAF * (1-
MAF) * n > 75 where MAF = minor allele frequency and n = number of events. This filter was
suggested by Ken Rice and Thomas Lumley, who found that without this requirement, at threshold
levels of significance for genome-wide studies, Cox regression p-values based on standard asymp-
totic approximations can be notably anti-conservative.

Value

If outfile=NULL (default), all results are returned as a data.frame. If outfile is specified, no
data is returned but the function saves a data.frame with the naming convention as described by the
argument outfile. Columns for the main effects model are:

index snp index

snpID unique integer ID for SNP

chr chromosome

maf minor allele frequency calculated as appropriate for autosomal loci

mafx minor allele frequency calculated as appropriate for X-linked loci

beta regression coefficient returned by the coxph function

48 assocTestCPH

se standard error of the regression coefficient returned by the coxph function

z z statistic returned by the coxph function

pval p-value for the z-statistic returned by the coxph function

warned TRUE if a warning was issued

n.events number of events in complete cases for the given SNP

If GxE is not NULL, another data.frame is returned with the results of the genotype-by-environment
model. If outfile=NULL, the function returns a list with names (main, GxE); otherwise the
GxE data.frame is saved as a separate output file. Columns are:

index snp index

snpID unique integer ID for SNP

chr chromosome

maf minor allele frequency calculated as appropriate for autosomal loci

mafx minor allele frequency calculated as appropriate for X-linked loci

warned TRUE if a warning was issued

n.events number of events in complete cases for the given SNP

ge.lrtest Likelihood ratio test statistic for the GxE interaction

ge.pval p-value for the likelihood ratio test statistic

Warnings:

Another file will be saved with the name "outfile.chr.i_k.warnings.RData" that contains any warn-
ings generated by the function.

Author(s)

Cathy Laurie

See Also

GenotypeData, coxph

Examples

an example of a scan chromosome matrix
desiged to eliminate duplicated individuals
and scans with missing values of sex
library(GWASdata)
data(affy_scan_annot)
scanAnnot <- ScanAnnotationDataFrame(affy_scan_annot)
samp.chr.matrix <- matrix(TRUE,nrow(scanAnnot),26)
dup <- duplicated(scanAnnot$subjectID)
samp.chr.matrix[dup | is.na(scanAnnot$sex),] <- FALSE
samp.chr.matrix[scanAnnot$sex=="F", 25] <- FALSE

additionally, exclude YRI subjects
scan.exclude <- scanAnnot$scanID[scanAnnot$race == "YRI"]

create some variables for the scans
scanAnnot$age <- rnorm(nrow(scanAnnot),mean=40, sd=10)
scanAnnot$event <- rbinom(nrow(scanAnnot),1,0.4)
scanAnnot$ttoe <- rnorm(nrow(scanAnnot),mean=100,sd=10)

assocTestRegression 49

create data object
ncfile <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(ncfile)
genoData <- GenotypeData(nc, scanAnnot=scanAnnot)

variables
event <- "event"
time.to.event <- "ttoe"
covars <- c("sex", "age")
factor.covars <- "sex"

chr.set <- 21

res <- assocTestCPH(genoData,
event="event", time.to.event="ttoe",
covars=c("sex", "age"), factor.covars="sex",
scan.chromosome.filter=samp.chr.matrix,
scan.exclude=scan.exclude,
chromosome.set=chr.set)

close(genoData)

assocTestRegression
Association tests

Description

This function performs regression based association tests. It also performs genotype counts for
association tests.

Usage

assocTestRegression(genoData, outcome, model.type,
covar.list = NULL, ivar.list = NULL,

gene.action.list = NULL,
scan.chromosome.filter = NULL,
scan.exclude = NULL, CI = 0.95,
robust = FALSE, geno.counts = TRUE,
chromosome.set = NULL, block.set = NULL,
block.size = 5000, verbose = TRUE,
outfile = NULL)

Arguments

genoData GenotypeData object, should contain phenotypes and covariates in scan an-
notation

outcome Vector (of length equal to the number of models) of names of the outcome vari-
ables for each model. These names must be in the scan annotation of genoData.
e.g. c("case.cntl.status", "blood.pressure") will use "case.cntl.status" as the out-
come for the first model and "blood pressure" for the second. Outcome variables
must be coded as 0/1 for logistic regression.

50 assocTestRegression

model.type vector (of length equal to the number of models) with the types of models to
be fitted. The elements should be one of: "logistic", "linear", or "poisson". e.g.
c("logistic", "linear") will perform two tests: the first using logistic regression,
and the second using linear regression.

covar.list list (of length equal to the number of models) of vectors containing the names of
covariates to be used in the regression model (blank, i.e. "" if none). The default
value is NULL and will include no covariates in any of the models. The covariate
names must be in the scan annotation of genoData. e.g. covar.list()
<- list(); covar.list[[1]] <- c("age","sex"); covar.list[[2]]
<- c(""); will use both "age" and "sex" as covariates for the first model and
no covariates for the second model (this regresses on only the genotype).

ivar.list list (of length equal to the number of models) of vectors containing the names
of covariates for which to include an interaction with genotype (blank, i.e. "" if
none). The default value is NULL and will include no interactions in any of the
models. The covariate names must be in the scan annotation of genoData. e.g.
ivar.list() <- list(); ivar.list[[1]] <- c("sex"); ivar.list[[2]]
<- c(""); will include a genotype*"sex" interaction term for the first model
and no interactions for the second model.

gene.action.list
a list (of length equal to the number of models) of vectors containing the types
of gene action models to be used in the corresponding regression model. Valid
options are "additive", "dominant", and "recessive", referring to how the mi-
nor allele is treated, as well as "dominance". "additive" coding sets the marker
variable for homozygous minor allele samples = 2, heterozygous samples = 1,
and homozygous major allele samples = 0. "dominant" coding sets the marker
variable for homozygous minor allele samples = 2, heterozygous samples = 2,
and homozygous major allele samples = 0. "recessive" coding sets the marker
variable for homozygous minor allele samples = 2, heterozygous samples = 0,
and homozygous major allele samples = 0. "dominance" coding sets the marker
variable for homozygous minor allele samples = major allele frequency, het-
erozygous samples = 0, and homozygous major allele samples = minor allele
frequency. This coding eliminates the additive component of variance for the
marker variable, leaving only the dominance component of variance. The de-
fault value is NULL, which assumes only an "additive" gene action model for ev-
ery test. e.g. gene.action.list() <- list(); gene.action.list[[1]]
<- c("additive"); gene.action.list[[2]] <- c("dominant",
"recessive"); will run the first model using "additive" gene action, and
will run the second model using both "dominant" and "recessive" gene actions.

scan.chromosome.filter
a logical matrix that can be used to exclude some chromosomes, some scans,
or some specific scan-chromosome pairs. Entries should be TRUE if that scan-
chromosome pair should be included in the analysis, FALSE if not. The num-
ber of rows must be equal to the number of scans in genoData, and the
number of columns must be equal to the largest integer chromosome value in
genoData. The column number must match the chromosome number. e.g. A
scan.chromosome.filter matrix used for an analyis when genoData has SNPs
with chromosome=(1-24, 26, 27) (i.e. no Y (25) chromosome SNPs) must have
27 columns (all FALSE in the 25th column). But a scan.chromosome.filter ma-
trix used for an analysis genoData has SNPs chromosome=(1-26) (i.e no Un-
mapped (27) chromosome SNPs) must have only 26 columns.

scan.exclude an integer vector containing the IDs of entire scans to be excluded.

assocTestRegression 51

CI sets the confidence level for the confidence interval calculations. Confidence
intervals are computed at every SNP; for the odds ratio when using logistic re-
gression, and for the linear trend parameter when using linear regression. The
default value is 0.95 (i.e. a 95% confidence interval). The confidence level must
be between 0 and 1.

robust logical for whether to use sandwich-based robust standard errors. The default
value is FALSE, and uses model based standard errors.

geno.counts if TRUE (default), genotype counts are computed for each linear or logistic
model. For linear models, counts are performed over all samples; for logistic
models, counts are performed separately for cases and controls.

chromosome.set
integer vector with chromosome(s) to be analyzed. Use 23, 24, 25, 26, 27 for X,
XY, Y, M, Unmapped respectively.

block.set list (of length equal to length(chromosome.set)) of vectors where every
vectors contains the indices of the SNP blocks (on that chromosome) to be ana-
lyzed. e.g. chromosome.set <- c(1,2); block.set <- list();
chr.1 <- c(1,2,3); chr.2 <- c(5,6,7,8); block.set$chr.1
<- chr.1; block.set$chr.2 <- chr.2;will analyze first three block
on chromosome 1 and 5th through 8th blocks on chromosome 2. The actual
number of SNPs analyzed will depend on block.size. Default value is
NULL. If block.set == NULL, all the SNPs on chromosomes in chromosome.set
will be analyzed.

block.size Number of SNPs to be read from genoData at once.

verbose if TRUE (default), will print status updates while the function runs. e.g. it will
print "chr 1 block 1 of 10" etc. in the R console after each block of SNPs is done
being analyzed.

outfile a character string to append in front of ".model.j.gene_action.chr.i_k.RData" for
naming the output data-frames; where j is the model number, gene_action is the
gene.action type, i is the first chromosome, and k is the last chromosome used in
that call to the function. "chr.i_k." will be omitted if chromosome.set=NULL.
If set to NULL (default), then the results are returned to the R console.

Details

When using models without interaction terms, the association tests compare the model including
the covariates and genotype value to the model including only the covariates. When using a model
with interaction terms, the association tests compare the model including all the interactions, the
covariates, and the genotype value to the model with only the covariates and genotype value (jointly
testing for all the interaction effects). All tests and p-values are found using Wald tests. The option
of using either sandwich based robust standard errors (which make no model assumptions) or using
model based standard errors for the confidence intervals and Wald tests is specified by the robust
parameter.

Three types of regression models are available: "logistic", "linear", or "poisson". Multiple mod-
els can be run at the same time by putting multiple arguments in the outcome, model.type,
covar.list, ivar.list, and gene.action.list parameters. For each model, available
gene action models are "additive", "dominant", "recessive", and "dominance." See above for the
correct usage of each of these.

Individual samples can be included or excluded from the analysis using the scan.exclude pa-
rameter. Individual chromosomes can be included or excluded by specifying the indices of the

52 assocTestRegression

chromosomes to be included in the chromosome.set parameter. Specific chromosomes for spe-
cific samples can be included or excluded using the scan.chromosome.filter parameter.
The inclusion or exclusion of specific blocks of SNP’s on each chromosome can be specified using
the block.set parameter. Note that the actual SNP’s included or excluded will change according
to the value of block.size.

Both scan.chromosome.filter and scan.exclude may be used together. If a scan is
excluded in EITHER, then it will be excluded from the analysis, but it does NOT need to be ex-
cluded in both. This design allows for easy filtering of anomalous scan-chromosome pairs using the
scan.chromosome.filter matrix, but still allows easy exclusion of a specific group of scans
(e.g. males or Caucasians) using scan.exclude.

Value

If outfile=NULL (default), all results are returned as a single data.frame. If outfile is spec-
ified, no data is returned but the function saves a data-frame for each model gene-action pair, with
the naming convention as described by the variable outfile.

The first three columns of each data-frame are:

snpID snpID (from genoData) of the SNP

MAF minor allele frequency. Note that calculation of allele frequency for the X chro-
mosome is different than that for the autosomes and the XY (pseudo-autosomal)
region. Hence if chromosome.set includes 23, genoData should provide the
sex of the scan ("M" or "F") i.e. there should be a column named "sex" with "F"
for females and "M" for males.

minor.allele the minor allele. Takes values "A" or "B".

After these first three columns, for every model gene-action pair there are the following columns:
Here, "model.N" is the name assigned to the test where N = 1, 2,..., length(model.type), and
"gene_action" is the gene-action type of the test (one of "additive", "dominant", "recessive", or
"dominance").

model.N.gene_action.n
sample size for the regression

model.N.gene_action.warningOrError
warning or error occured during model fitting (1 if warning or error, NA if none)

model.N.gene_action.Est.G
estimate of the regression coefficient for the genotype term. See the description
in gene.action.list above for interpretation.

model.N.gene_action.SE.G
standard error of the regression coefficient estimate for the genotype term. Could
be either sandwich based (robust) or model based; see description in robust.

For tests with interaction variables: Here, "ivar_name" refers to the name of the interaction variable;
if there are multiple interaction variables, there will be a column with each different "ivar_name".

model.N.gene_action.Est.G.ivar_name
estimate of the regression coefficient for the interaction between genotype and
ivar_name.

model.N.gene_action.SE.G.ivar_name
standard error of the regression coefficient estimate. Could be either sandwich
based (robust) or model based; see description in robust.

For tests that use logistic regression with no interaction variables:

assocTestRegression 53

model.N.gene_action.OR.G
odds ratio for the genotype term. This is exp(the regression coefficient). See the
description in "gene.action.list" above for interpretation.

model.N.gene_action.OR_L95.G
lower 95% confidence limit for the odds ratio (95 will be replaced with whatever
confidence level is chosen in CI).

model.N.gene_action.OR_U95.G
upper 95% confidence limit for the odds ratio (95 will be replaced with whatever
confidence level is chosen in CI).

For tests that use logistic regression and interaction variables:

model.N.gene_action.OR.G.ivar_name
odds ratio for the genotype*ivar_name interaction term. This is exp(the interac-
tion regression coefficient). A separate odds ratio is calculated for each interac-
tion term. See the description in "gene.action.list" above for interpretation.

model.N.gene_action.OR_L95.G.ivar_name
lower 95% confidence limit for the odds ratio (95 will be replaced with whatever
confidence level is chosen in CI).

model.N.gene_action.OR_U95.G.ivar_name
upper 95% confidence limit for the odds ratio (95 will be replaced with whatever
confidence level is chosen in CI).

For tests that use linear or poisson regression with no interaction variables:

model.N.gene_action.L95.G
lower 95% confidence limit for the genotype coefficient (95 will be replaced
with whatever confidence level is chosen in CI).

model.N.gene_action.U95.G
upper 95% confidence limit for the genotype coefficient (95 will be replaced
with whatever confidence level is chosen in CI).

For tests that use linear or poisson regression and interaction variables:

model.N.gene_action.L95.G.ivar_name
lower 95% confidence limit for the genotype*ivar_name interaction coefficient
(95 will be replaced with whatever confidence level is chosen in CI).

model.N.gene_action.U95.G.ivar_name
upper 95% confidence limit for the genotype*ivar_name interaction coefficient
(95 will be replaced with whatever confidence level is chosen in CI).

For tests with no interaction variables:

model.N.gene_action.Stat.G
value of the Wald test statistic for testing the genotype parameter

model.N.gene_action.pvalue.G
Wald test p-value. This can be calculated using either sandwich based robust
standard errors or model based standard errors (see robust).

For tests with interaction variables:

model.N.gene_action.Stat.GxE
value of the Wald test statistic for jointly testing all genotype interaction param-
eters

54 assocTestRegression

model.N.gene_action.pvalue.GxE
Wald test p-value for jointly testing all genotype interaction parameters. This
can be calculated using either sandwich based robust standard errors or model
based standard errors (see robust).

If geno.counts = TRUE, for tests that use linear regression:

model.N.nAA number of AA genotypes in samples

model.N.nAB number of AB genotypes in samples

model.N.nBB number of BB genotypes in samples

If geno.counts = TRUE, for tests that use logistic regression:

model.N.nAA.cc0
number of AA genotypes in samples with outcome coded as 0

model.N.nAB.cc0
number of AB genotypes in samples with outcome coded as 0

model.N.nBB.cc0
number of BB genotypes in samples with outcome coded as 0

model.N.nAA.cc1
number of AA genotypes in samples with outcome coded as 1

model.N.nAB.cc1
number of AB genotypes in samples with outcome coded as 1

model.N.nBB.cc1
number of BB genotypes in samples with outcome coded as 1

Attributes:

There is also an attribute for each output data-frame called "model" that shows the model used
for the test. This can be viewed with the following R command: attr(mod.res, "model")
where mod.res is the output data-frame from the function. The attr() command will return
something like: model.1.additive "case.cntl.status ~ age + sex , logistic regression, additive gene
action"

There is another attribute called "SE" that shows if Robust or Model Based standard errors were
used for the test. This can be viewed with the following R command: attr(mod.res, "SE")
where mod.res is the output data-frame from the function.

Warnings:

Another file will be saved with the name "outfile.chr.i_k.warnings.RData" that contains any warn-
ings generated by the function. An example of what would be contained in this file: Warning
messages: 1: Model 1 , Y chromosome tests are confounded with sex and should be run separately
without sex in the model 2: Model 2 , Y chromosome tests are confounded with sex and should be
run separately without sex in the model

Author(s)

Tushar Bhangale, Matt Conomos

See Also

GenotypeData, lm, glm, vcov, vcovHC

assocTestRegression 55

Examples

The following example would perform 3 tests (from 2 models):
the first a logistic regression of case.cntl.status on genotype, age, and sex, including an interaction term between genotype and sex, using additive gene action;
the second a linear regression of blood pressure on genotype using dominant gene action,
and the third, a linear regression of blood pressure on genotype again, but this time using recessive gene action.
This test would only use chromosome 21. It would also use sandwich based robust standard errors.

an example of a scan chromosome matrix
desiged to eliminate duplicated individuals
and scans with missing values of sex
library(GWASdata)
data(affy_scan_annot)
scanAnnot <- ScanAnnotationDataFrame(affy_scan_annot)
samp.chr.matrix <- matrix(TRUE,nrow(scanAnnot),26)
dup <- duplicated(scanAnnot$subjectID)
samp.chr.matrix[dup | is.na(scanAnnot$sex),] <- FALSE

additionally, exclude YRI subjects
scan.exclude <- scanAnnot$scanID[scanAnnot$race == "YRI"]

create some variables for the scans
scanAnnot$sex <- as.factor(scanAnnot$sex)
scanAnnot$age <- rnorm(nrow(scanAnnot),mean=40, sd=10)
scanAnnot$case.cntl.status <- rbinom(nrow(scanAnnot),1,0.4)
scanAnnot$blood.pressure[scanAnnot$case.cntl.status==1] <- rnorm(sum(scanAnnot$case.cntl.status==1),mean=100,sd=10)
scanAnnot$blood.pressure[scanAnnot$case.cntl.status==0] <- rnorm(sum(scanAnnot$case.cntl.status==0),mean=90,sd=5)

create data object
ncfile <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(ncfile)
genoData <- GenotypeData(nc, scanAnnot=scanAnnot)

set regression variables and models
outcome <- c("case.cntl.status","blood.pressure")

covar.list <- list()
covar.list[[1]] <- c("age","sex")
covar.list[[2]] <- c("")

ivar.list <- list();
ivar.list[[1]] <- c("sex");
ivar.list[[2]] <- c("");

model.type <- c("logistic","linear")

gene.action.list <- list()
gene.action.list[[1]] <- c("additive")
gene.action.list[[2]] <- c("dominant", "recessive")

chr.set <- 21

outfile <- tempfile()

assocTestRegression(genoData,
outcome = outcome,

model.type = model.type,

56 batchTest

covar.list = covar.list,
ivar.list = ivar.list,
gene.action.list = gene.action.list,
scan.chromosome.filter = samp.chr.matrix,
scan.exclude = scan.exclude,
CI = 0.95,
robust = TRUE,
geno.counts = TRUE,
chromosome.set = chr.set,
outfile = outfile)

model1 <- getobj(paste(outfile, ".model.1.additive.chr.21_21.RData", sep=""))
model2 <- getobj(paste(outfile, ".model.2.dominant.chr.21_21.RData", sep=""))
model3 <- getobj(paste(outfile, ".model.2.recessive.chr.21_21.RData", sep=""))

close(genoData)
unlink(paste(outfile, "*", sep=""))

In order to run the test on all chromosomes, it is suggested to run the function in parallel.
To run the function in parallel the following unix can be used:
R --vanilla --args 21 22 < assoc.analysis.r >logfile.txt &
where the file assoc.analysis.r will include commands similar to this example
where chromosome.set and/or block.set can be passed to R using --args
Here, tests on chromosomes 21 and 22 are performed; these could be replaced by any set of chromosomes
these values are retrieved in R by putting a
chr.set <- as.numeric(commandArgs(trailingOnly=TRUE))
command in assoc.analysis.r

batchTest Batch Effects of Genotyping

Description

batchChisqTest calculates Chi-square values for batches from 2-by-2 tables of SNPs, compar-
ing each batch with the other batches. batchFisherTest calculates Fisher’s exact test values.

Usage

batchChisqTest(genoData, batchVar,
chrom.include = 1:22, sex.include = c("M", "F"),
scan.exclude = NULL, return.by.snp = FALSE,
correct = TRUE, verbose = TRUE,
outfile = NULL)

batchFisherTest(genoData, batchVar,
chrom.include = 1:22, sex.include = c("M", "F"),
scan.exclude = NULL, return.by.snp = TRUE,
conf.int = FALSE, verbose = TRUE,
outfile = NULL)

Arguments

genoData GenotypeData object

batchTest 57

batchVar A character string indicating which annotation variable should be used as the
batch.

chrom.include
Integer vector with codes for chromosomes to include. Default is 1:22 (auto-
somes). Use 23, 24, 25, 26, 27 for X, XY, Y, M, Unmapped respectively

sex.include Character vector with sex to include. Default is c("M", "F"). If sex chromo-
somes are present in chrom.include, only one sex is allowed.

scan.exclude An integer vector containing the IDs of scans to be excluded.
return.by.snp

Logical value to indicate whether snp-by-batch matrices should be returned.

conf.int Logical value to indicate if a confidence interval should be computed.

correct Logical value to specify whether to apply the Yates continuity correction.

verbose Logical value specifying whether to show progress information.

outfile A character string to append in front of ".RData" for naming the output file.

Details

Because of potential batch effects due to sample processing and genotype calling, batches are an
important experimental design factor.

batchChisqTest calculates the Chi square values from 2-by-2 table for each SNP, comparing
each batch with the other batches.

batchFisherTest calculates Fisher’s Exact Test from 2-by-2 table for each SNP, comparing
each batch with the other batches.

For each SNP and each batch, batch effect is evaluated by a 2-by-2 table: # of A alleles, and # of
B alleles in the batch, versus # of A alleles, and # of B alleles in the other batches. Monomorphic
SNPs are set to NA for all batches.

The default behavior is to combine allele frequencies from males and females and return results for
autosomes only. If results for sex chromosomes (X or Y) are desired, use chrom.include with
values 23 and/or 25 and sex.include="M" or "F".

If there are only two batches, each output matrix will have only one column.

Value

If outfile=NULL (default), all results are returned as a list. If outfile is specified, no data is
returned but the list is saved to disk as "outfile.RData."

batchChisqTest returns a list with the following elements:

mean.chisq a vector of mean chi-squared values for each batch.

lambda a vector of genomic inflation factor computed as median(chisq) / 0.456
for each batch.

chisq a matrix of chi-squared values with SNPs as rows and batches as columns. Only
returned if return.by.snp=TRUE.

batchFisherTest returns a list with the following elements:

mean.or a vector of mean odds-ratio values for each batch.

lambda a vector of genomic inflation factor computed as median(-2*log(pval)
/ 1.39 for each batch.

58 batchTest

Each of the following is a matrix with SNPs as rows and batches as columns, and is only returned
if return.by.snp=TRUE:

pval P value

oddsratio Odds ratio

confint.low Low value of the confidence interval for the odds ratio. Only returned if conf.int=TRUE.

confint.high High value of the confidence interval for the odds ratio. Only returned if conf.int=TRUE.

batchChisqTest and batchFisherTest both also return the following if return.by.snp=TRUE:

allele.counts
matrix with total number of A and B alleles over all batches.

min.exp.freq matrix of minimum expected allele frequency with SNPs as rows and batches as
columns.

Warnings:

If outfile is not NULL, another file will be saved with the name "outfile.warnings.RData" that
contains any warnings generated by the function.

Author(s)

Xiuwen Zheng, Stephanie Gogarten

See Also

GenotypeData, chisq.test, fisher.test

Examples

library(GWASdata)
file <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(file)
data(affy_scan_annot)
scanAnnot <- ScanAnnotationDataFrame(affy_scan_annot)
genoData <- GenotypeData(nc, scanAnnot=scanAnnot)

autosomes only, sexes combined (default)
res.chisq <- batchChisqTest(genoData, batchVar="plate")
res.chisq$mean.chisq
res.chisq$lambda

X chromosome for females
res.chisq <- batchChisqTest(genoData, batchVar="status",
chrom.include=23, sex.include="F", return.by.snp=TRUE)

head(res.chisq$chisq)

Fisher exact test of "status" on X chromosome for females
res.fisher <- batchFisherTest(genoData, batchVar="status",

chrom.include=23, sex.include="F")
qqPlot(res.fisher$pval)

centromeres 59

centromeres Centromere base positions

Description

Centromere base positions from the GRCh36/hg18 and GRCh37/hg19 genome builds.

Usage

data(centromeres.hg18)
data(centromeres.hg19)

Format

A data frame with the following columns.

chrom chromosome (1-22, X, Y)

left.base starting base position of centromere

right.base ending base position of centromere

Note

The UCSC genome browser lists two regions for the Y chromosome centromere in build hg18. We
removed the positions (12208578, 12308578) from the centromere table to avoid problems with
duplicate entries in the code.

Source

UCSC genome browser (http://genome.ucsc.edu).

Examples

data(centromeres.hg18)
data(centromeres.hg19)

chromIntensityPlot Plot B Allele Frequency and/or Log R Ratio, R or Theta values for
samples by probe position on a chromosome

Description

This function creates plots for one or more of the ’B AlleleFreq’, ’Log R Ratio’, ’R’ or ’Theta’
values for given sample by chromosome combinations.

http://genome.ucsc.edu

60 chromIntensityPlot

Usage

chromIntensityPlot(intenData, scan.ids, chrom.ids,
type = c("BAF/LRR", "BAF", "LRR", "R", "Theta", "R/Theta"),
code = NULL, main.txt = NULL,
abln = NULL, horizln = c(1/2, 1/3, 2/3),
colorGenotypes = FALSE, genoData = NULL,
colorBatch = FALSE, batch.column = NULL,
snp.exclude = NULL, ...)

Arguments

intenData IntensityData object, must contain at least one of ’BAlleleFreq’, ’LogR-
Ratio’, ’X’, ’Y’.

scan.ids A vector containing the sample indices of the plots.
chrom.ids A vector containing the chromosome indices of the plots.
type The type of plot to be created. ’BAF/LRR’ creates both ’B Allele Freq’ and

’Log R Ratio’ plots. ’R/Theta’ creates both ’R’ and ’Theta’ plots.
code A character vector containing the titles to be used for each plot. If NULL then

the title will be the sample number and the chromosome.
main.txt Text that will be written in the title on all plots created.
abln A vector of values that is of length 2*length(scan.ids). Each pair of en-

tries specifies where vertical lines will be drawn in each plot. This is especially
useful when drawing the start \& end breakpoints for anomalies, for example.
Use -1 as one pair value for plots that warrant only one line. By default, no lines
will be drawn.

horizln A vector containing the y-axis values at which a horizontal line will be drawn in
B Allele Frequency plots.

colorGenotypes
A logical value specifying whether to color-code the points by called genotype.
if TRUE, genoData must be given also.

genoData GenotypeData object, required if colorGenotypes=TRUE.
colorBatch A logical value specifying whether to color-code the points by sample batch

(e.g, plate). If TRUE, batch.column must also be specified.
batch.column A character string indicating which annotation variable in intenData should be

used as the batch.
snp.exclude An integer vector giving the IDs of SNPs to exclude from the plot.
... Other parameters to be passed directly to plot.

Details

For all plots, a vertical line is drawn every one eigth of the chromosome. For the Log R Ratio plot,
the y-axis has been given the range of (-2,2).

Author(s)

Caitlin McHugh, Cathy Laurie

See Also

IntensityData, GenotypeData, BAFfromGenotypes

convertNcdfGds 61

Examples

library(GWASdata)
data(illumina_scan_annot)
scanAnnot <- ScanAnnotationDataFrame(illumina_scan_annot)
blfile <- system.file("extdata", "illumina_bl.nc", package="GWASdata")
blnc <- NcdfIntensityReader(blfile)
intenData <- IntensityData(blnc, scanAnnot=scanAnnot)

genofile <- system.file("extdata", "illumina_geno.nc", package="GWASdata")
genonc <- NcdfGenotypeReader(genofile)
genoData <- GenotypeData(genonc, scanAnnot=scanAnnot)

scanID <- getScanID(scanAnnot, index=1)
chromIntensityPlot(intenData=intenData, scan.ids=scanID,

chrom.ids=22, type="BAF/LRR", code="interesting sample",
colorGenotypes=TRUE, genoData=genoData)

close(genoData)
close(intenData)

convertNcdfGds Convert between NetCDF and GDS format

Description

convertNcdfGds converts a genotype NetCDF file to the GDS format used by the R packages
gdsfmt and SNPRelate.

convertGdsNcdf converts a GDS file to NetCDF format.

checkNcdfGds checks whether a genotype NetCDF file and a GDS file contain identical data.

Usage

convertNcdfGds(ncdf.filename, gds.filename,
sample.annot = NULL, snp.annot = NULL, rsID.col = "rsID",
alleleA.col = "alleleA", alleleB.col = "alleleB",
zipflag = "zip.max", verbose = TRUE)

convertGdsNcdf(gds.filename, ncdf.filename, verbose = TRUE)

checkNcdfGds(ncdf.filename, gds.filename, verbose = TRUE)

Arguments
ncdf.filename

name of the NetCDF genotype file

gds.filename name of the GDS file

sample.annot a data.frame with sample annotation

snp.annot a data.frame with SNP annotation

rsID.col the name of the snp.annot column with rs ID

alleleA.col the name of the snp.annot column with allele A

alleleB.col the name of the snp.annot column with allele B

62 duplicateDiscordance

zipflag the compression format for the GDS file, one of "", "ZIP", "ZIP.fast", "ZIP.default",
or "ZIP.max"

verbose whether to show progress information

Details

These functions require that the package gdsfmt be installed. convertNcdfGds is needed to
convert the NetCDF genotype files used in this package to the format required by SNPRelate for
Principal Component Analysis, Identity-by-Descent, and Linkage Disequlibrium calculations.

Value

checkNcdfGds returns TRUE if the NetCDF and GDS files contain identical data. If the files
differ, it will print a diagnostic message and return FALSE.

Author(s)

Xiuwen Zheng

See Also

gdsfmt, SNPRelate, ncdf, NcdfGenotypeReader,

Examples

library(GWASdata)
ncfile <- system.file("extdata", "illumina_geno.nc", package="GWASdata")

data(illumina_snp_annot)
data(illumina_scan_annot)

gdsfile <- tempfile()
convertNcdfGds(ncfile, gdsfile, sample.annot=illumina_scan_annot,
snp.annot=illumina_snp_annot, rsID.col="rsID",
alleleA.col="allele.A", alleleB.col="allele.B")

checkNcdfGds(ncfile, gdsfile)

ncfile2 <- tempfile()
convertGdsNcdf(gdsfile, ncfile2)

file.remove(gdsfile, ncfile2)

duplicateDiscordance
Duplicate discordance

Description

A function to compute all pair-wise genotype discordances between multiple genotyping instances
of the same subject.

duplicateDiscordance 63

Usage

duplicateDiscordance(genoData, subjName.col,
scan.exclude = NULL, snp.exclude = NULL,
verbose = TRUE)

Arguments

genoData GenotypeData object

subjName.col A character string indicating the name of the annotation variable that will be
identical for duplicate scans.

scan.exclude An integer vector containing the ids of scans to be excluded.

snp.exclude An integer vector containing the ids of SNPs to be excluded.

verbose Logical value specifying whether to show progress information.

Value

A list with the following components:

discordance.by.snp
data frame with 5 columns: 1. snpID, 2. discordant (number of discordant pairs),
3. npair (number of pairs examined), 4. n.disc.subj (number of subjects with at
least one discordance), 5. discord.rate (discordance rate i.e. discordant/npair)

discordance.by.subject
a list of matrices (one for each subject) with the pair-wise discordance between
the different genotyping instances of the subject

correlation.by.subject
a list of matrices (one for each subject) with the pair-wise correlation between
the different genotyping instances of the subject

Author(s)

Tushar Bhangale, Cathy Laurie

See Also

GenotypeData, duplicateDiscordanceAcrossDatasets, duplicateDiscordanceProbability

Examples

library(GWASdata)
file <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(file)
data(affy_scan_annot)
scanAnnot <- ScanAnnotationDataFrame(affy_scan_annot)
genoData <- GenotypeData(nc, scanAnnot=scanAnnot)

disc <- duplicateDiscordance(genoData, subjName.col="subjectID")
close(genoData)

64 duplicateDiscordanceAcrossDatasets

duplicateDiscordanceAcrossDatasets
Duplicate discordance across datasets

Description

Finds number of discordant genotypes by SNP in pairs of duplicate scans of the same subject across
multiple datasets.

Usage

duplicateDiscordanceAcrossDatasets(genoData1, genoData2,
subjName.cols, snpName.cols,
scan.exclude1=NULL, scan.exclude2=NULL, snp.include=NULL,
verbose=TRUE)

Arguments

genoData1 GenotypeData object containing the first dataset.

genoData2 GenotypeData object containing the second dataset.
subjName.cols

2-element character vector indicating the names of the annotation variables that
will be identical for duplicate scans in the two datasets.

snpName.cols 2-element character vector indicating the names of the annotation variables that
will be identical for the same SNPs in the two datasets.

scan.exclude1
An integer vector containing the ids of scans to be excluded from the first
dataset.

scan.exclude2
An integer vector containing the ids of scans to be excluded from the second
dataset.

snp.include List of SNPs to include in the comparison. Should match the contents of the
columns referred to by snpName.cols.

verbose Logical value specifying whether to show progress information.

Details

If snp.include = NULL (the default), discordances will be found for all SNPs common to both
datasets.

Value

A list with the following components:

discordance.by.snp
data frame with 4 columns: 1. discordant (number of discordant pairs), 2. npair
(number of pairs examined), 3. n.disc.subj (number of subjects with at least
one discordance), 4. discord.rate (discordance rate i.e. discordant/npair). Row
names are the common snp ID.

duplicateDiscordanceProbability 65

discordance.by.subject
a list of matrices (one for each subject) with the pair-wise discordance between
the different genotyping instances of the subject

If no duplicate scans or no common SNPs are found, issues a warning message and returns NULL.

Author(s)

Stephanie Gogarten, Jess Shen

See Also

GenotypeData, duplicateDiscordance, duplicateDiscordanceProbability

Examples

library(GWASdata)

dataset 1
file1 <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc1 <- NcdfGenotypeReader(file1)
data(affy_snp_annot)
snpAnnot1 <- SnpAnnotationDataFrame(affy_snp_annot)
data(affy_scan_annot)
scanAnnot1 <- ScanAnnotationDataFrame(affy_scan_annot)
data1 <- GenotypeData(nc1, snpAnnot=snpAnnot1, scanAnnot=scanAnnot1)

dataset 2
file2 <- system.file("extdata", "illumina_geno.nc", package="GWASdata")
nc2 <- NcdfGenotypeReader(file2)
data(illumina_snp_annot)
snpAnnot2 <- SnpAnnotationDataFrame(illumina_snp_annot)
data(illumina_scan_annot)
scanAnnot2 <- ScanAnnotationDataFrame(illumina_scan_annot)
data2 <- GenotypeData(nc2, snpAnnot=snpAnnot2, scanAnnot=scanAnnot2)

discord <- duplicateDiscordanceAcrossDatasets(data1, data2,
subjName.cols=c("CoriellID", "CoriellID"),
snpName.cols=c("rsID", "rsID"))

close(data1)
close(data2)

duplicateDiscordanceProbability
Probability of duplicate discordance

Description

duplicateDiscordanceProbability calculates the probability of observing discordant
genotypes for duplicate samples.

66 duplicateDiscordanceProbability

Usage

duplicateDiscordanceProbability(npair,
error.rate = c(1e-5, 1e-4, 1e-3, 1e-2),
max.disc = 7)

Arguments

npair The number of pairs of duplicate samples.

error.rate A numeric vector of error rates (i.e., the rate at which a genotype will be called
incorrectly).

max.disc The maximum number of discordances for which to compute the probability.

Details

Since there are three possible genotypes, one call is correct and the other two are erroneous, so
theoretically there are two error rates, a and b. The probability that duplicate genotyping instances
of the same subject will give a discordant genotype is 2[(1 - a - b)(a + b) + ab]. When a and b are
very small, this is approximately 2(a + b) or twice the total error rate. This function assumes that a
== b, and the argument error.rate is the total error rate a + b.

Value

This function returns a matrix of probabilities, where the column names are error rates and the row
names are expected number of discordant genotypes (>0 through >max.disc).

Author(s)

Cathy Laurie

See Also

duplicateDiscordance, duplicateDiscordanceAcrossDatasets

Examples

disc <- duplicateDiscordanceProbability(npair=10, error.rate=c(1e-6, 1e-4))

#probability of observing >0 discordant genotypes given an error rate 1e-6
disc[1,1]

#probability of observing >1 discordant genotypes given an error rate 1e-4
disc[2,2]

findBAFvariance 67

findBAFvariance Find chromosomal areas with high BAlleleFreq (or LogRRatio) stan-
dard deviation

Description

sdByScanChromWindow uses a sliding window algorithm to calculate the standard deviation of
the BAlleleFreq (or LogRRatio) values for a user specified number of bins across each chromosome
of each scan.

medianSdOverAutosomes calculates the median of the BAlleleFreq (or LogRRatio) standard
deviation over all autosomes for each scan.

meanSdByChromWindow calculates the mean and standard deviation of the BAlleleFreq standard
deviation in each window in each chromosome over all scans.

findBAFvariance flags chromosomal areas with high BAlleleFreq standard deviation using
previously calculated means and standard deviations over scans, typically results from sdByScanChromWindow.

Usage

sdByScanChromWindow(intenData, genoData=NULL, var="BAlleleFreq", nbins=NULL,
snp.exclude=NULL, return.mean=FALSE, incl.miss=TRUE, incl.het=TRUE, incl.hom=FALSE)

medianSdOverAutosomes(sd.by.scan.chrom.window)

meanSdByChromWindow(sd.by.scan.chrom.window, sex)

findBAFvariance(sd.by.chrom.window, sd.by.scan.chrom.window,
sex, sd.threshold)

Arguments

intenData A IntensityData object

genoData A GenotypeData object. May be omitted if incl.miss, incl.het, and
incl.hom are all TRUE, as there is no need to distinguish between genotype
calls in that case.

var The variable for which to calculate standard deviations, typically "BAlleleFreq"
(the default) or "LogRRatio."

nbins A vector with integers corresponding to the number of bins for each chromo-
some. The values all must be even integers.

snp.exclude An integer vector containing the snpIDs of SNPs to be excluded.

return.mean a logical. If TRUE, return mean as well as standard deviation.

incl.miss a logical. If TRUE, include SNPs with missing genotype calls.

incl.het a logical. If TRUE, include SNPs called as heterozygotes.

incl.hom a logical. If TRUE, include SNPs called as homozygotes. This is typically
FALSE (the default) for BAlleleFreq calculations.

sd.by.scan.chrom.window
A list of matrices of standard deviation for each chromosome, with dimen-
sions of number of scans x number of windows. This is typically the output
of sdByScanChromWindow.

68 findBAFvariance

sd.by.chrom.window
A list of matrices of the standard deviations, as generated by meanSdByChromWindow.

sex A character vector of sex ("M"/"F") for the scans.

sd.threshold A value specifying the threshold for the number of standard deviations above
the mean at which to flag.

Details

sdByScanChromWindow calculates the standard deviation of BAlleleFreq (or LogRRatio) val-
ues across chromosomes 1-22 and chromosome X for a specified number of ’bins’ in each chromo-
some as passed to the function in the ’nbins’ argument. The standard deviation is calculated using
windows of width equal to 2 bins, and moves along the chromosome by an offset of 1 bin (or half
a window). Thus, there will be a total of nbins-1 windows per chromosome. If nbins=NULL
(the default), there will be 2 bins (one window) for each chromosome.

medianSdOverAutosomes calulates the median over autosomes of BAlleleFreq (or LogRRa-
tio) standard deviations calculated for sliding windows within each chromosome of each scan. The
standard deviations should be a list with one element for each chromosome, and each element con-
sisting of a matrix with scans as rows.

meanSdByChromWindow calculates the mean and standard deviation over scans of BAlleleFreq
standard deviations calculated for sliding windows within each chromosome of each scan. The
BAlleleFreq standard deviations should be a list with one element for each chromosome, and each
element consisting of a matrix containing the BAlleleFreq standard deviation for the i’th scan in
the j’th bin. This is typically created using the sdByScanChromWindow function. For the X
chromosome the calculations are separated out by gender.

findBAFvariance determines which chromosomes of which scans have regions which are at
least a given number of SDs from the mean, using BAlleleFreq means and standard deviations
calculated from sliding windows over each chromosome by scan.

Value

sdByScanChromWindow returns a list of matrices containing standard deviations. There is a
matrix for each chromosome, with each matrix having dimensions of number of scans x number of
windows. If return.mean=TRUE, two lists to matrices are returned, one with standard deviations
and one with means.

medianSdOverAutosomes returns a data frame with colums "scanID" and "med.sd" containing
the median standard deviations over all autosomes for each scan.

meanSdByChromWindow returns a list of matrices, one for each chromosome. Each matrix
contains two columns called "Mean" and "SD", containing the mean and SD of the BAlleleFreq
standard devations over scans for each bin. For the X chromosome the matrix has four columns
"Female Mean", "Male Mean", "Female SD" and "Male SD".

findBAFvariance returns a matrix with columns "scanID", "chromosome", "bin", and "sex"
containing those scan by chromosome combinations with BAlleleFreq standard deviations greater
than those specified by sd.threshold.

Author(s)

Caitlin McHugh, Cathy Laurie

See Also

IntensityData, GenotypeData, BAFfromClusterMeans, BAFfromGenotypes

genoClusterPlot 69

Examples

library(GWASdata)
data(illumina_scan_annot)
scanAnnot <- ScanAnnotationDataFrame(illumina_scan_annot)

blfile <- system.file("extdata", "illumina_bl.nc", package="GWASdata")
blnc <- NcdfIntensityReader(blfile)
blData <- IntensityData(blnc, scanAnnot=scanAnnot)

genofile <- system.file("extdata", "illumina_geno.nc", package="GWASdata")
genonc <- NcdfGenotypeReader(genofile)
genoData <- GenotypeData(genonc, scanAnnot=scanAnnot)

nbins <- rep(8, 3) # need bins for chromosomes 21,22,23
baf.sd <- sdByScanChromWindow(blData, genoData, nbins=nbins)

close(blData)
close(genoData)
med.res <- medianSdOverAutosomes(baf.sd)

sex <- scanAnnot$sex
sd.res <- meanSdByChromWindow(baf.sd, sex)

var.res <- findBAFvariance(sd.res, baf.sd, sex, sd.threshold=2)

genoClusterPlot SNP cluster plots

Description

Generates either X,Y or R,Theta cluster plots for specified SNP’s.

Usage

genoClusterPlot(intenData, genoData, plot.type = c("RTheta", "XY"),
snpID, main.txt = NULL, by.sex= FALSE,
scan.sel = NULL, scan.hilite = NULL,
verbose = TRUE, ...)

genoClusterPlotByBatch(intenData, genoData, plot.type = c("RTheta", "XY"),
snpID, batchVar, main.txt = NULL, scan.sel = NULL,
verbose = TRUE, ...)

Arguments

intenData IntensityData object containing ’X’ and ’Y’ values.

genoData GenotypeData object

plot.type The type of plots to generate. Possible values are "RTheta" (default) or "XY".

snpID A numerical vector containing the SNP number for each plot.

batchVar A character string indicating which annotation variable should be used as the
batch.

70 genoClusterPlot

main.txt A character vector containing the title to give to each plot.

by.sex Logical value specifying whether to indicate sex on the plot. If TRUE, sex must
be present in intenData or genoData.

scan.sel integer vector of scans to include in the plot. If NULL, all scans will be included.

scan.hilite integer vector of scans to highlight in the plot with different colors. If NULL, all
scans will be plotted with the same colors.

verbose Logical value specifying whether to show progress.

... Other parameters to be passed directly to plot.

Details

Either ’RTheta’ (default) or ’XY’ plots can be generated. R and Theta values are computed from X
and Y using the formulas r <- x+y and theta <- atan(y/x)*(2/pi).

If by.sex==TRUE, females are indicated with circles and males with crosses.

Author(s)

Caitlin McHugh

See Also

IntensityData, GenotypeData

Examples

create data object
library(GWASdata)
data(affy_scan_annot)
scanAnnot <- ScanAnnotationDataFrame(affy_scan_annot)

data(affy_snp_annot)
snpAnnot <- SnpAnnotationDataFrame(affy_snp_annot)

xyfile <- system.file("extdata", "affy_qxy.nc", package="GWASdata")
xync <- NcdfIntensityReader(xyfile)
xyData <- IntensityData(xync, scanAnnot=scanAnnot, snpAnnot=snpAnnot)

genofile <- system.file("extdata", "affy_geno.nc", package="GWASdata")
genonc <- NcdfGenotypeReader(genofile)
genoData <- GenotypeData(genonc, scanAnnot=scanAnnot, snpAnnot=snpAnnot)

select first 9 snps
snpID <- snpAnnot$snpID[1:9]
rsID <- snpAnnot$rsID[1:9]

par(mfrow=c(3,3)) # plot 3x3
genoClusterPlot(xyData, genoData, snpID=snpID, main.txt=rsID)

select samples
scan.sel <- scanAnnot$scanID[scanAnnot$race == "CEU"]
genoClusterPlot(xyData, genoData, snpID=snpID, main.txt=rsID,

scan.sel=scan.sel, by.sex=TRUE)

genoClusterPlot(xyData, genoData, snpID=snpID, main.txt=rsID,

getVariable 71

scan.hilite=scan.sel)

genoClusterPlotByBatch(xyData, genoData, snpID=snpID, main.txt=rsID,
batchVar="plate")

close(xyData)
close(genoData)

getVariable Accessors for variables in GenotypeData and IntensityData classes
and their component classes

Description

These generic functions provide access to variables associated with GWAS data cleaning.

Usage

getScanVariable(object, varname, ...)
getScanID(object, ...)
getSex(object, ...)
getSnpVariable(object, varname, ...)
getSnpID(object, ...)
getChromosome(object, ...)
getPosition(object, ...)
getVariable(object, varname, ...)
getGenotype(object, ...)
getQuality(object, ...)
getX(object, ...)
getY(object, ...)
getBAlleleFreq(object, ...)
getLogRRatio(object, ...)
getAnnotation(object, ...)
getMetadata(object, ...)
getQuery(object, statement, ...)

hasScanAnnotation(object)
hasScanVariable(object, varname)
hasSex(object)
hasSnpAnnotation(object)
hasSnpVariable(object, varname)
hasVariable(object, varname)
hasQuality(object)
hasX(object)
hasY(object)
hasBAlleleFreq(object)
hasLogRRatio(object)

nsnp(object)
nscan(object)

72 getobj

XchromCode(object)
XYchromCode(object)
YchromCode(object)
MchromCode(object)

writeAnnotation(object, value, ...)
writeMetadata(object, value, ...)

Arguments

object Object, possibly derived from or containing NcdfReader-class, ScanAnnotationDataFrame-
class, SnpAnnotationDataFrame-class, ScanAnnotationSQLite-
class, or SnpAnnotationSQLite-class.

varname Name of the variable (single character string, or a character vector for multiple
variables).

statement SQL statement to query ScanAnnotationSQLite-class or SnpAnnotationSQLite-
class objects.

value data.frame with annotation or metadata to write to ScanAnnotationSQLite-
class or SnpAnnotationSQLite-class objects.

... Additional arguments.

Value

getmethods return vectors or matrices of the requested variables (with the exception of getQuery,
which returns a data frame).

has methods return TRUE if the requested variable is present in object.

nsnp and nscan return the number of SNPs and scans in the object, repectively.

XchromCode, XYchromCode, YchromCode, and MchromCode return the integer chromo-
some codes associated with X, pseudoautosomal, Y, and mitochondrial SNPs.

Author(s)

Stephanie Gogarten

See Also

ScanAnnotationDataFrame-class, SnpAnnotationDataFrame-class, ScanAnnotationSQLite-
class, SnpAnnotationSQLite-class, NcdfReader-class, NcdfGenotypeReader-
class, NcdfIntensityReader-class, GenotypeData-class, IntensityData-class

getobj Get an R object stored in an Rdata file

Description

Returns an R object stored in an Rdata file

Usage

getobj(Rdata)

gwasExactHW 73

Arguments

Rdata path to an Rdata file containing a single R object to load

Details

Loads an R object and stores it under a new name without creating a duplicate copy. If multiple
objects are stored in the same file, only the first one will be returned

Value

The R object stored in Rdata.

Author(s)

Stephanie Gogarten

See Also

saveas

Examples

x <- 1:10
file <- tempfile()
save(x, file=file)
y <- getobj(file)
unlink(file)

gwasExactHW Hardy-Weinberg Equilibrium testing

Description

This function performs exact Hardy-Weinberg Equilibrium testing (using Fisher’s Test) over a se-
lection of SNPs. It also performs genotype counts, calculates allele frequencies, and calculates
inbreeding coefficients.

Usage

gwasExactHW(genoData,
scan.chromosome.filter = NULL,
scan.exclude = NULL,
geno.counts = TRUE,
chromosome.set = NULL,
block.size = 5000,
verbose = TRUE,
outfile = NULL)

74 gwasExactHW

Arguments

genoData GenotypeData object, should contain sex and phenotypes in scan annotation
scan.chromosome.filter

a logical matrix that can be used to exclude some chromosomes, some scans,
or some specific scan-chromosome pairs. Entries should be TRUE if that scan-
chromosome pair should be included in the analysis, FALSE if not. The num-
ber of rows must be equal to the number of scans in genoData, and the
number of columns must be equal to the largest integer chromosome value in
genoData. The column number must match the chromosome number. e.g. A
scan.chromosome.filter matrix used for an analyis when genoData has SNPs
with chromosome=(1-24, 26, 27) (i.e. no Y (25) chromosome SNPs) must have
27 columns (all FALSE in the 25th column). But a scan.chromosome.filter ma-
trix used for an analysis genoData has SNPs chromosome=(1-26) (i.e no Un-
mapped (27) chromosome SNPs) must have only 26 columns.

scan.exclude an integer vector containing the IDs of entire scans to be excluded.

geno.counts if TRUE (default), genotype counts are returned in the output data.frame.
chromosome.set

integer vector with chromosome(s) to be analyzed. Use 23, 24, 25, 26, 27 for X,
XY, Y, M, Unmapped respectively.

block.size Number of SNPs to be read from genoData at once.

verbose if TRUE (default), will print status updates while the function runs. e.g. it will
print "chr 1 block 1 of 10" etc. in the R console after each block of SNPs is done
being analyzed.

outfile a character string to append in front of ".chr.i_k.RData" for naming the output
data-frame; where i is the first chromosome, and k is the last chromosome used
in that call to the function. "chr.i_k." will be omitted if chromosome.set=NULL.

Details

HWE calculations are performed with the HWExact function in the GWASExactHW package.

For the X chromosome, only female samples will be used in all calculations (since males are ex-
cluded from HWE testing on this chromosome). Hence if chromosome.set includes 23, the scan
annotation of genoData should provide the sex of the sample ("M" or "F") i.e. there should be a
column named "sex" with "F" for females and "M" for males.

Y, M, and U (25, 26, and 27) chromsome SNPs are not used in HWE analysis, so all returned values
for these SNPs will be NA.

Value

If outfile=NULL (default), all results are returned as a single data.frame. If outfile is speci-
fied, no data is returned but the function saves a data-frame with the naming convention as described
by the argument outfile.

The first three columns of the data-frame are:

snpID snpID (from the snp annotation) of the SNP

chromosome chromosome (from the snp annotation) of the SNP. The integers 23, 24, 25, 26,
27 are used for X, XY, Y, M, Unmapped respectively.

position position (from the snp annotation) of the SNP

If geno.counts = TRUE:

hetByScanChrom 75

nAA number of AA genotypes in samples

nAB number of AB genotypes in samples

nBB number of BB genotypes in samples

MAF minor allele frequency.

minor.allele the minor allele. Takes values "A" or "B".

f the inbreeding coefficient.

p.value exact Hardy-Weinberg Equilibrium (using Fisher’s Test) p-value. p.value
will be NA for monomorphic SNPs (MAF == 0).

Warnings:

If outfile is not NULL, another file will be saved with the name "outfile.chr.i_k.warnings.RData"
that contains any warnings generated by the function.

Author(s)

Ian Painter, Matt Conomos

See Also

HWExact

Examples

The following example would perform exact Hardy-Weinberg equilibrium testing on all chromosomes in this data set. It would also return genotype counts, minor allele frequencies, and inbreeding coefficients.

library(GWASdata)
data(affy_scan_annot)
scanAnnot <- ScanAnnotationDataFrame(affy_scan_annot)

run only on YRI subjects
scan.exclude <- scanAnnot$scanID[scanAnnot$race != "YRI"]

create data object
ncfile <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(ncfile)
genoData <- GenotypeData(nc, scanAnnot=scanAnnot)

hwe <- gwasExactHW(genoData, scan.exclude=scan.exclude)

close(genoData)

hetByScanChrom Heterozygosity rates by scan and chromosome

Description

This function calculates the fraction of heterozygous genotypes for each chromosome for a set of
scans.

76 hetBySnpSex

Usage

hetByScanChrom(genoData, snp.exclude = NULL,
verbose = TRUE)

Arguments

genoData GenotypeData object

snp.exclude An integer vector containing the id’s of SNPs to be excluded.

verbose Logical value specifying whether to show progress information.

Details

This function calculates the percent of heterozygous and missing genotypes in each chromosome
of each scan given in genoData.

Value

The result is a matrix containing the heterozygosity rates with scans as rows and chromosomes as
columns, including a column "A" for all autosomes.

Author(s)

Cathy Laurie

See Also

GenotypeData, hetBySnpSex

Examples

file <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(file)
genoData <- GenotypeData(nc)
het <- hetByScanChrom(genoData)
close(genoData)

hetBySnpSex Heterozygosity by SNP and sex

Description

This function calculates the percent of heterozygous genotypes for males and females for each SNP.

Usage

hetBySnpSex(genoData, scan.exclude = NULL,
verbose = TRUE)

ibdPlot 77

Arguments

genoData GenotypeData object

scan.exclude An integer vector containing the id’s of scans to be excluded.

verbose Logical value specifying whether to show progress information.

Details

This function calculates the percent of heterozygous genotypes for males and females for each SNP
given in genoData. A "sex" variable must be present in the scan annotation slot of genoData.

Value

The result is a matrix containing the heterozygosity rates with snps as rows and 2 columns ("M" for
males and "F" for females).

Author(s)

Cathy Laurie

See Also

GenotypeData, hetByScanChrom

Examples

library(GWASdata)
file <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(file)

need scan annotation with sex
data(affy_scan_annot)
scanAnnot <- ScanAnnotationDataFrame(affy_scan_annot)
genoData <- GenotypeData(nc, scanAnnot=scanAnnot)

het <- hetBySnpSex(genoData)
close(genoData)

ibdPlot Plot theoretical and observed identity by descent values and assign
relationships

Description

ibdPlot produces an IBD plot showing observed identity by descent values color coded by ex-
pected relationship. Theoretical boundaries for full-sib, half-sib, and first-cousins are plotted in or-
ange. ibdAreasDraw overlays relationship areas for IBD analysis on the plot. ibdAssignRelatedness
identifies observed relatives.

78 ibdPlot

Usage

ibdPlot(k0, k1, alpha=0.05, relation=NULL, color=NULL, rel.lwd=2, ...)

ibdAreasDraw(alpha=.05, m=0.04, po.w=0.1, po.h=0.1,
dup.w=0.1, dup.h=0.1, un.w=0.25, un.h=0.25, rel.lwd=2,

xcol=c("cyan","red","blue","lightgreen","magenta","black"))

ibdAssignRelatedness(k0, k1, alpha=0.05, m=0.04, po.w=0.1, po.h=0.1,
dup.w=0.1, dup.h=0.1, un.w=0.25, un.h=0.25)

Arguments

k0 A vector of k0 values.

k1 A vector of k1 values.

alpha significance level - finds 100(1-alpha)% prediction intervals for half-sibs and
first cousins and 100(1-alpha)% prediction ellipse for full-sibs

relation A vector of relationships.

color A vector of colors for (k0,k1) points.

rel.lwd Line width for theoretical full-sib, half-sib, and first-cousin boundaries.

... Other graphical parameters to pass to plot and points.

m width of rectangle along diagonal line

po.w width of parent-offspring rectangle

po.h height of parent-offspring rectangle

dup.w width of duplicate rectangle

dup.h height of duplicate rectangle

un.w width of unrelated rectangle

un.h height of unrelated rectangle

xcol colors for parent-offspring, full-sib, half-sib, first cousin, dup & unrelated areas

Details

ibdPlot produces an IBD plot showing observed identity by descent values color coded by ex-
pected relationship, typically as deduced from pedigree data. Points are plotted according to their
corresponding value in the color vector, and the relation vector is used to make the plot
legend.

Theoretical boundary for full-sibs is indicated by ellipse and boundaries for half-sib and first cousin
intervals are indicated in orange. For full-sibs, 100(1-alpha)% prediction ellipse is based on as-
suming bivariate normal distribution with known mean and covariance matrix. For half-sibs and
first-cousins, 100(1-alpha)% prediction intervals for k1 are based on assuming normal distribution
with known mean and variance.

ibdAreasDraw overlays relationship areas on the plot to help with analyzing observed relation-
ships. For full-sibs, 100(1-alpha)% prediction ellipse is based on assuming bivariate normal dis-
tribution with known mean and covariance matrix. For half-sibs and first-cousins, 100(1-alpha)%
prediction intervals for k1 are based on assuming normal distribution with known mean and vari-
ance.

ibdAssignRelatedness identifies relatives based on their (k0, k1) coordinates.

intensityOutliersPlot 79

Value

ibdAssignRelatedness returns a vector of relationships with values "Dup"=duplicate, "PO"=parent-
offspring, "FS"=full sibling, "HS"=half-sibling-like, "FC"=first cousin, "U"=unrelated, and "Q"=unknown.

Author(s)

Cathy Laurie and Cecelia Laurie

See Also

relationsMeanVar

Examples

k0 <- c(0, 0, 0.25, 0.5, 0.75, 1)
k1 <- c(0, 1, 0.5, 0.5, 0.25, 0)
exp.rel <- c("Dup", "PO", "FS", "HS", "FC", "U")
ibdPlot(k0, k1, relation=exp.rel)
ibdAreasDraw()
obs.rel <- ibdAssignRelatedness(k0, k1)

intensityOutliersPlot
Plot mean intensity and highlight outliers

Description

intensityOutliersPlot is a function to plot mean intensity for chromosome i vs mean of
intensities for autosomes (excluding i) and highlight outliers

Usage

intensityOutliersPlot(mean.intensities, sex, outliers,
sep = FALSE, label, ...)

Arguments

mean.intensities
scan x chromosome matrix of mean intensities

sex vector with values of "M" or "F" corresponding to scans in the rows of mean.intensities

outliers list of outliers, each member corresponds to a chromosome (member "X" is itself
a list of female and male outliers)

sep plot outliers within a chromosome separately (TRUE) or together (FALSE)

label list of plot labels (to be positioned below X axis) corresponding to list of outliers

... additional arguments to plot

80 intensityOutliersPlot

Details

Outliers must be determined in advance and stored as a list, with one element per chromosome. The
X chromosome must be a list of two elements, "M" and "F". Each element should contain a vector
of ids corresponding to the row names of mean.intensities.

If sep=TRUE, labels must also be specified. labels should be a list that corresponds exactly
to the elements of outliers.

Author(s)

Cathy Laurie

See Also

meanIntensityByScanChrom

Examples

calculate mean intensity
library(GWASdata)
file <- system.file("extdata", "affy_qxy.nc", package="GWASdata")
nc <- NcdfIntensityReader(file)
data(affy_scan_annot)
scanAnnot <- ScanAnnotationDataFrame(affy_scan_annot)
intenData <- IntensityData(nc, scanAnnot=scanAnnot)
meanInten <- meanIntensityByScanChrom(intenData)
intenMatrix <- meanInten$mean.intensity

find outliers
outliers <- list()
sex <- scanAnnot$sex
id <- scanAnnot$scanID
allequal(id, rownames(intenMatrix))
for (i in colnames(intenMatrix)) {
if (i != "X") {
imean <- intenMatrix[,i]
imin <- id[imean == min(imean)]
imax <- id[imean == max(imean)]
outliers[[i]] <- c(imin, imax)

} else {
idf <- id[sex == "F"]
fmean <- intenMatrix[sex == "F", i]
fmin <- idf[fmean == min(fmean)]
fmax <- idf[fmean == max(fmean)]
outliers[[i]][["F"]] <- c(fmin, fmax)
idm <- id[sex == "M"]
mmean <- intenMatrix[sex == "M", i]
mmin <- idm[mmean == min(mmean)]
mmax <- idm[mmean == max(mmean)]
outliers[[i]][["M"]] <- c(mmin, mmax)

}
}

par(mfrow=c(2,4))
intensityOutliersPlot(intenMatrix, sex, outliers)

manhattanPlot 81

manhattanPlot Manhattan plot for genome wide association tests

Description

Generates a manhattan plot of the results of a genome wide association test.

Usage

manhattanPlot(p, chromosome,
chrom.labels = c(1:22,"X","XY","Y","M"),
ylim = NULL, trunc.lines = TRUE, ...)

Arguments

p A vector of p-values.

chromosome A vector containing the integer chromosome ID for each SNP.

chrom.labels A vector of chromosome names to use in the plot.

ylim The limits of the y axis. If NULL, the y axis is (0, log10(length(p)) +
4).

trunc.lines Logical value indicating whether to show truncation lines.

... Other parameters to be passed directly to plot.

Details

Plots -log10(p) versus chromosome. Point size is scaled so that smaller p values have larger points.

Plot limits are determined as follows: if ylim is provided, any points with -log10(p) > ylim[2]
are plotted as triangles at the maximum y value of the plot. A line will be drawn to indicate trunc-
tation (if trunc.lines == TRUE, the default). If ylim == NULL, the maximum y value is
defined as log10(length(p)) + 4).

Author(s)

Cathy Laurie

See Also

snpCorrelationPlot

Examples

n <- 1000
pvals <- sample(-log10((1:n)/n), n, replace=TRUE)
chromosome <- c(rep(1,500), rep(2,500))
manhattanPlot(pvals, chromosome, chrom.labels=c(1,2))

82 meanIntensityByScanChrom

meanIntensityByScanChrom
Calculate Means & Standard Deviations of Intensities

Description

Function to calculate the mean and standard deviation of the intensity for each chromosome for
each scan.

Usage

meanIntensityByScanChrom(intenData, vars = c("X", "Y"),
snp.exclude = NULL, verbose = TRUE)

Arguments

intenData IntensityData object

vars Character vector with the names of one or two intensity variables.

snp.exclude An integer vector containing SNPs to be excluded.

verbose Logical value specifying whether to show progress information.

Details

The names of two intensity variables in intenData may be supplied. If two variables are given,
the mean of their sum is computed as well. The default is to compute the mean and standard
deviation for X and Y intensity.

Value

A list with two components for each variable in "vars": ’mean.var’ and ’sd.var’. If two variables are
given, the first two elements of the list will be mean and sd for the sum of the intensity variables:

mean.intensity
A matrix with one row per scan and one column per chromosome containing the
means of the summed intensity values for each scan and chromosome.

sd.intensity
A matrix with one row per scan and one column per chromosome containing the
standard deviations of the summed intensity values for each scan and chromo-
some.

mean.var A matrix with one row per scan and one column per chromosome containing the
means of the intensity values for each scan and chromosome.

sd.var A matrix with one row per scan and one column per chromosome containing the
standard deviations of the intensity values for each scan and chromosome.

Author(s)

Cathy Laurie

See Also

IntensityData, mean, sd

mendelErr 83

Examples

file <- system.file("extdata", "affy_qxy.nc", package="GWASdata")
nc <- NcdfIntensityReader(file)
intenData <- IntensityData(nc)

meanInten <- meanIntensityByScanChrom(intenData)

mendelErr Mendelian Error Checking

Description

Mendelian and mtDNA inheritance tests.

Usage

mendelErr(genoData, mendel.list, snp.exclude=NULL,
error.by.snp=TRUE, error.by.snp.trio=FALSE,
verbose=TRUE, outfile=NULL)

Arguments

genoData GenotypeData object, must have scan variable "sex"

mendel.list A mendelList object, to specify trios.

snp.exclude An integer vector with snpIDs of SNPs to exclude. If NULL (default), all SNPs
are used.

error.by.snp Whether or not to output Mendelian errors per SNP. This will only return the
total number of trios checked and the total number of errors for each SNP. The
default value is TRUE.

error.by.snp.trio
Whether or not to output Mendelian errors per SNP for each trio. This will
return the total number of trios checked and the total number of errors for each
SNP as well as indicators of which SNPs have an error for each trio. The default
value is FALSE. NOTE: error.by.snp must be set to TRUE as well in order
to use this option. NOTE: Using this option causes the output to be very large
that may be slow to load into R.

verbose If TRUE (default), will print status updates while the function runs.

outfile A character string to append in front of ".RData" for naming the output file.

Details

genoData must contain the scan annotation variable "sex". Chromosome index: 1..22 autosomes,
23 X, 24 XY, 25 Y, 26 mtDNA, 27 missing.

Another file will be saved with the name "outfile.warnings.RData" that contains any warnings gen-
erated by the function.

84 mendelErr

Value

If outfile=NULL (default), mendelErr returns an object of class "mendelClass". If outfile
is specified, no data is returned but mendelErr saves the object to disk as "outfile.RData."

The object contains two data frames: "trios" and "all.trios", and a list: "snp" (if error.by.snp
is specified to be TRUE). If there are no duplicate samples in the dataset, "trios" will be the same
as "all.trios". Otherwise, "all.trios" contains the results of all combinations of duplicate samples,
and "trios" only stores the average values of unique trios. i.e: "trios" averages duplicate samples for
each unique subject trio. "trios" and "all.trios" contain the following components:

fam.id Specifying the family ID from the mendel.list object used as input.

child.id Specifying the offspring ID from the mendel.list object used as input.

child.scanID Specifying the offspring scanID from the mendel.list object used as input. (only
in "all.trios")

father.scanID
Specifying the father scanID from the mendel.list object used as input. (only in
"all.trios")

mother.scanID
Specifying the mother scanID from the mendel.list object used as input. (only
in "all.trios")

Men.err.cnt The number of SNPs with Mendelian errors in this trio.

Men.cnt The total number of SNPs checked for Mendelian errors in this trio. It excludes
those cases where the SNP is missing in the offspring and those cases where
it is missing in both parents. Hence, Mendelian error rate = Men.err.cnt /
Men.cnt.

mtDNA.err The number of SNPs with mtDNA inheritance errors in this trio.

mtDNA.cnt The total number of SNPs checked for mtDNA inheritance errors in this trio.
It excludes those cases where the SNP is missing in the offspring and in the
mother. Hence, mtDNA error rate = mtDNA.err / mtDNA.cnt .

chr1, ..., chr25
The number of Mendelian errors in each chromosome for this trio.

"snp" is a list that contains the following components:

check.cnt A vector of integers, indicating the number of trios valid for checking on each
SNP.

error.cnt A vector of integers, indicating the number of trios with errors on each SNP.
familyid.childid

A vector of indicators (0/1) for whether or not any of the duplicate trios for the
unique trio, "familyid.childid", have a Mendelian error on each SNP. (Only if
error.by.snp.trio is specified to be TRUE).

Warnings:

If outfile is not NULL, another file will be saved with the name "outfile.warnings.RData" that
contains any warnings generated by the function.

Author(s)

Xiuwen Zheng, Matt Conomos

mendelErr 85

See Also

mendelList

Examples

library(GWASdata)
data(affy_scan_annot)

generate trio list
men.list <- with(affy_scan_annot, mendelList(family, subjectID, father, mother, sex, scanID))

create genoData object
ncfile <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(ncfile)
scanAnnot <- ScanAnnotationDataFrame(affy_scan_annot)
genoData <- GenotypeData(nc, scanAnnot=scanAnnot)

Run!
outfile <- tempfile()
mendelErr(genoData, men.list, error.by.snp.trio = TRUE, outfile =
outfile)

Load the output
R <- getobj(paste(outfile, "RData", sep="."))
names(R)
[1] "trios" "all.trios" "snp"

names(R$trios)
[1] "fam.id" "child.id" "Men.err.cnt" "Men.cnt" "mtDNA.err"
[6] "mtDNA.cnt" "chr1" "chr2" "chr3" "chr4"
[11] "chr5" "chr6" "chr7" "chr8" "chr9"
[16] "chr10" "chr11" "chr12" "chr13" "chr14"
[21] "chr15" "chr16" "chr17" "chr18" "chr19"
[26] "chr20" "chr21" "chr22" "chr23" "chr24"
[31] "chr25"

Mendelian error rate = Men.err.cnt / Men.cnt
data.frame(fam.id = R$trios$fam.id, child.id = R$trios$child.id,

Mendel.err.rate = R$trios$Men.err.cnt / R$trios$Men.cnt)

names(R$snp)
summary(Rsnpcheck.cnt)

summary Mendelian error for first family
summary(R$snp[[1]])

check warnings
warnfile <- paste(outfile, "warnings.RData", sep=".")
if (file.exists(warnfile)) warns <- getobj(warnfile)

close(genoData)
unlink(paste(outfile, "*", sep=""))

86 mendelList

mendelList Mendelian Error Checking

Description

mendelList creates a "mendelList" object (a list of trios). mendelListAsDataFrame con-
verts a "mendelList" object to a data frame.

Usage

mendelList(familyid, offspring, father, mother, sex, scanID)

mendelListAsDataFrame(mendel.list)

Arguments

familyid A vector of family ID numbers.

offspring A vector of offspring ID numbers.

father A vector of father ID numbers.

mother A vector of mother ID numbers.

sex A vector to specify whether each scan is male "M" or female "F".

scanID A vector of unique scan identification numbers. These will be used to identify
scans in output.

mendel.list An object of class "mendelList".

Details

The lengths of familyid, offspring, father, mother, sex, and scanID must all be
identical. The "mendelList" object is required as input for the mendelErr function.

Value

mendelList returns a "mendelList" object. A "mendelList" object is a list of lists. The first level
list is all the families. The second level list is offspring within families who have one or both par-
ents genotyped. Within the second level are data.frame(s) with columns "offspring", "father", and
"mother" which each contain the scanID for each member of the trio (a missing parent is denoted
by -1). When replicates of the same offsping ID occur (duplicate scans for the same subject), this
data.frame has multiple rows representing all combinations of scanIDs for that trio.

mendelListAsDataFrame returns a data.frame with variables "offspring", "father", and "mother"
which each contain the scanID for each member of the trio (a missing parent is denoted by -1). This
takes every data.frame from the "mendelList" object and puts them all into one large data frame.
This can be easier to work with for certain analyses.

Author(s)

Xiuwen Zheng, Matt Conomos

See Also

mendelErr

missingGenotypeByScanChrom 87

Examples

get sample annotation
library(GWASdata)
data(affy_scan_annot)

generate trio list
men.list <- with(affy_scan_annot, mendelList(family, subjectID, father, mother, sex, scanID))

class(men.list)
[1] "mendelList"

convert into a data.frame
men.df <- mendelListAsDataFrame(men.list)

class(men.df)
[1] "data.frame"

missingGenotypeByScanChrom
Missing Counts per Scan per Chromosome

Description

This function tabulates missing genotype calls for each scan for each chromosome.

Usage

missingGenotypeByScanChrom(genoData, snp.exclude = NULL,
verbose = TRUE)

Arguments

genoData GenotypeData object

snp.exclude A vector of IDs corresponding to the SNPs that should be excluded from the
overall missing count.

verbose Logical value specifying whether to show progress information.

Details

This function calculates the percent of missing genotypes in each chromosome of each scan given
in genoData. A "sex" variable must be present in the scan annotation slot of genoData.

Value

This function returns a list with three components: "missing.counts," "snps.per.chr", and "miss-
ing.fraction."

missing.counts
A matrix with rows corresponding to the scans and columns indicating unique
chromosomes containing the number of missing SNP’s for each scan and chro-
mosome.

snps.per.chr A vector containing the number of non-excluded SNPs for each chromosome.

88 missingGenotypeBySnpSex

missing.fraction
A vector containing the fraction of missing counts for each scan over all chro-
mosomes, excluding the Y chromosome for females.

Author(s)

Cathy Laurie

See Also

GenotypeData, missingGenotypeBySnpSex

Examples

library(GWASdata)
file <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(file)

need scan annotation with sex
data(affy_scan_annot)
scanAnnot <- ScanAnnotationDataFrame(affy_scan_annot)
genoData <- GenotypeData(nc, scanAnnot=scanAnnot)

missingRate <- missingGenotypeByScanChrom(genoData)
close(genoData)

missingGenotypeBySnpSex
Missing Counts per SNP by Sex

Description

For all SNPs for each sex tabulates missing SNP counts, allele counts and heterozygous counts.

Usage

missingGenotypeBySnpSex(genoData, scan.exclude = NULL,
verbose = TRUE)

Arguments

genoData GenotypeData object.

scan.exclude A vector containing the scan numbers of scans that are to be excluded from the
total scan list.

verbose Logical value specifying whether to show progress information.

Details

This function calculates the fraction of missing genotypes for males and females for each SNP given
in genoData. A "sex" variable must be present in the scan annotation slot of genoData.

ncdfAddData 89

Value

This function returns a list with three components: "missing.counts," "scans.per.sex," and "miss-
ing.fraction."

missing.counts
A matrix with one row per SNP and one column per gender containing the num-
ber of missing SNP counts for males and females, respectively.

scans.per.sex
A vector containing the number of males and females respectively.

missing.fraction
A vector containing the fraction of missing counts for each SNP, with females
excluded for the Y chromosome.

Author(s)

Cathy Laurie, Stephanie Gogarten

See Also

GenotypeData, missingGenotypeByScanChrom

Examples

library(GWASdata)
file <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(file)

need scan annotation with sex
data(affy_scan_annot)
scanAnnot <- ScanAnnotationDataFrame(affy_scan_annot)
genoData <- GenotypeData(nc, scanAnnot=scanAnnot)

missingRate <- missingGenotypeBySnpSex(genoData)
close(genoData)

ncdfAddData Write genotypic calls and/or associated metrics to a netCDF file

Description

Genotypic calls and/or associated quantitative variables (e.g. quality score, intensities) are read from
text files and written to an existing netCDF file in which those variables were defined previously.

Usage

ncdfAddData(path = "", ncdf.filename,
snp.annotation, scan.annotation,
sep.type, skip.num, col.total, col.nums,
scan.name.in.file, scan.start.index = 1,
diagnostics.filename = "ncdfAddData.diagnostics.RData",
verbose = TRUE)

90 ncdfAddData

ncdfAddIntensity(path = "", ncdf.filename,
snp.annotation, scan.annotation,
scan.start.index = 1, n.consecutive.scans = -1,
diagnostics.filename = "ncdfAddIntensity.diagnostics.RData",
verbose = TRUE)

ncdfCheckGenotype(path = "", ncdf.filename,
snp.annotation, scan.annotation,
sep.type, skip.num, col.total, col.nums,
scan.name.in.file, check.scan.index, n.scans.loaded,
diagnostics.filename = "ncdfCheckGenotype.diagnostics.RData",
verbose = TRUE)

ncdfCheckIntensity(path = "", intenpath = "", ncdf.filename,
snp.annotation, scan.annotation,
sep.type, skip.num, col.total, col.nums,
scan.name.in.file, check.scan.index,
n.scans.loaded, affy.inten = FALSE,
diagnostics.filename = "ncdfCheckIntensity.diagnostics.RData",
verbose = TRUE)

Arguments

path Path to the raw text files.
intenpath Path to the raw text files containing intensity, if "inten.file" is given in scan.annotation.
ncdf.filename

Name of the netCDF file in which to write the data.
snp.annotation

SNP annotation data.frame containing SNPs in the same order as those in the
snp dimension of the netCDF file. Column names must be "snpID" (integer ID)
and "snpName", where snpName matches the snp ids inside the raw genoypic
data files.

scan.annotation
Scan annotation data.frame with columns "scanID" (integer id of scan in the
netCDF file), "scanName", (sample name inside the raw data file) and "file"
(corresponding raw data file name).

sep.type Field separator in the raw text files.
skip.num Number of rows to skip, which should be all rows preceding the genotypic or

quantitative data (including the header).
col.total Total number of columns in the raw text files.
col.nums An integer vector indicating which columns of the raw text file contain vari-

ables for input. names(col.nums) must be a subset of c("snp", "sample",
"geno", "a1", "a2", "qs", "x", "y", "rawx", "rawy", "r", "theta", "ballelefreq",
"logrratio"). The element "snp" is the column of SNP ids, "sample" is sample
ids, "geno" is diploid genotype (in AB format), "a1" and "a2" are alleles 1 and
2 (in AB format), "qs" is quality score, "x" and "y" are normalized intensities,
"rawx" and "rawy" are raw intensities, "r" is the sum of normalized intensities,
"theta" is angular polar coordinate, "ballelefreq" is the B allele frequency, and
"logrratio" is the Log R Ratio.

scan.name.in.file
An indicator for the presence of sample name within the file. A value of 1
indicates a column with repeated values of the sample name (Illumina format),

ncdfAddData 91

-1 indicates sample name embedded in a column heading (Affymetrix format)
and 0 indicates no sample name inside the raw data file.

scan.start.index
A numeric value containing the index of the sample dimension of the netCDF
file at which to begin writing.

n.consecutive.scans
The number of consecutive "sampleID" indices for which to write intensity val-
ues, beginning at scan.start.index (which equals the number of "ALLELE_SUMMARY"
files to process). When n.consecutive.scans=-1, all samples from scan.start.index
to the total number will be processed.

check.scan.index
An integer vector containing the indices of the sample dimension of the netCDF
file to check.

n.scans.loaded
Number of scans loaded in the netCDF file.

affy.inten Logical value indicating whether Affy intensities are in separate files from qual-
ity scores. If TRUE, must also specify intenpath.

diagnostics.filename
Name of the output file to save diagnostics.

verbose Logical value specifying whether to show progress information.

Details

These functions read genotypic and associated data from raw text files. The files to be read and
processed are specified in the sample annotation. ncdfAddData expects one file per sample, with
each file having one row of data per SNP probe. The col.nums argument allows the user to select
and identify specific fields for writing to the netCDF file. Illumina text files and Affymetrix ".CHP"
files can be used here (but not Affymetrix "ALLELE_SUMMARY" files).

A SNP annotation data.frame is a pre-requisite for this function. It has the same number of rows
(one per SNP) as the raw text file and a column of SNP names matching those within the raw text
file. It also has a column of integer SNP ids matching the values (in order) of the "snp" dimension
of the netCDF file.

A sample annotation data.frame is also a pre-requisite. It has one row per sample with columns
corresponding to sample name (as it occurs within the raw text file), name of the raw text file for
that sample and an integer sample id (to be written as the "sampleID" variable in the netCDF file).

The genotype calls in the raw text file may be either one column of diploid calls or two columns of
allele calls. The function takes calls in AB format and converts them to a numeric code indicating
the number of "A" alleles in the genotype (i.e. AA=2, AB=1, BB=0 and missing=-1).

While each raw text file is being read, the functions check for errors and irregularities and records
the results in a list of vectors. If any problem is detected, that raw text file is skipped.

ncdfAddIntensity uses scan.start.index and n.consecutive.scans to identify
the set of integer sample ids for input (from the netCDF file). It then uses the sample annotation
data.frame to identify the corresponding sample names and "ALLELE_SUMMARY" file names to
read. The "ALLELE_SUMMARY" files have two rows per SNP, one for X (A allele) and one for Y
(B allele). These are reformatted to one row per SNP and and ordered according to the SNP integer
id in the netCDF file. The correspondence between SNP names in the "ALLELE_SUMMARY" file
and the SNP integer ids is made using the SNP annotation data.frame.

ncdfCheckGenotype and ncdfCheckIntensity check the contents of netCDF files against
raw text files.

These functions use the ncdf library, which provides an interface between R and netCDF.

92 ncdfAddData

Value

The netCDF file specified in argument ncdf.filename is populated with genotype calls and/or
associated quantitative variables. A list of diagnostics with the following components is returned.
Each vector has one element per raw text file processed.

read.file A vector indicating whether (1) or not (0) each file was read successfully.

row.num A vector of the number of rows read from each file. These should all be the
same and equal to the number of rows in the SNP annotation data.frame.

samples A list of vectors containing the unique sample names in the sample column of
each raw text file. Each vector should have just one element.

sample.match A vector indicating whether (1) or not (0) the sample name inside the raw text
file matches that in the sample annotation data.frame

missg A list of vectors containing the unique character string(s) for missing genotypes
(i.e. not AA,AB or BB) for each raw text file.

snp.chk A vector indicating whether (1) or not (0) the raw text file has the expected set
of SNP names (i.e. matching those in the SNP annotation data.frame).

chk A vector indicating whether (1) or not (0) all previous checks were successful
and the data were written to the netCDF file.

ncdfCheckGenotypes returns the following additional list items.

snp.order A vector indicating whether (1) or not (0) the snp ids are in the same order in
each file.

geno.chk A vector indicating whether (1) or not (0) the genotypes in the netCDF match
the text file.

ncdfCheckIntensity returns the following additional list items.

qs.chk A vector indicating whether (1) or not (0) the quality scores in the netCDF match
the text file.

read.file.inten
A vector indicating whether (1) or not (0) each intensity file was read success-
fully (if intensity files are separate).

sample.match.inten
A vector indicating whether (1) or not (0) the sample name inside the raw text
file matches that in the sample annotation data.frame (if intensity files are sepa-
rate).

rows.equal A vector indicating whether (1) or not (0) the number of rows read from each file
are the same and equal to the number of rows in the SNP annotation data.frame
(if intensity files are separate).

snp.chk.inten
A vector indicating whether (1) or not (0) the raw text file has the expected set of
SNP names (i.e. matching those in the SNP annotation data.frame) (if intensity
files are separate).

inten.chk A vector for each intensity variable indicating whether (1) or not (0) the intensi-
ties in the netCDF match the text file.

Note

These functions were modeled after similar code written by Thomas Lumley.

ncdfAddData 93

Author(s)

Cathy Laurie

See Also

ncdf, ncdfCreate, ncdfSubset

Examples

library(GWASdata)

#############
Illumina - genotype file
#############
first create empty netCDF
data(illumina_snp_annot)
snpAnnot <- illumina_snp_annot
data(illumina_scan_annot)
scanAnnot <- illumina_scan_annot[1:3,] # subset of samples for testing
ncfile <- tempfile()
ncdfCreate(snpAnnot, ncfile, variables="genotype",

n.samples=nrow(scanAnnot))

add data
path <- system.file("extdata", "illumina_raw_data", package="GWASdata")
snpAnnot <- snpAnnot[,c("snpID", "rsID")]
names(snpAnnot) <- c("snpID", "snpName")
scanAnnot <- scanAnnot[,c("scanID", "genoRunID", "file")]
names(scanAnnot) <- c("scanID", "scanName", "file")
col.nums <- as.integer(c(1,2,12,13))
names(col.nums) <- c("snp", "sample", "a1", "a2")
diagfile <- tempfile()
res <- ncdfAddData(path, ncfile, snpAnnot, scanAnnot, sep.type=",",

skip.num=11, col.total=21, col.nums=col.nums,
scan.name.in.file=1, diagnostics.filename=diagfile)

file.remove(diagfile)
file.remove(ncfile)

#############
Affymetrix - genotype file
#############
first create empty netCDF
data(affy_snp_annot)
snpAnnot <- affy_snp_annot
data(affy_scan_annot)
scanAnnot <- affy_scan_annot[1:3,] # subset of samples for testing
ncfile <- tempfile()
ncdfCreate(snpAnnot, ncfile, variables="genotype",

n.samples=nrow(scanAnnot))

add data
path <- system.file("extdata", "affy_raw_data", package="GWASdata")
snpAnnot <- snpAnnot[,c("snpID", "probeID")]
names(snpAnnot) <- c("snpID", "snpName")
scanAnnot <- scanAnnot[,c("scanID", "genoRunID", "chpFile")]

94 ncdfAddData

names(scanAnnot) <- c("scanID", "scanName", "file")
col.nums <- as.integer(c(2,3)); names(col.nums) <- c("snp", "geno")
diagfile <- tempfile()
res <- ncdfAddData(path, ncfile, snpAnnot, scanAnnot, sep.type="\t",

skip.num=1, col.total=6, col.nums=col.nums,
scan.name.in.file=-1, diagnostics.filename=diagfile)

file.remove(diagfile)

check
diagfile <- tempfile()
res <- ncdfCheckGenotype(path, ncfile, snpAnnot, scanAnnot, sep.type="\t",

skip.num=1, col.total=6, col.nums=col.nums,
scan.name.in.file=-1, check.scan.index=1:3,
n.scans.loaded=3, diagnostics.filename=diagfile)

file.remove(diagfile)
file.remove(ncfile)

#############
Affymetrix - intensity file
#############
first create empty netCDF
snpAnnot <- affy_snp_annot
scanAnnot <- affy_scan_annot[1:3,] # subset of samples for testing
ncfile <- tempfile()
ncdfCreate(snpAnnot, ncfile, variables=c("quality","X","Y"),

n.samples=nrow(scanAnnot))

add sampleID and quality
path <- system.file("extdata", "affy_raw_data", package="GWASdata")
snpAnnot <- snpAnnot[,c("snpID", "probeID")]
names(snpAnnot) <- c("snpID", "snpName")
scanAnnot1 <- scanAnnot[,c("scanID", "genoRunID", "chpFile")]
names(scanAnnot1) <- c("scanID", "scanName", "file")
col.nums <- as.integer(c(2,4)); names(col.nums) <- c("snp", "qs")
diagfile <- tempfile()
res <- ncdfAddData(path, ncfile, snpAnnot, scanAnnot1, sep.type="\t",

skip.num=1, col.total=6, col.nums=col.nums,
scan.name.in.file=-1, diagnostics.filename=diagfile)

file.remove(diagfile)

add intensity
scanAnnot2 <- scanAnnot[,c("scanID", "genoRunID", "alleleFile")]
names(scanAnnot2) <- c("scanID", "scanName", "file")
diagfile <- tempfile()
res <- ncdfAddIntensity(path, ncfile, snpAnnot, scanAnnot2,

diagnostics.filename=diagfile)
file.remove(diagfile)

check
intenpath <- system.file("extdata", "affy_raw_data", package="GWASdata")
scanAnnot <- scanAnnot[,c("scanID", "genoRunID", "chpFile", "alleleFile")]
names(scanAnnot) <- c("scanID", "scanName", "file", "inten.file")
diagfile <- tempfile()
res <- ncdfCheckIntensity(path, intenpath, ncfile, snpAnnot, scanAnnot, sep.type="\t",

skip.num=1, col.total=6, col.nums=col.nums,
scan.name.in.file=-1, check.scan.index=1:3,
n.scans.loaded=3, affy.inten=TRUE,

ncdfCreate 95

diagnostics.filename=diagfile)

file.remove(diagfile)
file.remove(ncfile)

ncdfCreate Write genotypic calls and/or associated metrics to a netCDF file.

Description

The function creates a shell netCDF file to which data can subsequently written.

Usage

ncdfCreate(snp.annotation, ncdf.filename, variables = "genotype",
n.samples = 10, precision = "double",
array.name = NULL, genome.build = NULL)

Arguments

snp.annotation
Snp annotation dataframe with columns "snpID", "chromosome", and "posi-
tion". snpID should be a unique integer vector, sorted with respect to chromo-
some and position.

ncdf.filename
The name of the genotype netCDF file to create

variables A character vector containing the names of the variables to create (must be
one or more of c("genotype", "quality", "X", "Y", "rawX",
"rawY", "R", "Theta", "BAlleleFreq", "LogRRatio"))

n.samples The number of samples that will be in the netcdf file.

precision A character value indicating whether floating point numbers should be stored as
"double" or "single" precision.

array.name Name of the array, to be stored as an attribute in the netCDF file.

genome.build Genome build used in determining chromosome and position, to be stored as an
attribute in the netCDF file.

Details

The function creates a shell netCDF file to which data can subsequently written.

Author(s)

Cathy Laurie

See Also

ncdf, ncdfAddData, ncdfSubset

96 ncdfSubset

Examples

library(GWASdata)
data(affy_snp_annot)
ncfile <- tempfile()
ncdfCreate(affy_snp_annot, ncfile, variables="genotype", n.samples=5)
file.remove(ncfile)

ncdfSubset Write a subset of data in a netCDF file to a new netCDF file

Description

ncdfSubset takes a subset of data (snps and samples) from a netCDF file and write it to a
new netCDF file. ncdfSubsetCheck checks that a netCDF file is the desired subset of another
netCDF file.

Usage

ncdfSubset(parent.ncdf, sub.ncdf,
sample.include=NULL, snp.include=NULL,
verbose=TRUE)

ncdfSubsetCheck(parent.ncdf, sub.ncdf,
sample.include=NULL, snp.include=NULL,
verbose=TRUE)

Arguments

parent.ncdf Name of the parent netCDF file

sub.ncdf Name of the subset netCDF file
sample.include

Vector of sampleIDs to include in sub.ncdf

snp.include Vector of snpIDs to include in sub.ncdf

verbose Logical value specifying whether to show progress information.

Details

ncdfSubset can select a subset of snps for all samples by setting snp.include, a subset of
samples for all snps by setting sample.include, or a subset of snps and samples with both
arguments.

Author(s)

Cathy Laurie, Stephanie Gogarten

See Also

ncdf, ncdfCreate, ncdfAddData

pedigreeCheck 97

Examples

ncfile <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(ncfile)
sample.sel <- getScanID(nc, index=1:10)
snp.sel <- getSnpID(nc, index=1:100)
close(nc)

subnc <- tempfile()
ncdfSubset(ncfile, subnc, sample.include=sample.sel, snp.include=snp.sel)
ncdfSubsetCheck(ncfile, subnc, sample.include=sample.sel, snp.include=snp.sel)
file.remove(subnc)

pedigreeCheck Testing for internal consistency of pedigrees

Description

Find inconsistencies within pedigrees.

Usage

pedigreeCheck(pedigree)

Arguments

pedigree A dataframe containing the pedigree information for the samples to be examined
with columns labeled "family", "individ", "mother", "father" and "sex" contain-
ing the identity numbers of the family, individual, individual’s mother, individ-
ual’s father and individual’s gender (coded as "M" or "F") .

Details

The function pedigreeCheck finds any of a number of possible inconsitencies within pedigree
data: single individual families, gender mismatches with mother or father, impossible relationships
(either where a child is a parent of self or an individual is both a child and a parent of the same
person) and families that consist of two unrelated persons. It also looks for multiple subfamilies
within a family.

Value

The output for pedigreeCheck is a list with the following elements:

one.person A vector of family ids for one-person families
mismatch.sex

A vector of of family ids where sex of mother and/or father is incorrect
impossible.related

A vector of of family ids where either child is mother of self or an individual is
both child and mother of same person

duos A vector of of family ids where ’family’ consists of only 2 unrelated persons

98 pedigreeClean

subfamilies.ident
A matrix with columns for the family id (of ’families’ with multiple subfami-
lies), subfamily identifier and individual of each person in the identified subfam-
ilies. Note that subfamilies are not identified for any families already identified
with problems, and that the individual id’s include individuals identified as a
mother or father who may not be listed as individuals in the pedigree.
If no inconsistencies are found, the output is NULL.

Note

Subfamilies are not identified for any families already identified with problems, and individual id’s
in subfamilies may include individual ids listed for a mother or father who may not be listed as
individuals in the pedigree.

Author(s)

Cecilia Laurie

See Also

pedigreeClean, pedigreeFindDuplicates, pedigreePairwiseRelatedness

Examples

family <- c(1,1,1,2,2,2,3)
individ <- c(1,2,3,4,5,6,7)
mother <- c(0,0,1,0,0,4,0)
father <- c(0,0,2,0,0,5,0)
sex <- c("F","M","F","F","F","M","M")
pedigree <- data.frame(family, individ, mother, father, sex)
pedigreeCheck(pedigree)
#$one.person
#[1] 3

#$mismatch.sex
#[1] 2

#$impossible.related
#NULL

#$subfamilies.ident
#data frame with 0 columns and 0 rows

pedigreeClean Basic pedigree data checking

Description

This function checks a pedigree for completeness and gross errors

Usage

pedigreeClean(pedigree, verbose = TRUE)

pedigreeClean 99

Arguments

pedigree A dataframe containing the pedigree information for the samples to be examined
with columns labeled "family", "individ", "mother", "father" and "sex" contain-
ing the identity numbers of the family, individual, individual’s mother, individ-
ual’s father and individual’s gender (coded as "M" or "F") .

verbose Logical value specifying whether or not to show progress information.

Details

The function performs a basic check on pedigree data for gross errors, checking for missing id’s,
non-integer id’s, mis-coded gender, id’s of 0 and for individuals that appear as both mothers and
fathers.

Value

A list with the following components:

fam.na A vector of integers containing the row positions of entries with missing family
id’s

other.na A vector of integers containing the row positions of entries with missing indi-
vidual, mother or father id’s

cols.not.numeric
A vector of integers containing the row positions of non-numeric id’s

rows.sexcode.error
A vector of integers containing the row positions of entries with mis-specified
gender

zero.individ A vector of integers containing the row positions with an id equal to 0.

mofa A vector containing the id’s of individuals appearing as both mothers and fathers

Returns NULL if no errors were found.

Author(s)

Cecelia Laurie

See Also

pedigreeCheck, pedigreeFindDuplicates, pedigreePairwiseRelatedness

Examples

family <- c(1,1,1,NA,2,2,2,2)
individ <- c(1,2,3,0,4,5,6,NA)
mother <- c(0,0,1,1,0,0,4,4)
father <- c(0,0,2,2,0,0,5,4)
sex <- c("F","M","F","F","F","F","M",1)
pedigree <- data.frame(family, individ, mother, father, sex)
pedigreeClean(pedigree)

#$fam.na
#[1] 4

#$other.na

100 pedigreeFindDuplicates

#[1] 8

#$cols.not.numeric
#NULL

#$rows.sexcode.error
#[1] 8

#$zero.individ
#[1] 4

#$mofa
#[1] 2

pedigreeFindDuplicates
Identify and remove duplicates from a pedigree

Description

pedigreeFindDuplicates identifies duplicates of individuals within a family and checks that
pedigree data on duplicates is consistent. pedigreeDeleteDuplicates removes duplicates
from a pedigree.

Usage

pedigreeFindDuplicates(pedigree, verbose = TRUE)

pedigreeDeleteDuplicates(pedigree, duplicates)

Arguments

pedigree A dataframe containing the pedigree information for the samples to be examined
with columns labeled "family", "individ", "mother", "father" and "sex" contain-
ing the identity numbers of the family, individual, individual’s mother, individ-
ual’s father and individual’s gender (coded as "M" or "F") .

duplicates dataframe with columns "family" (family id) and "individ" (individual id)

verbose Logical value specifying whether or not to show progress information.

Details

The output of pedigreeFindDuplicates can be provided to pedigreeDeleteDuplicates
in order to generate a new pedigree with duplicates removed.

Value

The output of pedigreeFindDuplicates is list containing two dataframes:

dups.mismatch
A dataframe containing the family id, individual id and number of copies for
any duplicates with mismatching pedigree data

pedigreePairwiseRelatedness 101

dups.match A dataframe containing the family id, individual id and number of copies for
any duplicates with matching pedigree data

The output of pedigreeDeleteDuplicates is a pedigree identical to pedigree, but with
duplicates removed.

Author(s)

Cecilia Laurie

See Also

pedigreeClean, pedigreeCheck, pedigreePairwiseRelatedness

Examples

family <- c(1,1,1,1,2,2,2,2)
individ <- c(1,2,3,3,4,5,6,6)
mother <- c(0,0,1,1,0,0,4,4)
father <- c(0,0,2,2,0,0,5,5)
sex <- c("F","M","F","F","F","F","M","M")
pedigree <- data.frame(family, individ, mother, father, sex)
duplicates <- pedigreeFindDuplicates(pedigree)
pedigree.no.dups <- pedigreeDeleteDuplicates(pedigree, duplicates$dups.match)

pedigreePairwiseRelatedness
Calculate theoretical pairwise relatedness values from pedigrees

Description

This function calculates the pairwise relatedness values from pedigree data.

Usage

pedigreePairwiseRelatedness(pedigree, use.any.ids = FALSE)

Arguments

pedigree A dataframe containing the pedigree information for the samples to be examined
with columns labeled "family", "individ", "mother", "father" and "sex" contain-
ing the identity numbers of the family, individual, individual’s mother, individ-
ual’s father and individual’s gender (coded as "M" or "F") .

use.any.ids A logical value specifying whether pairs of individuals should be created using
only id’s listed in the "individ" column (if FALSE or if pairs should be created
using any id’s contained in "individ", "mother" or "father" columns.

Details

The function assumes (and checks) that there are no one person families, no mismatched mother/father
sexes and no impossible relationships. Relatedness is not calculated for inbred families.

102 pseudoautoIntensityPlot

Value

A list with the following components:

inbred.fam A vector of id’s of families with inbreeding (to be handled by hand)

relativeprs A dataframe with columns "Individ1", "Individ2", "relation", "kinship coeffi-
cient" and "family" containing the id’s of the pair of individuals, the relationship
between the individuals if closely related (possible values are "UN" = unrelated,
"PO" = parent/offspring, "FS" = full siblings, "HS" = half siblings, and "FC" =
first cousins), kinship coefficient and family id.

Author(s)

Cecilia Laurie

See Also

pedigreeClean, pedigreeCheck, pedigreeFindDuplicates

Examples

family <- c(1,1,1,1,2,2,2,2)
individ <- c(1,2,3,4,5,6,7,8)
mother <- c(0,0,1,1,0,0,5,5)
father <- c(0,0,2,2,0,0,6,0)
sex <- c("F","M","F","F","F","M","M","M")
pedigree <- data.frame(family, individ, mother, father, sex)
pedigreePairwiseRelatedness(pedigree)

#$inbred.fam
#NULL

#$relativeprs
Individ1 Individ2 relation kinship family
#1 1 2 U 0.000 1
#2 1 3 PO 0.250 1
#3 1 4 PO 0.250 1
#4 2 3 PO 0.250 1
#5 2 4 PO 0.250 1
#6 3 4 FS 0.250 1
#11 5 6 U 0.000 2
#21 5 7 PO 0.250 2
#31 5 8 PO 0.250 2
#51 6 7 PO 0.250 2
#61 6 8 U 0.000 2
#8 7 8 HS 0.125 2

pseudoautoIntensityPlot
Plot B Allele Frequency and Log R Ratio for the X and Y chromosomes,
overlaying XY SNPs

pseudoautoIntensityPlot 103

Description

This function plots X, Y and pseudoautosomal SNPs on BAF/LRR plots.

Usage

pseudoautoIntensityPlot(intenData, scan.ids, code=NULL,
plotY=FALSE, hg.build=c("hg18", "hg19"), ...)

Arguments

scan.ids A vector containing the sample indices of the plots.

intenData IntensityData object, must contain ’BAlleleFreq’ and ’LogRRatio’

code A character vector containing the titles to be used for each plot. If NULL then
the title will be the sample number and the chromosome.

plotY If plotY is TRUE, the Y chromosome will be plotted in addition to X.

hg.build Human genome bulid number

... Other parameters to be passed directly to plot.

Details

The pseudoautosomal regions are highlighted on the plots (PAR1 and PAR2 in gray, XTR in yellow),
and the X, Y, and XY SNPs are plotted in different colors. The base positions for these regions
depend on genome build (hg.build). Currently hg18 and hg19 are supported.

By default the output is a 2-panel plot with LRR and BAF for the X chromosome. if plotY is
TRUE, the output is a 4-panel plot with the Y chromosome plotted as well.

Author(s)

Caitlin McHugh

References

Ross, Mark. T. et al. (2005), The DNA sequence of the human X chromosome. Nature, 434:
325-337. doi:10.1038/nature03440

See Also

pseudoautosomal, IntensityData, GenotypeData, BAFfromGenotypes

Examples

library(GWASdata)
data(illumina_scan_annot)
scanAnnot <- ScanAnnotationDataFrame(illumina_scan_annot)
blfile <- system.file("extdata", "illumina_bl.nc", package="GWASdata")
blnc <- NcdfIntensityReader(blfile)
intenData <- IntensityData(blnc, scanAnnot=scanAnnot)

scanID <- getScanID(scanAnnot, index=1)
pseudoautoIntensityPlot(intenData=intenData, scan.ids=scanID)
close(intenData)

104 qqPlot

pseudoautosomal Pseudoautosomal region base positions

Description

Pseudoautosomal region (XTR, PAR1, PAR2) base positions for the X and Y chromsosomes from
the GRCh36/hg18 and GRCh37/hg19 genome builds.

Usage

pseudoautosomal.hg18
pseudoautosomal.hg19

Format

A data.frame with the following columns.

chrom chromsome (X or Y)

region region (XTR, PAR1, or PAR2)

start.base starting base position of region

end.base ending base position of region

Source

UCSC genome browser (http://genome.ucsc.edu).

References

Ross, Mark. T. et al. (2005), The DNA sequence of the human X chromosome. Nature, 434:
325-337. doi:10.1038/nature03440

Examples

data(pseudoautosomal.hg18)
data(pseudoautosomal.hg19)

qqPlot QQ plot for genome wide assocation studies

Description

Generates a Quantile-Quantile plot for -log10 p-values from genome wide association tests.

Usage

qqPlot(pval, truncate = FALSE, sub = NULL, ...)

http://genome.ucsc.edu

qualityScoreByScan 105

Arguments

pval Vector of p-values
truncate A logical value indicating whether the y-axis should be truncted to the same

range as the x-axis.
sub A character string to print under the x-axis.
... Other parameters to be passed directly to plot.

Details

The function generates a Quantile-Quantile plot of p-values on a -log10 scale, with the option of
truncating the y-axis to the range of the x-axis (0, -log10(1/length(pval)). If the y-axis
is truncated, then points off the top of the plot are denoted by triangles at the upper edge. The 95%
confidence interval is shaded in gray.

If sub=NULL (the default), the genomic inflation factor lambda is calculated from the p-values and
printed.

Author(s)

Cathy Laurie, Matt Conomos

Examples

pvals <- seq(0, 1, 0.001)
qqPlot(pvals)

qualityScoreByScan Mean and median quality score for scans

Description

This function calculates the mean and median quality score, over all SNPs with a non-missing
genotype call, for each scan.

Usage

qualityScoreByScan(intenData, genoData,
snp.exclude = NULL,
verbose = TRUE)

Arguments

intenData IntensityData object
genoData GenotypeData object
snp.exclude An integer vector containing the id’s of SNPs to be excluded.
verbose Logical value specifying whether to show progress information.

Details

intenData and genoData must have matching snpID and scanID. Y chromosome SNPs are
excluded for females. A "sex" variable must be present in the scan annotation slot of intenData
or genoData.

106 qualityScoreBySnp

Value

The function returns a matrix with the following columns:

mean.quality A vector of mean quality scores for each scan
median.quality

A vector of median quality scores for each scan.

Author(s)

Cathy Laurie

See Also

IntensityData, GenotypeData, qualityScoreBySnp

Examples

library(GWASdata)
qualfile <- system.file("extdata", "affy_qxy.nc", package="GWASdata")
qualnc <- NcdfIntensityReader(qualfile)
need scan annotation with sex
data(affy_scan_annot)
scanAnnot <- ScanAnnotationDataFrame(affy_scan_annot)
qualData <- IntensityData(qualnc, scanAnnot=scanAnnot)

genofile <- system.file("extdata", "affy_geno.nc", package="GWASdata")
genonc <- NcdfGenotypeReader(genofile)
genoData <- GenotypeData(genonc, scanAnnot=scanAnnot)

quality <- qualityScoreByScan(qualData, genoData)
close(qualData)
close(genoData)

qualityScoreBySnp Mean and median quality score for SNPs

Description

This function calculates the mean and median quality score, over all scans with a non-missing
genotype call, for each SNP.

Usage

qualityScoreBySnp(intenData, genoData, scan.exclude = NULL,
block.size = 5000, verbose = TRUE)

Arguments

intenData IntensityData object
genoData GenotypeData object
scan.exclude An integer vector containing the id’s of scans to be excluded.
block.size Number of SNPs to be read from intenData and genoData at once.
verbose Logical value specifying whether to show progress information.

readWriteFirst 107

Details

intenData and genoData must have matching snpID and scanID.

Value

The function returns a matrix with the following columns:

mean.quality
A vector of mean quality scores for each snp.

median.quality
A vector of median quality scores for each snp.

Author(s)

Cathy Laurie

See Also

IntensityData, GenotypeData, qualityScoreByScan

Examples

qualfile <- system.file("extdata", "affy_qxy.nc", package="GWASdata")
qualnc <- NcdfIntensityReader(qualfile)
qualData <- IntensityData(qualnc)

genofile <- system.file("extdata", "affy_geno.nc", package="GWASdata")
genonc <- NcdfGenotypeReader(genofile)
genoData <- GenotypeData(genonc)

quality <- qualityScoreBySnp(qualData, genoData)
close(qualData)
close(genoData)

readWriteFirst Read and write the first n lines of a file

Description

Read first n lines of filein and write them to fileout, where filein and fileout are file
names.

Usage

readWriteFirst(filein, fileout, n)

Arguments

filein input file

fileout output file

n number of lines to write

108 relationsMeanVar

Author(s)

Cathy Laurie

Examples

path <- system.file("extdata", "affy_raw_data", package="GWASdata")
file <- paste(path, list.files(path)[1], sep="/")
outf <- tempfile()
readWriteFirst(file, outf, 20)
file.remove(outf)

relationsMeanVar Mean and Variance information for full-sibs, half-sibs, first-cousins

Description

Computes theoretical mean and covariance matrix for k0 vs. k1 ibd coefficients for full-sib rela-
tionship along with inverse and eigenvalues/vectors of the covariance matrix.

Computes theoretical means and variances for half-sib relationship and for first-cousin relationship.

Usage

relationsMeanVar

Format

A list with the following entries:

FullSibs list with following entries:
• mean: mean of (k0,k1) for full-sibs
• cov: covariance matrix for full-sibs
• invCov: inverse of the covariance matrix
• eigvals: eigenvalues of the inverse covariance matrix
• eigvectors: eigenvectors of the inverse covariance matrix

HalfSibs list with following entries:
• mean: mean of (k0,k1) for half-sibs
• var: variance for half-sibs

FirstCousins list with following entries:
• mean: mean of (k0,k1) for first-cousins
• var: variance for first-cousin

Source

computed by Cecelia Laurie using the referenced papers

References

Hill, W.G. and B.S. Weir (2011) Variation in actual relationship as a consequence of Mendelian
sampling and linkage,Genet. Res., Camb., 93, 47–64.

Kong, X., et al (2004) A combined physical-linkage map of the human genome, American Journal
of Human Genetics, 75, 1143–1148.

saveas 109

Examples

data(relationsMeanVar)
FS<-relationsMeanVar$FullSibs
FScov<-FS$cov #gives covariance matrix for full-sibs
HS<-relationsMeanVar$HalfSibs
HSvar<-HS$var #gives variance for half-sibs

saveas Save an R object with a new name

Description

Saves an R object as name in an Rdata file called path/name.RData.

Usage

saveas(obj, name, path=".")

Arguments

obj R object to save

name character string with the new name for the R object

path path for the Rdata file (saved file will be path/name.RData)

Details

The suffix ".RData" will be appended to the new object name to create the file name, and the file
will be written to the path directory.

Author(s)

Stephanie Gogarten

See Also

getobj

Examples

x <- 1:10
path <- tempdir()
saveas(x, "myx", path)
newfile <- paste(path, "/myx", ".RData", sep="")
load(newfile) # myx now loaded
unlink(newfile)

110 simulateGenotypeMatrix

simulateGenotypeMatrix
Simulate Genotype Matrix & Load into NetCDF File

Description

This function creates a netCDF file with dimensions ’snp’ and ’sample’ and variables ’sampleID’,
’genotype’, ’position’ and ’chromosome’. These variables hold simulated data as described below.
Mainly, this function is intended to be used in examples involving genotype matrices.

Usage

simulateGenotypeMatrix(n.snps=10, n.chromosomes=10,
n.samples=1000, ncdf.filename,
silent=TRUE)

Arguments

n.snps An integer corresponding to the number of SNPs per chromosome, the default
value is 10. For this function, the number of SNPs is assumed to be the same for
every chromosome.

n.chromosomes
An integer value describing the total number of chromosomes with default value
10.

n.samples An integer representing the number of samples for our data. The default value
is 1000 samples.

ncdf.filename
A string that will be used as the name of the netCDF file. This is to be used later
when opening and retrieving data generated from this function.

silent Logical value. If FALSE, the function returns a table of genotype counts gener-
ated. The default is TRUE; no data will be returned in this case.

Details

The resulting netCDF file will have the following characteristics:

Dimensions:

’snp’: n.snps*n.chromosomes length

’sample’: n.samples length

Variables:

’sampleID’: sample dimension, values 1-n.samples

’position’: snp dimension, values [1,2,...,n.chromosomes] n.snps times

’chromosome’: snp dimension, values [1,1,...]n.snps times, [2,2,...]n.snps times, ..., [n.chromosomes,n.chromosomes,...]n.snps
times

’genotype’: 2-dimensional snp x sample, values 0, 1, 2 chosen from allele frequencies that were
generated from a uniform distribution on (0,1). The missing rate is 0.05 (constant across all SNPs)
and is denoted by -1.

simulateIntensityMatrix 111

Value

This function returns a table of genotype calls if the silent variable is set to FALSE, where 0 indi-
cates an AA genotype, 1 is AB, 2 is BB and -1 corresponds to a missing genotype call.

A netCDF file is created from this function and written to disk. This file (and data) can be accessed
later by using the command open.ncdf(ncdf.filename).

Author(s)

Caitlin McHugh

See Also

ncdf, missingGenotypeBySnpSex, missingGenotypeByScanChrom, simulateIntensityMatrix

Examples

filenm <- tempfile()

simulateGenotypeMatrix(ncdf.filename=filenm)

file <- NcdfGenotypeReader(filenm)
file #notice the dimensions and variables listed

genot <- getGenotype(file)
table(genot) #can see the number of missing calls

chrom <- getChromosome(file)
unique(chrom) #there are indeed 10 chromosomes, as specified in the function call

close(file)
unlink(filenm)

simulateIntensityMatrix
Simulate Intensity Matrix & Load into NetCDF File

Description

This function creates a netCDF file with dimensions ’snp’ and ’sample’ and variables ’sampleID’,
’position’, ’chromosome’, ’quality’, ’X’, and ’Y’. These variables hold simulated data as explained
below. Mainly, this function is intended to be used in examples involving matrices holding quanti-
tative data.

Usage

simulateIntensityMatrix(n.snps=10, n.chromosomes=10,
n.samples=1000, ncdf.filename,
silent=TRUE)

112 simulateIntensityMatrix

Arguments

n.snps An integer corresponding to the number of SNPs per chromosome, the default
value is 10. For this function, the number of SNPs is assumed to be the same for
every chromosome.

n.chromosomes
An integer value describing the total number of chromosomes with default value
10.

n.samples An integer representing the number of samples for our data. The default value
is 1000 samples.

ncdf.filename
A string that will be used as the name of the netCDF file. This is to be used later
when opening and retrieving data generated from this function.

silent Logical value. If FALSE, the function returns a list of heterozygosity and miss-
ing values. The default is TRUE; no data will be returned in this case.

Details

The resulting netCDF file will have the following characteristics:

Dimensions:

’snp’: n.snps*n.chromosomes length

’sample’: n.samples length

Variables:

’sampleID’: sample dimension, values 1-n.samples

’position’: snp dimension, values [1,2,...,n.chromosomes] n.snps times

’chromosome’: snp dimension, values[1,1,...]n.snps times, [2,2,...]n.snps times, ... , [n.chromosomes,n.chromosomes,...]n.snps
times

’quality’: 2-dimensional snp x sample, values between 0 and 1 chosen randomly from a uniform
distribution. There is one quality value per snp, so this value is constant across all samples.

’X’: 2-dimensional snp x sample, value of X intensity taken from a normal distribution. The mean
of the distribution for each SNP is based upon the sample genotype. Mean is 0,2 if sample is
homozygous, 1 if heterozygous.

’Y’: 2-dimensional snp x sample, value of Y intensity also chosen from a normal distribution, where
the mean is chosen according to the mean of X so that sum of means = 2.

Value

This function returns a list if the silent variable is set to FALSE, which includes:

het Heterozygosity table

nmiss Number of missing values

A netCDF file is created from this function and written to disk. This file (and data) can be accessed
later by using the command ’open.ncdf(ncdf.filename)’.

Author(s)

Caitlin McHugh

snpCorrelationPlot 113

See Also

ncdf, meanIntensityByScanChrom, simulateGenotypeMatrix

Examples

filenm <- tempfile()

simulateIntensityMatrix(ncdf.filename=filenm, silent=FALSE)

file <- NcdfIntensityReader(filenm)
file #notice the dimensions and variables listed

xint <- getX(file)
yint <- getY(file)
print("Number missing is: "); sum(is.na(xint))

chrom <- getChromosome(file)
unique(chrom) #there are indeed 10 chromosomes, as specified in the function call

close(file)
unlink(filenm)

snpCorrelationPlot SNP correlation plot

Description

Plots SNP correlation versus chromosome.

Usage

snpCorrelationPlot(correlations, chromosome,
chrom.labels = c(1:22,"X","XY","Y","M"),
ylim=c(0,1), ylab = "abs(correlation)", ...)

Arguments

correlations A vector of correlations.

chromosome A vector containing the integer chromosome ID for each SNP.

chrom.labels A vector of chromosome names to use in the plot.

ylim The limits of the y axis.

ylab The label for the y axis.

... Other parameters to be passed directly to plot.

Details

Plots SNP correlations (from, e.g., PCA), versus chromosome. SNPs are evenly spaced along the X
axis, so correlations should be in order of position on the chromosome.

114 snpCorrelationPlot

Author(s)

Cathy Laurie

See Also

manhattanPlot

Examples

correlations <- sample(0.01*(0:100), 100, replace=TRUE)
chromosome <- c(rep(1,50), rep(2,50))
snpCorrelationPlot(correlations, chromosome, chrom.labels=c(1,2))

Index

∗Topic IO
readWriteFirst, 107

∗Topic Mendelian
mendelErr, 83
mendelList, 86

∗Topic classes
GenotypeData-class, 5
IntensityData-class, 9
MatrixGenotypeReader, 11
NcdfGenotypeReader, 13
NcdfIntensityReader, 15
NcdfReader, 18
ScanAnnotationDataFrame, 19
ScanAnnotationSQLite, 21
SnpAnnotationDataFrame, 23
SnpAnnotationSQLite, 25

∗Topic datagen
BAFfromClusterMeans, 1
BAFfromGenotypes, 2
simulateGenotypeMatrix, 110
simulateIntensityMatrix, 111

∗Topic datasets
centromeres, 59
HLA, 8
pseudoautosomal, 104
relationsMeanVar, 108

∗Topic distributiion
duplicateDiscordanceProbability,

65
∗Topic file

readWriteFirst, 107
∗Topic hplot

anomSegStats, 40
chromIntensityPlot, 59
genoClusterPlot, 69
ibdPlot, 77
intensityOutliersPlot, 79
manhattanPlot, 81
pseudoautoIntensityPlot, 102
qqPlot, 104
snpCorrelationPlot, 113

∗Topic htest
batchTest, 56

∗Topic logic
allequal, 28

∗Topic manip
alleleFrequency, 27
anomDetectBAF, 29
anomDetectLOH, 33
anomIdentifyLowQuality, 38
anomSegStats, 40
apartSnpSelection, 45
BAFfromClusterMeans, 1
BAFfromGenotypes, 2
duplicateDiscordance, 62
duplicateDiscordanceAcrossDatasets,

64
findBAFvariance, 67
gwasExactHW, 73
hetByScanChrom, 75
hetBySnpSex, 76
ibdPlot, 77
ncdfAddData, 89
ncdfCreate, 95
ncdfSubset, 96
pedigreeCheck, 97
pedigreeClean, 98
pedigreeFindDuplicates, 100
pedigreePairwiseRelatedness,

101
∗Topic methods

GenotypeData-class, 5
getVariable, 71
IntensityData-class, 9
MatrixGenotypeReader, 11
NcdfGenotypeReader, 13
NcdfIntensityReader, 15
NcdfReader, 18
ScanAnnotationDataFrame, 19
ScanAnnotationSQLite, 21
SnpAnnotationDataFrame, 23
SnpAnnotationSQLite, 25

∗Topic models
assocTestRegression, 49

∗Topic package
GWASTools-package, 4

115

116 INDEX

∗Topic regression
assocTestRegression, 49

∗Topic survival
assocTestCPH, 46

∗Topic univar
meanIntensityByScanChrom, 82
missingGenotypeByScanChrom,

87
missingGenotypeBySnpSex, 88
qualityScoreByScan, 105
qualityScoreBySnp, 106

∗Topic utilities
getobj, 72
saveas, 109

all, 29
all.equal, 29
alleleFrequency, 27
allequal, 28
AnnotatedDataFrame, 5, 19, 20, 23, 24
anomDetectBAF, 29, 34, 38–41, 44
anomDetectLOH, 33, 33, 37–41, 44
anomFilterBAF (anomDetectBAF), 29
anomIdentifyLowQuality, 38
anomSegmentBAF (anomDetectBAF), 29
anomSegStats, 40
anomStatsPlot (anomSegStats), 40
apartSnpSelection, 45
assocTestCPH, 46
assocTestRegression, 49

BAFfromClusterMeans, 1, 2, 4, 68
BAFfromGenotypes, 2, 60, 68, 103
batchChisqTest (batchTest), 56
batchFisherTest (batchTest), 56
batchTest, 56

centromeres, 59
checkNcdfGds (convertNcdfGds), 61
chisq.test, 58
chromIntensityPlot, 4, 59
close,GenotypeData-method

(GenotypeData-class), 5
close,IntensityData-method

(IntensityData-class), 9
close,NcdfReader-method

(NcdfReader), 18
close,ScanAnnotationSQLite-method

(ScanAnnotationSQLite), 21
close,SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 25
convertGdsNcdf (convertNcdfGds),

61

convertNcdfGds, 61
coxph, 47, 48

DNAcopy, 30, 33–35, 37, 39
duplicateDiscordance, 62, 65, 66
duplicateDiscordanceAcrossDatasets,

63, 64, 66
duplicateDiscordanceProbability,

63, 65, 65

findBAFvariance, 33, 37, 40, 67
fisher.test, 58

genoClusterPlot, 69
genoClusterPlotByBatch

(genoClusterPlot), 69
GenotypeData, 3–5, 11, 13, 15, 17, 20, 22,

24, 27, 28, 30, 34, 41, 46, 48, 49, 54,
56, 58, 60, 63–65, 67–70, 74, 76, 77,
83, 87–89, 103, 105–107

GenotypeData
(GenotypeData-class), 5

GenotypeData-class, 72
GenotypeData-class, 5
getAnnotation (getVariable), 71
getAnnotation,ScanAnnotationDataFrame-method

(ScanAnnotationDataFrame),
19

getAnnotation,ScanAnnotationSQLite-method
(ScanAnnotationSQLite), 21

getAnnotation,SnpAnnotationDataFrame-method
(SnpAnnotationDataFrame),
23

getAnnotation,SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 25

getAttribute (NcdfReader), 18
getAttribute,NcdfReader-method

(NcdfReader), 18
getBAlleleFreq (getVariable), 71
getBAlleleFreq,IntensityData-method

(IntensityData-class), 9
getBAlleleFreq,NcdfIntensityReader-method

(NcdfIntensityReader), 15
getChromosome (getVariable), 71
getChromosome,GenotypeData-method

(GenotypeData-class), 5
getChromosome,IntensityData-method

(IntensityData-class), 9
getChromosome,MatrixGenotypeReader-method

(MatrixGenotypeReader), 11
getChromosome,NcdfGenotypeReader-method

(NcdfGenotypeReader), 13

INDEX 117

getChromosome,NcdfIntensityReader-method
(NcdfIntensityReader), 15

getChromosome,SnpAnnotationDataFrame-method
(SnpAnnotationDataFrame),
23

getChromosome,SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 25

getDimensionNames (NcdfReader), 18
getDimensionNames,NcdfReader-method

(NcdfReader), 18
getGenotype (getVariable), 71
getGenotype,GenotypeData-method

(GenotypeData-class), 5
getGenotype,MatrixGenotypeReader-method

(MatrixGenotypeReader), 11
getGenotype,NcdfGenotypeReader-method

(NcdfGenotypeReader), 13
getLogRRatio (getVariable), 71
getLogRRatio,IntensityData-method

(IntensityData-class), 9
getLogRRatio,NcdfIntensityReader-method

(NcdfIntensityReader), 15
getMetadata (getVariable), 71
getMetadata,ScanAnnotationDataFrame-method

(ScanAnnotationDataFrame),
19

getMetadata,ScanAnnotationSQLite-method
(ScanAnnotationSQLite), 21

getMetadata,SnpAnnotationDataFrame-method
(SnpAnnotationDataFrame),
23

getMetadata,SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 25

getobj, 72, 109
getPosition (getVariable), 71
getPosition,GenotypeData-method

(GenotypeData-class), 5
getPosition,IntensityData-method

(IntensityData-class), 9
getPosition,MatrixGenotypeReader-method

(MatrixGenotypeReader), 11
getPosition,NcdfGenotypeReader-method

(NcdfGenotypeReader), 13
getPosition,NcdfIntensityReader-method

(NcdfIntensityReader), 15
getPosition,SnpAnnotationDataFrame-method

(SnpAnnotationDataFrame),
23

getPosition,SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 25

getQuality (getVariable), 71
getQuality,IntensityData-method

(IntensityData-class), 9
getQuality,NcdfIntensityReader-method

(NcdfIntensityReader), 15
getQuery (getVariable), 71
getQuery,ScanAnnotationSQLite-method

(ScanAnnotationSQLite), 21
getQuery,SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 25
getScanID (getVariable), 71
getScanID,GenotypeData-method

(GenotypeData-class), 5
getScanID,IntensityData-method

(IntensityData-class), 9
getScanID,MatrixGenotypeReader-method

(MatrixGenotypeReader), 11
getScanID,NcdfGenotypeReader-method

(NcdfGenotypeReader), 13
getScanID,NcdfIntensityReader-method

(NcdfIntensityReader), 15
getScanID,ScanAnnotationDataFrame-method

(ScanAnnotationDataFrame),
19

getScanID,ScanAnnotationSQLite-method
(ScanAnnotationSQLite), 21

getScanVariable (getVariable), 71
getScanVariable,GenotypeData-method

(GenotypeData-class), 5
getScanVariable,IntensityData-method

(IntensityData-class), 9
getScanVariableNames

(getVariable), 71
getScanVariableNames,GenotypeData-method

(GenotypeData-class), 5
getScanVariableNames,IntensityData-method

(IntensityData-class), 9
getSex (getVariable), 71
getSex,GenotypeData-method

(GenotypeData-class), 5
getSex,IntensityData-method

(IntensityData-class), 9
getSex,ScanAnnotationDataFrame-method

(ScanAnnotationDataFrame),
19

getSex,ScanAnnotationSQLite-method
(ScanAnnotationSQLite), 21

getSnpID (getVariable), 71
getSnpID,GenotypeData-method

(GenotypeData-class), 5
getSnpID,IntensityData-method

(IntensityData-class), 9
getSnpID,MatrixGenotypeReader-method

(MatrixGenotypeReader), 11

118 INDEX

getSnpID,NcdfGenotypeReader-method
(NcdfGenotypeReader), 13

getSnpID,NcdfIntensityReader-method
(NcdfIntensityReader), 15

getSnpID,SnpAnnotationDataFrame-method
(SnpAnnotationDataFrame),
23

getSnpID,SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 25

getSnpVariable (getVariable), 71
getSnpVariable,GenotypeData-method

(GenotypeData-class), 5
getSnpVariable,IntensityData-method

(IntensityData-class), 9
getSnpVariableNames

(getVariable), 71
getSnpVariableNames,GenotypeData-method

(GenotypeData-class), 5
getSnpVariableNames,IntensityData-method

(IntensityData-class), 9
getVariable, 71
getVariable,GenotypeData-method

(GenotypeData-class), 5
getVariable,IntensityData-method

(IntensityData-class), 9
getVariable,NcdfGenotypeReader-method

(NcdfGenotypeReader), 13
getVariable,NcdfIntensityReader-method

(NcdfIntensityReader), 15
getVariable,NcdfReader-method

(NcdfReader), 18
getVariable,ScanAnnotationDataFrame-method

(ScanAnnotationDataFrame),
19

getVariable,ScanAnnotationSQLite-method
(ScanAnnotationSQLite), 21

getVariable,SnpAnnotationDataFrame-method
(SnpAnnotationDataFrame),
23

getVariable,SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 25

getVariableNames (NcdfReader), 18
getVariableNames,NcdfReader-method

(NcdfReader), 18
getVariableNames,ScanAnnotationDataFrame-method

(ScanAnnotationDataFrame),
19

getVariableNames,ScanAnnotationSQLite-method
(ScanAnnotationSQLite), 21

getVariableNames,SnpAnnotationDataFrame-method
(SnpAnnotationDataFrame),
23

getVariableNames,SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 25

getX (getVariable), 71
getX,IntensityData-method

(IntensityData-class), 9
getX,NcdfIntensityReader-method

(NcdfIntensityReader), 15
getY (getVariable), 71
getY,IntensityData-method

(IntensityData-class), 9
getY,NcdfIntensityReader-method

(NcdfIntensityReader), 15
glm, 54
GWASExactHW, 74
gwasExactHW, 73
GWASTools (GWASTools-package), 4
GWASTools-package, 4

hasBAlleleFreq (getVariable), 71
hasBAlleleFreq,IntensityData-method

(IntensityData-class), 9
hasBAlleleFreq,NcdfIntensityReader-method

(NcdfIntensityReader), 15
hasCoordVariable (NcdfReader), 18
hasCoordVariable,NcdfReader-method

(NcdfReader), 18
hasLogRRatio (getVariable), 71
hasLogRRatio,IntensityData-method

(IntensityData-class), 9
hasLogRRatio,NcdfIntensityReader-method

(NcdfIntensityReader), 15
hasQuality (getVariable), 71
hasQuality,IntensityData-method

(IntensityData-class), 9
hasQuality,NcdfIntensityReader-method

(NcdfIntensityReader), 15
hasScanAnnotation (getVariable),

71
hasScanAnnotation,GenotypeData-method

(GenotypeData-class), 5
hasScanAnnotation,IntensityData-method

(IntensityData-class), 9
hasScanVariable (getVariable), 71
hasScanVariable,GenotypeData-method

(GenotypeData-class), 5
hasScanVariable,IntensityData-method

(IntensityData-class), 9
hasSex (getVariable), 71
hasSex,GenotypeData-method

(GenotypeData-class), 5
hasSex,IntensityData-method

(IntensityData-class), 9

INDEX 119

hasSex,ScanAnnotationDataFrame-method
(ScanAnnotationDataFrame),
19

hasSex,ScanAnnotationSQLite-method
(ScanAnnotationSQLite), 21

hasSnpAnnotation (getVariable), 71
hasSnpAnnotation,GenotypeData-method

(GenotypeData-class), 5
hasSnpAnnotation,IntensityData-method

(IntensityData-class), 9
hasSnpVariable (getVariable), 71
hasSnpVariable,GenotypeData-method

(GenotypeData-class), 5
hasSnpVariable,IntensityData-method

(IntensityData-class), 9
hasVariable (getVariable), 71
hasVariable,GenotypeData-method

(GenotypeData-class), 5
hasVariable,IntensityData-method

(IntensityData-class), 9
hasVariable,NcdfReader-method

(NcdfReader), 18
hasVariable,ScanAnnotationDataFrame-method

(ScanAnnotationDataFrame),
19

hasVariable,ScanAnnotationSQLite-method
(ScanAnnotationSQLite), 21

hasVariable,SnpAnnotationDataFrame-method
(SnpAnnotationDataFrame),
23

hasVariable,SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 25

hasX (getVariable), 71
hasX,IntensityData-method

(IntensityData-class), 9
hasX,NcdfIntensityReader-method

(NcdfIntensityReader), 15
hasY (getVariable), 71
hasY,IntensityData-method

(IntensityData-class), 9
hasY,NcdfIntensityReader-method

(NcdfIntensityReader), 15
hetByScanChrom, 75, 77
hetBySnpSex, 76, 76
HLA, 8, 30, 34, 38, 41
HWExact, 74, 75

ibdAreasDraw (ibdPlot), 77
ibdAssignRelatedness (ibdPlot), 77
ibdPlot, 77
identical, 29
IntensityData, 1–5, 7, 15, 17, 20, 22, 24,

27, 30, 34, 41, 60, 67–70, 82, 103,

105–107
IntensityData

(IntensityData-class), 9
IntensityData-class, 72
IntensityData-class, 9
intensityOutliersPlot, 79

lm, 54

manhattanPlot, 81, 114
MatrixGenotypeReader, 6, 7, 11
MatrixGenotypeReader-class

(MatrixGenotypeReader), 11
MchromCode (getVariable), 71
MchromCode,GenotypeData-method

(GenotypeData-class), 5
MchromCode,IntensityData-method

(IntensityData-class), 9
MchromCode,MatrixGenotypeReader-method

(MatrixGenotypeReader), 11
MchromCode,NcdfGenotypeReader-method

(NcdfGenotypeReader), 13
MchromCode,NcdfIntensityReader-method

(NcdfIntensityReader), 15
MchromCode,SnpAnnotationDataFrame-method

(SnpAnnotationDataFrame),
23

MchromCode,SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 25

mean, 82
meanIntensityByScanChrom, 80, 82,

113
meanSdByChromWindow

(findBAFvariance), 67
medianSdOverAutosomes, 30, 38
medianSdOverAutosomes

(findBAFvariance), 67
mendelErr, 83, 86
mendelList, 83, 85, 86
mendelListAsDataFrame

(mendelList), 86
missingGenotypeByScanChrom, 87, 89,

111
missingGenotypeBySnpSex, 88, 88, 111

ncdf, 5, 18, 19, 62, 91, 93, 95, 96, 111, 113
ncdfAddData, 89, 95, 96
ncdfAddIntensity (ncdfAddData), 89
ncdfCheckGenotype (ncdfAddData),

89
ncdfCheckIntensity (ncdfAddData),

89
ncdfCreate, 93, 95, 96

120 INDEX

NcdfGenotypeReader, 5–7, 13, 13, 17,
19, 62

NcdfGenotypeReader-class, 72
NcdfGenotypeReader-class

(NcdfGenotypeReader), 13
NcdfIntensityReader, 5, 9, 11, 15, 15,

19
NcdfIntensityReader-class, 72
NcdfIntensityReader-class

(NcdfIntensityReader), 15
NcdfReader, 5, 7, 11–17, 18
NcdfReader-class, 72
NcdfReader-class (NcdfReader), 18
ncdfSubset, 93, 95, 96
ncdfSubsetCheck (ncdfSubset), 96
nscan (getVariable), 71
nscan,GenotypeData-method

(GenotypeData-class), 5
nscan,IntensityData-method

(IntensityData-class), 9
nscan,MatrixGenotypeReader-method

(MatrixGenotypeReader), 11
nscan,NcdfGenotypeReader-method

(NcdfGenotypeReader), 13
nscan,NcdfIntensityReader-method

(NcdfIntensityReader), 15
nscan,ScanAnnotationSQLite-method

(ScanAnnotationSQLite), 21
nsnp (getVariable), 71
nsnp,GenotypeData-method

(GenotypeData-class), 5
nsnp,IntensityData-method

(IntensityData-class), 9
nsnp,MatrixGenotypeReader-method

(MatrixGenotypeReader), 11
nsnp,NcdfGenotypeReader-method

(NcdfGenotypeReader), 13
nsnp,NcdfIntensityReader-method

(NcdfIntensityReader), 15
nsnp,SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 25

open,GenotypeData-method
(GenotypeData-class), 5

open,IntensityData-method
(IntensityData-class), 9

open,NcdfReader-method
(NcdfReader), 18

open,ScanAnnotationSQLite-method
(ScanAnnotationSQLite), 21

open,SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 25

pedigreeCheck, 97, 99, 101, 102
pedigreeClean, 98, 98, 101, 102
pedigreeDeleteDuplicates

(pedigreeFindDuplicates),
100

pedigreeFindDuplicates, 98, 99, 100,
102

pedigreePairwiseRelatedness, 98,
99, 101, 101

plot, 60, 70, 78, 79, 81, 103, 105, 113
points, 78
pseudoautoIntensityPlot, 102
pseudoautosomal, 30, 34, 38, 41, 103, 104

qqPlot, 104
qualityScoreByScan, 105, 107
qualityScoreBySnp, 106, 106

readWriteFirst, 107
relationsMeanVar, 79, 108

saveas, 73, 109
ScanAnnotationDataFrame, 5–7, 9, 11,

19, 22, 24
ScanAnnotationDataFrame-class, 72
ScanAnnotationDataFrame-class

(ScanAnnotationDataFrame),
19

ScanAnnotationSQLite, 5–7, 9, 11, 21,
27

ScanAnnotationSQLite-class, 72
ScanAnnotationSQLite-class

(ScanAnnotationSQLite), 21
sd, 82
sdByScanChromWindow, 30
sdByScanChromWindow

(findBAFvariance), 67
segment, 30, 31, 33, 34, 37
show,GenotypeData-method

(GenotypeData-class), 5
show,IntensityData-method

(IntensityData-class), 9
show,MatrixGenotypeReader-method

(MatrixGenotypeReader), 11
show,NcdfReader-method

(NcdfReader), 18
show,ScanAnnotationSQLite-method

(ScanAnnotationSQLite), 21
show,SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 25
simulateGenotypeMatrix, 110, 113
simulateIntensityMatrix, 111, 111
smooth.CNA, 30, 33, 34, 37

INDEX 121

SnpAnnotationDataFrame, 5–7, 9, 11,
20, 23, 27, 38

SnpAnnotationDataFrame-class, 72
SnpAnnotationDataFrame-class

(SnpAnnotationDataFrame),
23

SnpAnnotationSQLite, 5–7, 9, 11, 22, 25
SnpAnnotationSQLite-class, 72
SnpAnnotationSQLite-class

(SnpAnnotationSQLite), 25
snpCorrelationPlot, 81, 113
Surv, 47
survival, 47

vcov, 54
vcovHC, 54

writeAnnotation (getVariable), 71
writeAnnotation,ScanAnnotationSQLite-method

(ScanAnnotationSQLite), 21
writeAnnotation,SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 25
writeMetadata (getVariable), 71
writeMetadata,ScanAnnotationSQLite-method

(ScanAnnotationSQLite), 21
writeMetadata,SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 25

XchromCode (getVariable), 71
XchromCode,GenotypeData-method

(GenotypeData-class), 5
XchromCode,IntensityData-method

(IntensityData-class), 9
XchromCode,MatrixGenotypeReader-method

(MatrixGenotypeReader), 11
XchromCode,NcdfGenotypeReader-method

(NcdfGenotypeReader), 13
XchromCode,NcdfIntensityReader-method

(NcdfIntensityReader), 15
XchromCode,SnpAnnotationDataFrame-method

(SnpAnnotationDataFrame),
23

XchromCode,SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 25

XYchromCode (getVariable), 71
XYchromCode,GenotypeData-method

(GenotypeData-class), 5
XYchromCode,IntensityData-method

(IntensityData-class), 9
XYchromCode,MatrixGenotypeReader-method

(MatrixGenotypeReader), 11
XYchromCode,NcdfGenotypeReader-method

(NcdfGenotypeReader), 13

XYchromCode,NcdfIntensityReader-method
(NcdfIntensityReader), 15

XYchromCode,SnpAnnotationDataFrame-method
(SnpAnnotationDataFrame),
23

XYchromCode,SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 25

YchromCode (getVariable), 71
YchromCode,GenotypeData-method

(GenotypeData-class), 5
YchromCode,IntensityData-method

(IntensityData-class), 9
YchromCode,MatrixGenotypeReader-method

(MatrixGenotypeReader), 11
YchromCode,NcdfGenotypeReader-method

(NcdfGenotypeReader), 13
YchromCode,NcdfIntensityReader-method

(NcdfIntensityReader), 15
YchromCode,SnpAnnotationDataFrame-method

(SnpAnnotationDataFrame),
23

YchromCode,SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 25

	BAFfromClusterMeans
	BAFfromGenotypes
	GWASTools-package
	GenotypeData-class
	HLA
	IntensityData-class
	MatrixGenotypeReader
	NcdfGenotypeReader
	NcdfIntensityReader
	NcdfReader
	ScanAnnotationDataFrame
	ScanAnnotationSQLite
	SnpAnnotationDataFrame
	SnpAnnotationSQLite
	alleleFrequency
	allequal
	anomDetectBAF
	anomDetectLOH
	anomIdentifyLowQuality
	anomSegStats
	apartSnpSelection
	assocTestCPH
	assocTestRegression
	batchTest
	centromeres
	chromIntensityPlot
	convertNcdfGds
	duplicateDiscordance
	duplicateDiscordanceAcrossDatasets
	duplicateDiscordanceProbability
	findBAFvariance
	genoClusterPlot
	getVariable
	getobj
	gwasExactHW
	hetByScanChrom
	hetBySnpSex
	ibdPlot
	intensityOutliersPlot
	manhattanPlot
	meanIntensityByScanChrom
	mendelErr
	mendelList
	missingGenotypeByScanChrom
	missingGenotypeBySnpSex
	ncdfAddData
	ncdfCreate
	ncdfSubset
	pedigreeCheck
	pedigreeClean
	pedigreeFindDuplicates
	pedigreePairwiseRelatedness
	pseudoautoIntensityPlot
	pseudoautosomal
	qqPlot
	qualityScoreByScan
	qualityScoreBySnp
	readWriteFirst
	relationsMeanVar
	saveas
	simulateGenotypeMatrix
	simulateIntensityMatrix
	snpCorrelationPlot
	Index

