
CellNOptR
March 24, 2012

CNORwrap CNOR analysis wrapper

Description

This function is a wrapper around the whole CNOR analysis, it performs the following steps: 1. Plot
the CNOlist; 2. Checks data to model compatibility; 3. Find the indices, in the model, of the species
that are inhibited/stimulated/measured (signals); 4. Find the indices of the non-osbervables/non-
controllables (nonce); 5. Cut the nonc off the model; 6. Recompute the indices; 7. Compress the
model;8. Recompute the indices; 9. Expand the gates; 10. Compute the residual error; 11. Prepare
for simulation; 12. Optimisation; 13. Plot simulated and experimental results; 14. Plot the evolution
of fit; 15. Write the scaffold and PKN; 16. Write the report

Usage

CNORwrap(paramsList,Data,Model,Name,NamesData,Time=1)

Arguments

paramsList paramsList has entries: Data:the CNOlist, Model:the model; Parameters for the
optimisation:sizeFac: default to 1e-04; NAFac: default to 1;PopSize: default
to 50; Pmutation: default to 0.5; MaxTime: default to 60; maxGens: default
to 500; StallGenMax: default to 100; SelPress: default to 1.2; elitism: default
to 5; RelTol: default to 0.1; verbose: default to FALSE (default to true in the
functions used by CNORwrap but CNORwrap sets them to false by default).

Data the CNOlist that contains the data that you will use

Model the model that you want to optimise

Name a string that will be used to name the project and all graphs produced

NamesData a list with two elements:CNOlist and Model, each containing a string that is a
reference for the user to know which model/data set was used (it will be included
in the report)

Time either 1 or 2: by default this is set to 1 because the 2 time points optimisation is
not implemented in this version

1

2 CNORwrap

Details

If you do not provide a parameters list, you can provide only essential elements, and all other
parameters will be set to their default values. In this case, you should set paramsList=NA, and
provide the following fields: Data, Model, Name, Time.

Value

This function does not return anything, it does the analysis, produces all the plots and puts them in
a folder that is in your working directory, and is called "Name".

Author(s)

C. Terfve

Examples

#version with paramslist

tmpdir<-tempdir()
setwd(tmpdir)

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

pList<-list(
Data=CNOlistToy,
Model=ToyModel,
sizeFac = 1e-04,
NAFac = 1,
PopSize = 5,
Pmutation = 0.5,
MaxTime = 60,
maxGens = 5,
StallGenMax = 5,
SelPress = 1.2,
elitism = 5,
RelTol = 0.1,
verbose=TRUE)
CNORwrap(
paramsList=pList,
Name="Toy",
NamesData=list(CNOlist="ToyData",Model="ToyModel"),
Data=NA,
Model=NA)

Not run:
#version with default parameters

dir.create("CNOR_analysis")
setwd("CNOR_analysis")

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

CNORwrap(
paramsList=NA,

CNOlistDREAM 3

Name="Toy",
NamesData=list(CNOlist="ToyData",Model="ToyModel"),
Data=CNOlistToy,
Model=ToyModel)

End(Not run)

CNOlistDREAM Data used for the DREAM3 challenge

Description

This data object contains the DREAM data used in the package vignette, already loaded and format-
ted as a CNOlist object. This is to be used with the model "DreamModel". This is a data collected
on HepG2 cells cultivated with or without stimulation of tgfa, ilk, mek12, pi3k and p38, in com-
bination with inhibition of igf1 and/or il1a. Seven phosphoproteins are measured using Luminex
xMAP assays: akt, erk12, ikb, jnk12, p38, hsp27 and mek12.

Usage

CNOlistDREAM

Format

CNOlistDREAM is a list with the fields "namesCues" (character vector), "namesStimuli" (charac-
ter vector), "namesInhibitors" (character vector), "namesSignals" (character vector), "timeSignals"
(numerical vector), "valueCues" (numerical matrix), "valueInhibitors" (numerical matrix), "valueS-
timuli"(numerical matrix), "valueSignals"(numerical matrix).

Source

This data and model is extracted from the Matlab version of CellNOpt1.0 (http://www.ebi.
ac.uk/saezrodriguez/software.html#CellNetOptimizer).

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue X, Clarke ND, Altan-
Bonnet G, and Stolovitzky G. Towards a rigorous assessment of systems biology models: the
DREAM3 challenges. PLoS One, 5(2):e9202, 2010.

http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer
http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer

4 CellNOptR-package

CNOlistToy Toy data

Description

This data object contains the data associated with the Toy Model example from the package vignette,
already loaded and formatted as a CNOlist object.

Usage

CNOlistToy

Format

CNOlistToy is a list with the fields "namesCues" (character vector), "namesStimuli" (character vec-
tor), "namesInhibitors" (character vector), "namesSignals" (character vector), "timeSignals" (nu-
merical vector), "valueCues" (numerical matrix), "valueInhibitors" (numerical matrix), "valueStim-
uli"(numerical matrix), "valueSignals"(numerical matrix).

Source

This data and model is extracted from the Matlab version of CellNOpt1.0 (http://www.ebi.
ac.uk/saezrodriguez/software.html#CellNetOptimizer).

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

CellNOptR-package R version of CellNOptR, boolean features

Description

This package does optimisation of boolean logic networks of signalling pathways based on a pre-
vious knowledge network and a set of data collected upon perturbation of some of the nodes in the
network.

Details

Package: CellNOptR
Type: Package
Version: 0.99.6
Date: 2011-10-22
License: Artistic-2.0
LazyLoad: yes

http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer
http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer

CellNOptR-package 5

Author(s)

C.Terfve Maintainer: C.Terfve <terfve@ebi.ac.uk>

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

Examples

library(CellNOptR)

tmpdir<-tempdir()
setwd(tmpdir)

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#From here there are 2 versions: 1. If you want to set the parameters yourself
pList<-list(
Data=CNOlistToy,
Model=ToyModel,
sizeFac = 1e-04,
NAFac = 1,
PopSize = 10,
Pmutation = 0.5,
MaxTime = 60,
maxGens = 5,
StallGenMax = 5,
SelPress = 1.2,
elitism = 5,
RelTol = 0.1,
verbose=TRUE)

CNORwrap(
paramsList=pList,
Name="Toy",
NamesData=list(CNOlist="ToyData",Model="ToyModel"),
Data=NA,
Model=NA)

#2. If you want to keep the default parameters
Not run:
CNORwrap(
paramsList=NA,
Name="Toy",
NamesData=list(CNOlist="ToyData",Model="ToyModel"),
Data=CNOlistToy,
Model=ToyModel)

End(Not run)

6 ToyModel

LiverDREAM Model used for the DREAM3 challenge

Description

This data object contains the model used in the package vignette, already loaded and formatted as a
Model object. This is to be used with the data in "CNOListDREAM"

Usage

DreamModel

Format

DreamModel is a list with fields "reacID" (character vector), "namesSpecies" (character vector),
"interMat" (numerical matrix), "notMat"(numerical matrix).

Source

This data and model is extracted from the Matlab version of CellNOpt1.0 (http://www.ebi.
ac.uk/saezrodriguez/software.html#CellNetOptimizer).

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue X, Clarke ND, Altan-
Bonnet G, and Stolovitzky G. Towards a rigorous assessment of systems biology models: the
DREAM3 challenges. PLoS One, 5(2):e9202, 2010.

ToyModel Toy mode

Description

This data object contains the Toy model from the package vignette, already loaded and formatted
as a Model object.

Usage

ToyModel

Format

ToyModel is a list with fields "reacID" (character vector), "namesSpecies" (character vector), "in-
terMat" (numerical matrix), "notMat"(numerical matrix).

http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer
http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer

checkSignals 7

Source

This data and model is extracted from the Matlab version of CellNOpt1.0 (http://www.ebi.
ac.uk/saezrodriguez/software.html#CellNetOptimizer).

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

checkSignals Check the CNOlist and model matching

Description

This function checks that all the signals in the CNOlist match to species in the model. It also checks
that the CNOlist and Model lists have the right format and contain the right fields.

Usage

checkSignals(CNOlist, Model)

Arguments

CNOlist A CNOlist structure, as created by makeCNOlist

Model A model structure, as created by readSif

Details

If the formats are wrong, this function produces an error with an explanation message. If the signals
don’t match the species, this function produces a warning that explains which signals don’t match
any species, and advises to remove them (THIS SHOULD BE DONE IMPERATIVELY) which is
not done at this point but could be done in the form of this function returning a new CNOlist which
would be the original if all ok or a CNOlist with non matching signals removed when necessary.
I don’t see this as a priority at this stage so if it happens, the user should remove those signals
manually from the CNOlist (in both fields valueSignals and namesSignals).

Value

If all ok this function doesn’t return anything.

Author(s)

C. Terfve

See Also

makeCNOlist, readSif

http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer
http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer

8 compressModel

Examples

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")
checkSignals(CNOlistToy,ToyModel)

compressModel Compress a model

Description

This function compresses a model by compressing species that are not signals/inhibited/stimulated
and that are not dead ends/in complex logic (i.e. only species with either one input or one output
are compressed)/in self loops.

Usage

compressModel(Model, indexes)

Arguments

Model a model structure as produced by readSif

indexes list of indexes of sthe species stimulated/inhibited/measured in the model, as
created by indexFinder

Details

Be aware that in the multiple inputs/one output case, if one of the outputs is an ’&’ gate this function
handles it fine as long as it is an ’&’ with 2 inputs and no more.

Value

a compressed model list, with an additional field called ’speciesCompressed’ that contains the
names of the species that have been compressed

Author(s)

C.Terfve

See Also

indexFinder, readSif

Examples

#load data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=FALSE)
ToyComp<-compressModel(ToyModel,indicesToy)

cutAndPlotResultsT1 9

cutAndPlotResultsT1
Plot the results of an optimisation at t1

Description

This function takes a model and an optimised bitstring, it cuts the model according to the bitstring
and plots the results of the simulation along with the experimental data.

Usage

cutAndPlotResultsT1(Model, bString, SimList, CNOlist, indexList, plotPDF = FALSE)

Arguments

Model a model (the full one that was used for optimisation)

bString a bitstring for T1 as output by gabinaryT1 (i.e. a vector of 1s and 0s)

SimList a simlist corresponding to the model, as output by prep4Sim

CNOlist a CNOlist, corresponding to the optimisation one

indexList an indexList, produced by indexFinder ran on the model and the CNOlist above

plotPDF TRUE or FALSE; tells whether you want a pdf to be produced or not

Value

This function doesn’t return anything, it only plots the graph in your graphic window, and in a pdf
file if asked

Author(s)

C.Terfve

See Also

gabinaryT1, prep4Sim

Examples

#load data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#pre-process model

checkSignals(CNOlistToy,ToyModel)
indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=FALSE)
ToyNCNOindices<-findNONC(ToyModel,indicesToy,verbose=FALSE)
ToyNCNOcut<-cutNONC(ToyModel,ToyNCNOindices)
indicesToyNCNOcut<-indexFinder(CNOlistToy,ToyNCNOcut)
ToyNCNOcutComp<-compressModel(ToyNCNOcut,indicesToyNCNOcut)
indicesToyNCNOcutComp<-indexFinder(CNOlistToy,ToyNCNOcutComp)

10 cutNONC

ToyNCNOcutCompExp<-expandGates(ToyNCNOcutComp)

#optimise

ToyFields4Sim<-prep4Sim(ToyNCNOcutCompExp)
initBstring<-rep(1,length(ToyNCNOcutCompExp$reacID))
ToyT1opt<-gaBinaryT1(
CNOlist=CNOlistToy,
Model=ToyNCNOcutCompExp,
SimList=ToyFields4Sim,
indexList=indicesToyNCNOcutComp,
initBstring=initBstring,
maxGens=2,
PopSize = 5,
verbose=FALSE)
cutAndPlotResultsT1(
Model=ToyNCNOcutCompExp,
bString=ToyT1opt$bString,
SimList=ToyFields4Sim,
CNOlist=CNOlistToy,
indexList=indicesToyNCNOcutComp,
plotPDF=FALSE)

cutNONC Cuts the non-observable/non-controllable species off the model

Description

This function cuts the non observable and/or non controllable species off the model, and returns a
cut model

Usage

cutNONC(Model, NONCindexes)

Arguments

Model a model structure, as produced by readSif

NONCindexes a vector of indices of species to remove in that model, as produced for example
by findNONC

Details

This function takes in a model and a vector of indices of species to remove in that model and it
removes those species and any reaction involving them (be aware, if you have x&y=z and x is to be
removed, then the function produces y=z, because it works by removing entire rows of the Model
matrices and then removes the columns that do not have either an input or an output). This function
could actually be used to cut any species, not only NONC species.

Value

a model

expandGates 11

Author(s)

C.Terfve

See Also

findNONC, readSif

Examples

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")
indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=FALSE)
ToyNCNOindices<-findNONC(ToyModel,indicesToy,verbose=FALSE)
ToyNCNOcut<-cutNONC(ToyModel,ToyNCNOindices)

expandGates Expand the gates of a model

Description

This function takes in a model and splits all AND gates into ORs. In addition, wherever there are
more than one and up to 5 reactions coming into one node, it creates all possible ANDs combina-
tions of them, but considering only ANDs with 2 and 3 inputs

Usage

expandGates(Model)

Arguments

Model a model structure

Details

This function returns a model with additional fields that help keep track of the processing done on
the network. I would advice not to overwrite on the initial model but rather to assign the result of
this function to a variable with a different name.

Value

returns a Model, with additional fields:

SplitANDs list that contains a named element for each AND reac that has been split, and
each element contains a vector with the names of the of the reactions that result
from the split if nothing was split, this element has the default value $initialReac
[1] "split1" "split2"

newANDs list that contains an element for each new ’&’ gate, named by the name of this
new and reac, and containing a vector of the names of the reactions from which
it was created (contains all the reacs in that pool, not the particular ones, this
could be improved)

12 findNONC

Note

This function could be simplified in the future.

Author(s)

C.Terfve

Examples

#load data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#pre-process the model

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyNCNOindices<-findNONC(ToyModel,indicesToy,verbose=TRUE)
ToyNCNOcut<-cutNONC(ToyModel,ToyNCNOindices)
indicesToyNCNOcut<-indexFinder(CNOlistToy,ToyNCNOcut)
ToyNCNOcutComp<-compressModel(ToyNCNOcut,indicesToyNCNOcut)
indicesToyNCNOcutComp<-indexFinder(CNOlistToy,ToyNCNOcutComp)
ToyNCNOcutCompExp<-expandGates(ToyNCNOcutComp)

findNONC Find the indexes of the non-observable and non controllable species

Description

This function finds the indexes of the non-observable and non controllable species and returns the
indices, in the model, of the species to remove

Usage

findNONC(Model, indexes, verbose)

Arguments

Model a model, as created by readSif

indexes a list of indices of species measured, stimulated or inhibited, as created by in-
dexFinder

verbose do you want information about the ncno species printed on the screen? Default
to FALSE but we would advise to put it to true the first time that the function is
called

Details

This function uses the function floyd.warshall.all.pairs.sp from the package RBGL. Non observable
nodes are those that do not have a path to any measured species in the model, whereas non con-
trollable nodes are those that do not receive any information from a species that is perturbed in the
data.

gaBinaryT1 13

Value

a vector of indices of species to remove

Author(s)

C. Terfve

See Also

cutNONC, indexFinder, readSif

Examples

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")
checkSignals(CNOlistToy,ToyModel)
indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=FALSE)
ToyNCNOindices<-findNONC(ToyModel,indicesToy,verbose=FALSE)

gaBinaryT1 Genetic algorithm used to optimise a model

Description

This function is the genetic algorithm to be used to optimise a model by fitting to data containing
one time point.

Usage

gaBinaryT1(CNOlist, Model, SimList, indexList, sizeFac = 1e-04, NAFac = 1, initBstring, PopSize = 50, Pmutation = 0.5, MaxTime = 60, maxGens = 500, StallGenMax = 100, SelPress = 1.2, elitism = 5, RelTol = 0.1, verbose=TRUE)

Arguments

CNOlist a CNOlist on which the score is based (based on valueSignals[[2]], i.e. data at
t1)

Model a Model list

SimList a list that contains additional fields for the simulator, as created by prep4Sim
applied to the model above

indexList a list of indexes of species stimulated/inhibited/signals, as produced by indexfinder
applied on the model and CNOlist above

sizeFac the scaling factor for the size term in the objective function, default to 0.0001

NAFac the scaling factor for the NA term in the objective function, default to 1

initBstring an initial bitsring to be tested, should be of the same size as the number of
reactions in the model above

PopSize the population size for the genetic algorithm, default set to 50

Pmutation the mutation probability for the genetic algorithm, default set to 0.5

MaxTime the maximum optimisation time in seconds, default set to 60

maxGens the maximum number of generations in the genetic algorithm, default set to 500

14 gaBinaryT1

StallGenMax the maximum number of stall generations in the genetic algorithm, default to
100

SelPress the selective pressure in the genetic algorithm, default set to 1.2

elitism the number of best individuals that are propagated to the next generation in the
genetic algorithm, default set to 5

RelTol the relative tolerance for the best bitstring reported by the genetic algorithm,
i.e.how different from the best solution can solutions be to be reported as well,
default set to 0.1

verbose logical (default to TRUE) do you want the statistics of each generation to be
printed on the screen?

Details

The whole procedure is described in details in Saez-Rodriguez et al. (2009). The basic principle
is that at each generation, the algorithm evaluates a population of models based on excluding or
including some gates in the initial pre-processed model (this is encoded in a bitstring with contains
0/1 entries for each gate). The population is then evolved based on the results of the evaluation of
these networks, where the evaluation is obtained by simulating the model (to steady state) under the
various conditions present in the data, and then computing the squared deviation from the data, to
which a penalty is added for size of the model and for species in the model that do not reach steady
state.

Value

This function returns a list with elements:

bString the best bitstring

Results a matrix with columns "Generation","Best_score","Best_bitString","Stall_Generation","Avg_Score_Gen","Best_score_Gen","Best_bit_Gen","Iter_time"

StringsTol the bitstrings whose scores are within the tolerance
StringsTolScores

the scores of the above-mentioned strings

Author(s)

C. Terfve

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

See Also

GetFit, prep4Sim, indexFinder, simulatorT1

Examples

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#pre-process model

getFit 15

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=FALSE)
ToyNCNOindices<-findNONC(ToyModel,indicesToy,verbose=FALSE)
ToyNCNOcut<-cutNONC(ToyModel,ToyNCNOindices)
indicesToyNCNOcut<-indexFinder(CNOlistToy,ToyNCNOcut)
ToyNCNOcutComp<-compressModel(ToyNCNOcut,indicesToyNCNOcut)
indicesToyNCNOcutComp<-indexFinder(CNOlistToy,ToyNCNOcutComp)
ToyNCNOcutCompExp<-expandGates(ToyNCNOcutComp)

#optimise

ToyFields4Sim<-prep4Sim(ToyNCNOcutCompExp)
initBstring<-rep(1,length(ToyNCNOcutCompExp$reacID))
ToyT1opt<-gaBinaryT1(
CNOlist=CNOlistToy,
Model=ToyNCNOcutCompExp,
SimList=ToyFields4Sim,
indexList=indicesToyNCNOcutComp,
initBstring=initBstring,
maxGens=2,
PopSize=5,
verbose=FALSE)

getFit Compute the score of a model

Description

This function computes the value of the objective function for a model and an associated data set, as
a sum of a term that computes the fit of model to data, a term that penalises the NA values produced
by the model, and a term that penalises increasing size of the model.

Usage

getFit(SimResults, CNOlist, Model, indexList, timePoint = c("t1", "t2"), sizeFac = 1e-04, NAFac = 1)

Arguments

SimResults matrix of simulated results (the full one as output by the simulator)

CNOlist a CNOlist to compare the simulated results with

Model a model that has already been cut to contain only the reactions in the optimal
bitstring

indexList list of indexes as produced by indexFinder

timePoint "t1" or "t2" tells which time point we are looking at. If timePoint=t1 then we
will compare the SimResults to the results stored in CNOlist$valueSignals[[2]].
If timePoint=t1 then we will compare the SimResults to the results stored in
CNOlist$valueSignals[[2]]

sizeFac weights the penalty for the size of the model, default=0.0001

NAFac weights the penalty for the number of NAs

16 getFit

Details

BE AWARE: contrary to what is done in the Matlab version of CellNOpt, here the simulation results
are computed beforehand and the Model that is input into this function is a model that has already
been cut i.e. that only contains the reactions present in the optimised model (i.e.should be the same
model as the one that you input into the simulator). Also, the SimResults matrix is the full one as
output by the simulator, i.e. it contains results for all species in the model, not only the signals

Value

This function returns a single number, the value of the objective function.

Author(s)

C. Terfve

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

See Also

gabinaryT1, indexFinder, simulatorT1

Examples

#Here we will evaluate the fit of the full initial model,
#without pre-processing or any optimisation

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=FALSE)
ToyFields4Sim<-prep4Sim(ToyModel)
SimResults<-simulatorT1(
CNOlist=CNOlistToy,
Model=ToyModel,
SimList=ToyFields4Sim,
indexList=indicesToy)
Score<-getFit(
SimResults=SimResults,
CNOlist=CNOlistToy,
Model=ToyModel,
indexList=indicesToy,
timePoint="t1")

indexFinder 17

indexFinder Finds the indices, in the Model fields, of the species that are mea-
sured/inhibited/stimulated

Description

This function finds the indices, in the Model fields, of the species that are measured/inhibited/stimulated.
It looks for their position in Model$namesSpecies which has the same order as the rows of interMat
and notMat, and therefore these indexes can be used there as well.

Usage

indexFinder(CNOlist, Model,verbose=FALSE)

Arguments

CNOlist a CNOlist structure, as produced by makeCNOlist

Model a model structure, as produced by readSif

verbose do you want information about the cues and signals identities printed on the
screen? Default if false but we would advise to set it to true when the function
is called for the first time.

Value

a list with fields:

signals vector of indices of the measured species

stimulated vector of indices of the stimulated species

inhibited vector of indices of the inhibited species

Author(s)

C. Terfve

See Also

makeCNOlist, ReadSif

Examples

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")
indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)

18 makeCNOlist

makeCNOlist Make a CNOlist structure

Description

This function takes as input the output of readMIDAS and extracts the elements that are needed in
a CNO project

Usage

makeCNOlist(dataset, subfield)

Arguments

dataset output of readMIDAS

subfield TRUE or FALSE, specifies if the column headers contain subfields or not i.e. if
I should look for TR:sthg:sthg or just TR:sthg

Details

Be aware that most of the functions in this package, including this one, expect the data to contain
measurements at time 0, but these should all be equal to zero according to the normalisation proce-
dure that should be used. Therefore, if you have on time point, the files valueSignals contains two
matrices, one for t0 and one for t1.

I there are replicate rows in the MIDAS file (i.e. identical cues and identical time), this function
averages the values of the measurements for these replicates.

Value

a CNOlist with fields

namesCues a vector of names of cues

namesStimuli a vector of names of stimuli
namesInhibitors

a vector of names of inhibitors

namesSignals a vector of names of signals

timeSignals a vector of times

valueCues a matrix of dimensions nConditions x nCues, with 0 or 1 if the cue is present or
absent in the particular condition

valueInhibitors
a matrix of dimensions nConditions x nInhibitors, with 0 or 1 if the inhibitor is
present or absent in the particular condition

valueStimuli of dimensions nConditions x nStimuli, with 0 or 1 if the stimuli is present or
absent in the particular condition

valueSignals a list of the same length as timeSignals, each element containing a matrix of
dimensions nConditions x nsignals, with the measurements.

Author(s)

C. Terfve

normaliseCNOlist 19

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

See Also

readMIDAS

Examples

tmpdir<-tempdir()
setwd(tmpdir)
cpfile<-dir(system.file("ToyModel",package="CellNOptR"),full=TRUE)
file.copy(from=cpfile,to=getwd(),overwrite=TRUE)
dataToy<-readMIDAS(MIDASfile='ToyDataMMB.csv')
CNOlistToy<-makeCNOlist(dataset=dataToy,subfield=FALSE)

normaliseCNOlist Normalisation for boolean modelling.

Description

This function takes in a CNOlist and does the normalisation of the data between 0 and 1, according
to two different procedures (see details)

Usage

normaliseCNOlist(CNOlist, EC50Data = 0.5, HillCoef = 2, EC50Noise = 0.1, Detection = 0, Saturation = Inf, ChangeTh = 0, Norm2TorCtrl = "time")

Arguments

CNOlist a CNOlist

EC50Data parameter for the scaling of the data between 0 and 1, default=0.5

HillCoef Hill coefficient for the scaling of the data, defat to 2

EC50Noise parameter for the computation of a penalty for data comparatively smaller than
other time points or conditions

Detection minimum detection level of the instrument, everything smaller will be treated as
noise (NA), default to 0

Saturation saturation level of the instrument, everything over this will be treated as NA,
default to Inf.

ChangeTh threshold for relative change considered significant, default to 0

Norm2TorCtrl "time" or "ctrl": choice of a normalisation method: compute the relative change
compared to the control at the same time, or to the same condition and measure-
ment at time 0

20 normaliseCNOlist

Details

The normalisation procedure works as follows: a) every value that is out of the dynamic range of the
equipment (as specified by the parameters Detection and Saturation are set to NA, b) values
are transformed to fold changes relative to the same condition at t0 (if Norm2TorCtrl="time")
or the control condition (i.e. same inhibitors, no stimuli) at the same time (if Norm2TorCtrl="ctrl"),
c) the fold changes are transformed with a Hill function (i.e. for each data point x^HillCoef/((EC50Data^HillCoef)+(x^HillCoef))),
d) a penalty for "noisiness" is computed for each measurement as the value divided by the maximum
value for that readout across all conditions and times (excluding values out of the dynamic range), e)
the noise penalty is transformed by a saturation function (for each measurement x/(EC50Noise+x)
where x=x/max(x)), f) the noise penalty and Hilled fold changes are multiplied, g) if the fold
change is negative and bigger than ChangeTh, the resulting product is multiplied by -1, if the fold
change is smaller than ChangeTh (either positive or negative), it is set to 0. The normalisation
procedure applied here is explained in details in Saez-Rodriguez et al. (2009).

As the normalisation procedure works by computing a fold change relative to the same condition at
time 0 or the control condition, if the aforementioned conditions have a value of zero (which is not
expected with any common biochemical technique), then the fold change calculation will return a
"NaN" value. If this is a problem for your particular case then we would suggest putting a dummy,
very low value, instead of the zero, or setting that measurement to "NA" in the MIDAS file.

Value

a normalised CNOlist

Author(s)

C. Terfve

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

See Also

makeCNOlist

Examples

#Load a CNOlist

data(CNOlistToy,package="CellNOptR")

#Replace the values in the list by random values
#(for demonstration purposes, when actually using this function you would simply load a non-normalised CNOlist)

CNOlistToy$valueSignals$t0<-matrix(
data=runif(n=(dim(CNOlistToy$valueSignals$t0)[1]*dim(CNOlistToy$valueSignals$t0)[2]),min=0,max=400),
nrow=dim(CNOlistToy$valueSignals$t0)[1],
ncol=dim(CNOlistToy$valueSignals$t0)[2])
CNOlistToy$valueSignals[[2]]<-CNOlistToy$valueSignals[[1]]+matrix(
data=runif(n=(dim(CNOlistToy$valueSignals$t0)[1]*dim(CNOlistToy$valueSignals$t0)[2]),min=0,max=100),
nrow=dim(CNOlistToy$valueSignals$t0)[1],
ncol=dim(CNOlistToy$valueSignals$t0)[2])

plotCNOlist 21

CNOlistToyN<-normaliseCNOlist(
CNOlistToy,
EC50Data = 0.5,
HillCoef = 2,
EC50Noise = 0.1,
Detection = 0,
Saturation = Inf,
ChangeTh = 0,
Norm2TorCtrl = "time")

plotCNOlist Plot the data in a CNOlist

Description

This function plots the data in a CNOlist as a matrix of plots with a row for each condition and a
column for each signal, and an extra plot for each row that specifies which cues are present.

Usage

plotCNOlist(CNOlist)

Arguments

CNOlist a CNOlist

Details

This function can plot the normalised values or the un-normalised ones, it just needs a CNOlist.

Value

This function just produces a plot on your graphics window

Author(s)

C. Terfve

See Also

plotCNOlistPDF, plotCNOlistLarge, plotCNOlistLargePDF

Examples

data(CNOlistToy,package="CellNOptR")
plotCNOlist(CNOlistToy)

22 plotCNOlistLarge

plotCNOlistLarge Plot the data in a CNOlist, for lists with many conditions.

Description

This function plots the data in a CNOlist as a matrix of plots with a row for each condition and a
column for each signal, and an extra plot for each row that specifies which cues are present.

Usage

plotCNOlistLarge(CNOlist,nsplit=4)

Arguments

CNOlist a CNOlist

nsplit the number of splits in the condition dimension (one new plot window will be
produced for each split, i.e. if you have 80 conditions and specify 4 splits you
will get 4 plots with 20 conditions each).

Details

This function can plot normalised values or the un-normalised ones, it just needs a CNOlist. This
function makes plots of CNOlists that are more readable when many conditions are present in the
data. In addition to plotting the conditions divided into multiple plots, this function also plots the
cues divided in two columns, one for inhibitors and one for stimuli.

Value

This function just produces plots on your graphics window.

Author(s)

C. Terfve

See Also

plotCNOlist, plotCNOlistPDF, plotCNOlistLargePDF

Examples

data(CNOlistDREAM,package="CellNOptR")
plotCNOlistLarge(CNOlistDREAM, nsplit=2)

plotCNOlistLargePDF 23

plotCNOlistLargePDF
Plots a CNOlist into a pdf file, for lists with many conditions.

Description

This function is a wrapper for plotCNOlistLarge, that plots the output directly in a pdf file.

Usage

plotCNOlistLargePDF(CNOlist, fileName, nsplit)

Arguments

CNOlist a CNOlist

fileName a name for your pdf file, eg. "plot.pdf"

nsplit the number os splits along the condition dimension (see plotCNOlistLarge)

Details

This function makes plots of CNOlists that are more readable when many conditions are present in
the data. In addition to plotting the conditions divided into multiple plots, this function also plots
the cues divided in two columns, one for inhibitors and one for stimuli.

Value

This function doesn’t return anything, it just produces a pdf file with your plots, in your current
working directory.

Author(s)

C. Terfve

See Also

plotCNOlistLarge, plotCNOlist, plotCNOlistPDF

Examples

tmpdir<-tempdir()
setwd(tmpdir)
data(CNOlistDREAM,package="CellNOptR")
plotCNOlistLargePDF(CNOlistDREAM, fileName="dreamData.pdf",nsplit=2)

24 plotFit

plotCNOlistPDF Plots a CNOlist into a pdf file.

Description

This function is a wrapper for plotCNOlist, that plots the output directly in a pdf file.

Usage

plotCNOlistPDF(CNOlist, fileName)

Arguments

CNOlist a CNOlist

fileName a name for your pdf file, eg. "plot.pdf"

Value

This function doesn’t return anything, it just produces a pdf file containing your plot, in your work-
ing directory.

Author(s)

C. Terfve

See Also

plotCNolist, plotCNOlistLarge, plotCNOlistLargePDF

Examples

tmpdir<-tempdir()
setwd(tmpdir)
data(CNOlistToy,package="CellNOptR")
plotCNOlistPDF(CNOlist=CNOlistToy,fileName="ToyModelGraph.pdf")

plotFit Plot the evolution of an optimisation

Description

This function takes in the results of an optimisation by gaBinaryT1 and plots the evolution of best
fit and average fit against generations.

Usage

plotFit(OptRes)

Arguments

OptRes an object created by the optimisation engine (gabinaryT1)

plotOptimResults 25

Value

This function doesn’t return anything, it just produces a plot in your graphics window.

Author(s)

C. Terfve

See Also

gabinaryT1

Examples

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#process the model

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=FALSE)
ToyComp<-compressModel(ToyModel,indicesToy)
indicesToyComp<-indexFinder(CNOlistToy,ToyComp)
ToyCompExp<-expandGates(ToyComp)

#optimise

ToyFields4Sim<-prep4Sim(ToyCompExp)
initBstring<-rep(1,length(ToyCompExp$reacID))
ToyT1opt<-gaBinaryT1(
CNOlist=CNOlistToy,
Model=ToyCompExp,
SimList=ToyFields4Sim,
indexList=indicesToyComp,
initBstring=initBstring,
maxGens=2,
PopSize=5,
verbose=FALSE)

plotFit(OptRes=ToyT1opt)

plotOptimResults Plot the data and simulated values

Description

This function is the equivalent of CNOPlotFits, it plots the data and the simulated values, along
with an image plot that tells which cues were present. The plots are coloured according to the fit
between data and simulated data.

Usage

plotOptimResults(SimResults = SimResults, expResults = expResults, times = times, namesCues = namesCues, namesSignals = namesSignals, valueCues = valueCues)

26 plotOptimResults

Arguments

SimResults a list with a field for each time point, each containing a matrix of dimensions
(number of conditions) * (number of signals), with the first field being t0. Typi-
cally produced by simulating a model and then extracting the columns that cor-
respond to signals

expResults same as above, but contains the experimental results, ie this is CNOlist$valueSignals

times a vector of times, its length should be the same as the number of fields in Sim-
Results and ExpResults

namesCues a vector of names, typically CNOlist$namesCues

namesSignals a vector of names, typically CNOlist$namesSignals

valueCues a matrix of dimensions (number of conditions) * (number of cues), typically
CNOlist$valueCues

Details

The colouring of the background is done as follows: the mean absolute difference between observed
and simulated values are computed, and colours are chosen based on this value: red (above 0.9),
indianred1 (between O.8 and 0.9), lightpink2 (between 0.7 and 0.8), lightpink (between 0.6 and
0.7), mistyrose (between 0.5 and 0.6), palegoldenrod (between 0.4 and 0.5), palegreen (between
0.3 and 0.4), darkolivegreen3 (between 0.2 and 0.3), chartreuse3 (between 0.1 and 0.2), forestgreen
(between 0 and 0.1). This function is used inside cutAndPlotResultsT1.

Value

This function doesn’t return anything, it just produces a plot in your graphics window.

Author(s)

C. Terfve

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

See Also

cutAndPlotResultsT1

Examples

tmpdir<-tempdir()
setwd(tmpdir)

#We will plot the fit of the full initial model compared to the data, without any optimisation
#This is normally not done on a stand alone basis, but if you have a model and would like to visualise its output compared to your data, then this is what you should do

#load and prepare data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")
indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)

plotOptimResultsPDF 27

ToyFields4Sim<-prep4Sim(ToyModel)

#simulate model

Sim<-simulatorT1(CNOlist=CNOlistToy,Model=ToyModel,SimList=ToyFields4Sim,indexList=indicesToy)

#format data and results

SimRes<-Sim[,indicesToy$signals]
SimResults<-list(t0=matrix(data=0,nrow=dim(SimRes)[1],ncol=dim(SimRes)[2]),t1=SimRes)
expResults<-list(t0=CNOlistToy$valueSignals[[1]],t1=CNOlistToy$valueSignals[[2]])

#plot

plotOptimResults(
SimResults=SimResults,
expResults=expResults,
times=CNOlistToy$timeSignals[1:2],
namesCues=CNOlistToy$namesCues,
namesSignals=CNOlistToy$namesSignals,
valueCues=CNOlistToy$valueCues)

plotOptimResultsPDF
Plot the data and simulated values in a pdf file

Description

This is a wrapper for plotOptimResults

Usage

plotOptimResultsPDF(SimResults = SimResults, expResults = expResults, times = times, namesCues = namesCues, namesSignals = namesSignals, valueCues = valueCues, fileName)

Arguments

SimResults a list with a field for each time point, each containing a matrix of dimensions
number of conditions * number of signals, with the first field being t0. Typically
produced by simulating a model and then extracting the columns that correspond
to signals

expResults same as above, but contains the experimental results, ie this is CNOlist$valueSignals

times a vector of times, its length should be the same as the number of fields in Sim-
Results and ExpResults

namesCues a vector of names, typically CNOlist$namesCues

namesSignals a vector of names, typically CNOlist$namesSignals

valueCues a matrix of dimensions (number of conditions) * (number of cues), typically
CNOlist$valueCues

fileName a name for your file, eg. "plot.pdf"

28 plotOptimResultsPDF

Details

The coloring of the background is done as follows: the mean absolute difference between observed
and simulated values are computed, and colours are chosen based on this value: red (above 0.9),
indianred1 (between O.8 and 0.9), lightpink2 (between 0.7 and 0.8), lightpink (between 0.6 and
0.7), mistyrose (between 0.5 and 0.6), palegoldenrod (between 0.4 and 0.5), palegreen (between
0.3 and 0.4), darkolivegreen3 (between 0.2 and 0.3), chartreuse3 (between 0.1 and 0.2), forestgreen
(between 0 and 0.1). This function is used inside cutAndPlotResultsT1.

Value

This function doesn’t return anything, it just produces a plot in a pdf document in your working
directory.

Author(s)

C. Terfve

See Also

plotOptimResults, cutAndPlotResultsT1

Examples

tmpdir<-tempdir()
setwd(tmpdir)

#We will plot the fit of the full initial model compared to the data, without any optimisation
#This is normally not done on a stand alone basis, but if you have a model and would like to visualise
#its output compared to your data, then this is what you should do

#load and prepare data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")
indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyFields4Sim<-prep4Sim(ToyModel)

#simulate the model

Sim<-simulatorT1(CNOlist=CNOlistToy,Model=ToyModel,SimList=ToyFields4Sim,indexList=indicesToy)

#format the results and data as expected by plotOptimResults

SimRes<-Sim[,indicesToy$signals]
SimResults<-list(t0=matrix(data=0,nrow=dim(SimRes)[1],ncol=dim(SimRes)[2]),t1=SimRes)
expResults<-list(t0=CNOlistToy$valueSignals[[1]],t1=CNOlistToy$valueSignals[[2]])

#plot

plotOptimResultsPDF(
SimResults=SimResults,
expResults=expResults,
times=CNOlistToy$timeSignals[1:2],
namesCues=CNOlistToy$namesCues,
namesSignals=CNOlistToy$namesSignals,
valueCues=CNOlistToy$valueCues,

prep4Sim 29

fileName="Toyfull.pdf")

prep4Sim Prepare a model for simulation

Description

Adds to the model some fields that are used by the simulation engine

Usage

prep4Sim(Model)

Arguments

Model a model list, as output by readSif, normally pre-processed but that is not a re-
quirement of this function

Details

This adds fields that are necessary for the simulation engine in a version that is extensible for
constrained Fuzzy logic extension of the methods applied here (in development).

Value

this function returns a list with fields:

finalCube stores, for each reac(row) the location of its inputs (col)

ixNeg stores, for each reac(row) and each input (col) whether it is a negative input

ignoreCube logical matrix of the same size as the 2 above, that tells whether the particular
cell is filled or not

maxIx row vector that stores, for each reac, the location of its output

modelname stores the name of the model from which these fields were derived

Author(s)

C. Terfve

See Also

simulatorT1

Examples

data(ToyModel,package="CellNOptR")
ToyFields4Sim<-prep4Sim(ToyModel)

30 readMIDAS

readMIDAS Reads in a csv MIDAS file

Description

This function takes in a single argument, the name of a csv MIDAS file containing the data, and
returns a list that contains all the elements to build a CNOlist. The output of this function should be
used as input for makeCNOlist.

Usage

readMIDAS(MIDASfile)

Arguments

MIDASfile a csv MIDAS file

Details

This function does not return a CNOlist, but the output of this function can be used directly into
makeCNOlist to create one. The MIDAS file format is described in Saez-Rodriguez et al. (2008).

If you have all of the readouts measured at the same series of time points, you can specify a unique
DA: column which must have the format "DA:ALL".

Value

this function returns a list with fields:

dataMatrix matrix containing the data in the MIDAS file

TRcol indexes of the columns that contain the treatments (excluding cell line)

DAcol indexes of the columns that contain the data time points

DVcol indexes of the columns that contain the actual values (measurements)

Author(s)

C.Terfve

References

J. Saez-Rodriguez, A. Goldsipe, J. Muhlich, L. Alexopoulos, B. Millard, D. A. Lauffenburger, P. K.
Sorger Flexible Informatics for Linking Experimental Data to Mathematical Models via DataRail.
Bioinformatics, 24:6, 840-847 (2008).

See Also

makeCNOlist

readSif 31

Examples

tmpdir<-tempdir()
setwd(tmpdir)
cpfile<-dir(system.file("ToyModel",package="CellNOptR"),full=TRUE)
file.copy(from=cpfile,to=getwd(),overwrite=TRUE)
dataToy<-readMIDAS(MIDASfile='ToyDataMMB.csv')
CNOlistToy<-makeCNOlist(dataset=dataToy,subfield=FALSE)

readSif Read a sif file and create a model object

Description

This function reads in a cityscape sif file and creates a model object that can be used in the
CellNOptR procedure.

Usage

readSif(sifFile)

Arguments

sifFile the name of a sif file

Details

This function takes in a single argument, sifFile, that points to a previous knowledge network in .sif
format i.e. sourceNode-tab-sign-tab-targetNode. If there are ANDs they should be introduced as
dummy nodes called and# (don’t forget the number after "and" otherwise this won’t be recognised).
Please be aware that "and" nodes are not expected to be negated, i.e. there are not supposed to be
!and1=xyz because that amounts to inverting the sign of all inputs of and1, which is more simply
done at the inputs level.

Value

a model list with fields:

interMat contains a matrix with column for each reaction and a row for each species, with
a -1 where the species is the source node and a +1 where the species is a target
node, and 0 otherwise

notMat has the same format as interMat but just contains a 1 if the source node enters
the reac with a negative effect, and 0 otherwise

namesSpecies vector that contains the names of the species in the same order as the rows of the
interMat and notMat matrices

reacID vector that holds character strings specifying the reaction in full letters, in the
same order as the columns of interMat and notMat

Author(s)

C. Terfve

32 residualError

References

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker
T. Cytoscape: a software environment for integrated models of biomolecular interaction networks.
Genome Research 2003 Nov; 13(11):2498-504.

Examples

tmpdir<-tempdir()
setwd(tmpdir)
cpfile<-dir(system.file("ToyModel",package="CellNOptR"),full=TRUE)
file.copy(from=cpfile,to=getwd(),overwrite=TRUE)
ToyModel<-readSif(sifFile="ToyPKNMMB.sif")

residualError Compute the residual error for a dataset

Description

This function takes in a CNOlist and computes the residual error, which is the minimum error
between the scaled continuous data and a binary boolean approximation of this data.

Usage

residualError(CNOlist)

Arguments

CNOlist a CNOlist

Details

Be aware that it is expected that $valueSignals[[1]] holds t0 (all signals=0) and $valueSignals[[2]]
holds t1, $valueSignals[[3]] holds t2. If you give a CNOlist with more than 3 elements in
valueSignals you will get a warning message but the function should still work based on the first 2
time points. If you give a CNOlist with only 2 elements in valueSignals (i.e. you don’t have a time
2), the function will fill in the residual error t1 and leave t2 and t1andt2 = NA

Value

a vector with named entries t1, t2 and t1andt2 that hold the residual error for when only t1 is
considered, only t2 is considered, or both are considered

Author(s)

C. Terfve

See Also

makeCNOlist, normaliseCNOlist, GetFit

Examples

data(CNOlistToy,package="CellNOptR")
resECNOlistToy<-residualError(CNOlistToy)

simulateT1 33

simulateT1 Cut and simulation of a boolean model at t1

Description

This function cuts a model according to a bitstring optimised at T1, and simulates the model ac-
cordingly

Usage

simulateT1(CNOlist, Model, bStringT1, SimList, indexList)

Arguments

CNOlist a CNOlist object

Model a full model

bStringT1 a bitstring to cut the model, as output by gabinaryT1 (i.e. a vector of 1s and
0s, of length equal to the number of reactions in the model)

SimList a list of additional fields for simulation as created by prep4Sim, corresponding
to the full model

indexList a list of indexes as created by indexFinder

Details

This function is a wrapper for simulatorT1, that cuts the model before simulating it.

Value

a matrix of simulated values, including all species in the model, i.e. to be used as input of gabina-
ryT2 (not implemented here) but not to be used directly in plotOptimResults

Author(s)

C.Terfve

See Also

cutAndPlotOptimResultsT1, simulatorT1

Examples

#This will compute the output of a random model obtained by randomly selecting which gates of the initial models are included

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=FALSE)
ToyFields4Sim<-prep4Sim(ToyModel)

SimRes<-simulateT1(
CNOlist=CNOlistToy,
Model=ToyModel,

34 simulatorT1

bStringT1=round(runif(length(ToyModel$reacID))),
SimList=ToyFields4Sim,
indexList=indicesToy)

simulatorT1 Simulation of a boolean model

Description

This is the simulator, inspired from BoolSimEngMKM in the Matlab CellNOpt, to be used on one
time point simulations

Usage

simulatorT1(CNOlist, Model, SimList, indexList)

Arguments

CNOlist a CNOlist

Model a Model that only contains the reactions to be evaluated

SimList a SimList as created by prep4Sim, that has also already been cut to contain only
the reactions to be evaluated

indexList an indexList as created by indexFinder

Details

Differences from the BoolSimEngMKM simulator include: the valueInhibitors has not been pre-
viously flipped; the function outputs the values across all conditions for all species in the model,
instead of only for the signal species. This is because then the output of this function can be used
as initial values for the version of the simulator that works on time point 2 (not implemented in this
version).

If you would like to compute the output of a model that contains some of the gates in the model but
not all, we suggest that you use the function SimulateT1 and specify in the bStringT1 argu-
ment which gates you want to be included. Indeed, SimulateT1 is a wrapper around simulatorT1
that takes care of cutting the model for you before simulating it.

Value

This function outputs a single matrix of format similar to valueSignals in the CNOlist but that con-
tains an output for each species in the model. This matrix is the simulated equivalent of valueSignals
at time 1, if you consider only the columns given by indexSignals.

Author(s)

C. Terfve

writeDot 35

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

M. K. Morris, J. Saez-Rodriguez, D. Clarke, P. K. Sorger, D. A. Lauffenburger. Training Signaling
Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver
Cell Responses to Inflammatory Stimuli, PLoS Comp. Biol., 7(3): e1001099, 2011.

See Also

SimulateT1, cutAndPlotResultsT1

Examples

#This computes the output of the full model, which is normally not done on a stand alone basis, but if you have a model and would like to visualise its output compared to your data, then this is what you should do

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyFields4Sim<-prep4Sim(ToyModel)

Sim<-simulatorT1(
CNOlist=CNOlistToy,
Model=ToyModel,
SimList=ToyFields4Sim,
indexList=indicesToy)

writeDot Write a model, and attached features, to a dot file

Description

This function writes a model to a Graphviz dot file with encoded features such as edge weight and
nodes status (see details).

Usage

writeDot(dotNodes,dotMatrix,Model,fileName)

Arguments

dotNodes internal variables created by writeNetwork or writeScaffold; dotNodes is a ma-
trix with 2 columns: the first has the node names,and the second the attributes
(signal, stimulated, inhibited, compressed, nano). A node can appear twice in
this matrix if it belongs to more of one of the above categories; a node could
also not appear here if it is is none of these categories

dotMatrix internal variables created by writeNetwork or writeScaffold; dotMatrix is a ma-
trix with 4 or 5 columns, and a row for each reaction:the first column holds the
name of the input node, the second column holds the sign of the reaction (-1 if
negative, 1 if positive), the third column holds the name of the output node, the
fourth column holds the time stamp (0,1,2), an optional 5th column holds the
weights of the edges

36 writeDot

Model A model to be plotted, if used inside writeNetwork then this should be the
previous knowledge network (ModelOriginal), if inside writeScaffold then this
should be the scaffold (ModelComprExpanded)

fileName a name for the file

Details

This function is not to be used on its own, it should be used internally to writeNetwork or writeScaf-
fold. For the colouring of the nodes, nodes that are both stimulated and inhibited or any other com-
bination, only one colour per category is used, and the following order of priority for the colours
is used: signals prime over inhibited nodes which primes over stimulated nodes which primes over
non-controllable/non-observable nodes, which primes over compressed. Nodes that are neither
of those have a black contour, stimulated nodes are green, inhibited are red, measure are blue,
compressed and non-controllable/non-observable nodes are black and dashed. Edges are coloured
according to time stamp in the optimal model (green=t1, blue=t1 and/or t2, grey=neither); on the
scaffold, the strokes of the edges reflects the weights in the models within reltol (i.e. for each edge,
the weight is the frequency with which it appeared among the models within the relative tolerance
boundaries around the best solution).

Value

This function does not have any output, it just writes a dot file in your working directory.

Author(s)

C. Terfve

References

Emden R. Gansner , Stephen C. North. An Open Graph Visualization System and Its Applications
to Software Engineering. Software - Practice and Experience (1999)

See Also

writeNetwork, writeScaffold

Examples

tmpdir<-tempdir()
setwd(tmpdir)

#load data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#pre-process model

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyNCNOindices<-findNONC(ToyModel,indicesToy,verbose=TRUE)
ToyNCNOcut<-cutNONC(ToyModel,ToyNCNOindices)
indicesToyNCNOcut<-indexFinder(CNOlistToy,ToyNCNOcut)
ToyNCNOcutComp<-compressModel(ToyNCNOcut,indicesToyNCNOcut)
indicesToyNCNOcutComp<-indexFinder(CNOlistToy,ToyNCNOcutComp)
ToyNCNOcutCompExp<-expandGates(ToyNCNOcutComp)

writeNetwork 37

#optimise

ToyFields4Sim<-prep4Sim(ToyNCNOcutCompExp)
initBstring<-rep(1,length(ToyNCNOcutCompExp$reacID))
ToyT1opt<-gaBinaryT1(
CNOlist=CNOlistToy,
Model=ToyNCNOcutCompExp,
SimList=ToyFields4Sim,
indexList=indicesToyNCNOcutComp,
initBstring=initBstring,
maxGens=2,
PopSize=5,
verbose=TRUE)

#write network

writeNetwork(
ModelOriginal=ToyModel,
ModelComprExpanded=ToyNCNOcutCompExp,
optimResT1=ToyT1opt,
optimResT2=NA,
CNOlist=CNOlistToy)

writeNetwork Write a previous knowledge network model to a sif file (with attribute
files), as well as a dot file

Description

This function writes the original previous knowledge network (the model that you loaded in the
beginning of your analysis) in a sif file, with a nodes attribute file that specifies if each node was
stimulated/inhibited/signal/compressed/non-controllable-non-observable and an edge attribute file
that specifies if the edge was absent in the optimal model (0) present in the optimal model at t1 (1)
or present in the optimal model at t2 (2).

This function also writes a Graphviz dot file that contains the same information (see writeDot
for more information about the dot file conventions).

Usage

writeNetwork(ModelOriginal, ModelComprExpanded, optimResT1, optimResT2, CNOlist)

Arguments
ModelOriginal

The PKN model
ModelComprExpanded

The scaffold model (i.e. compressed and expanded)

optimResT1 The results of the optimisation process at t1

optimResT2 The results of the optimisation process at t2 (set this to NA, the t2 optimisation
is not implemented in this version).

CNOlist The CNOlist on which the optimisation is based

38 writeNetwork

Details

The weights of the edges are computed as the mean across models within the relative tolerance lim-
its, as output in the results from the optimisation $StringsTol. Strings that are in $StringsTol
are the ones that are within the relative tolerance limits around the best solution in the population
across all generations of the optimisation.

!If there is no time 2, then the argument optimResT2 should be = NA

This function maps back the edges weights from the optimised (expanded and compressed) model
to the original model. The mapping back only works if the path has length 2 at most (i.e. you have
node1-comp1-comp2-node2, where comp refer to nodes that have been compressed).

Value

This function does not have any output, it just writes a sif file, an edge attribute file, and a node
attribute file

Note

The mapback of this function is still an open question, even in the Matlab version. Future devel-
opments will include more robust versions of the mapping back algorithm, probably as a separate
mapback function.

Author(s)

C. Terfve

See Also

writeScaffold, writeDot

Examples

tmpdir<-tempdir()
setwd(tmpdir)

#load data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#pre-process model

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyNCNOindices<-findNONC(ToyModel,indicesToy,verbose=TRUE)
ToyNCNOcut<-cutNONC(ToyModel,ToyNCNOindices)
indicesToyNCNOcut<-indexFinder(CNOlistToy,ToyNCNOcut)
ToyNCNOcutComp<-compressModel(ToyNCNOcut,indicesToyNCNOcut)
indicesToyNCNOcutComp<-indexFinder(CNOlistToy,ToyNCNOcutComp)
ToyNCNOcutCompExp<-expandGates(ToyNCNOcutComp)

#optimise

ToyFields4Sim<-prep4Sim(ToyNCNOcutCompExp)
initBstring<-rep(1,length(ToyNCNOcutCompExp$reacID))
ToyT1opt<-gaBinaryT1(

writeReport 39

CNOlist=CNOlistToy,
Model=ToyNCNOcutCompExp,
SimList=ToyFields4Sim,
indexList=indicesToyNCNOcutComp,
initBstring=initBstring,
verbose=TRUE,
maxGens=2,
PopSize=5)

#write network

writeNetwork(
ModelOriginal=ToyModel,
ModelComprExpanded=ToyNCNOcutCompExp,
optimResT1=ToyT1opt,
optimResT2=NA,
CNOlist=CNOlistToy)

writeReport Write a report of a CellNOptR analysis

Description

This function writes a short report of a CellNOptR analysis in an html page, that is linked to the
various graphs produced

Usage

writeReport(ModelOriginal, ModelOpt, optimResT1, optimResT2, CNOlist, directory, namesFiles = list(dataPlot = NA, evolFit1 = NA, evolFit2 = NA, SimResults2 = NA, SimResults1 = NA, Scaffold = NA, tscaffold = NA, wscaffold = NA, PKN = NA, wPKN = NA, nPKN = NA), namesData = list(CNOlist=NA, Model=NA),resE)

Arguments
ModelOriginal

the original previous knowledge network (i.e. model that you loaded) in a model
list format

ModelOpt the model that was actually used for optimisation (i.e. the scaffold network, after
compression and expansion) in a model list format

optimResT1 the results of the optimisation at t1, as output by gabinaryT1

optimResT2 the results of the optimisation at t2, as output by gabinaryT2. Always set to NA
here since the t2 optimisation is not implemented in this version

CNOlist a CNOlist

directory the name of a new directory that will be created, where your results will be
moved

namesFiles a list of the names of the files that should have been created. Depending on
whether a t2 optimisation was performed or not, all or some of the following
fields are expected: dataPlot,evolFit1,evolFit2,SimResults2,SimResults1,Scaffold,tscaffold,wscaffold,PKN,wPKN,nPKN

namesData a list with fields $CNOlist and $Model that contain strings that are mean-
ingful identifiers of your data and previous knowledge network (for your own
record)

resE a vector with named entries t1, t2 t1andt2, as produced by the function ResidualError,
that contains the residual error associated with the discretisation of the data

40 writeReport

Details

Future versions of this function might directly write and compile a tex file.

Value

This function produces a directory and moves all the files of namesFiles to it, then it creates an html
report that contains infos about the optimisation process.

Author(s)

C.Terfve

See Also

writeNetwork, writeScaffold

Examples

tmpdir<-tempdir()
setwd(tmpdir)

#load data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#pre-process model (partial)

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyNCNOcutComp<-compressModel(ToyModel,indicesToy)
indicesToyNCNOcutComp<-indexFinder(CNOlistToy,ToyNCNOcutComp)
ToyNCNOcutCompExp<-expandGates(ToyNCNOcutComp)

#optimise

ToyFields4Sim<-prep4Sim(ToyNCNOcutCompExp)
initBstring<-rep(1,length(ToyNCNOcutCompExp$reacID))
ToyT1opt<-gaBinaryT1(
CNOlist=CNOlistToy,
Model=ToyNCNOcutCompExp,
SimList=ToyFields4Sim,
indexList=indicesToyNCNOcutComp,
initBstring=initBstring,
maxGens=2,
PopSize=5,
verbose=TRUE)

#write report

namesFilesToy<-list(
dataPlot=NA,
evolFit1=NA,
evolFit2=NA,
SimResults1=NA,
SimResults2=NA,
Scaffold=NA,

writeScaffold 41

ScaffoldDot=NA,
tscaffold=NA,
wscaffold=NA,
PKN=NA,
PKNdot=NA,
wPKN=NA,
nPKN=NA)
writeReport(
ModelOriginal=ToyModel,
ModelOpt=ToyNCNOcutCompExp,
optimResT1=ToyT1opt,
optimResT2=NA,
CNOlist=CNOlistToy,
directory="testToy",
namesFiles=namesFilesToy,
namesData=list(CNOlist="Toy",Model="ToyModel"),
resE=NA)

writeScaffold Writes the scaffold network to a sif file (with attributes) and to a dot
file

Description

This function writes a cityscape sif file for the scaffold network, with an associated edge attribute
file that holds whether the edge is present at t1,t2 or not present at all and another associated edge
attribute file that holds the weights of the edges. This function also writes a dot file that contains
the same information (see writeDot for more information about the dot file conventions).

Usage

writeScaffold(ModelComprExpanded, optimResT1, optimResT2, ModelOriginal, CNOlist)

Arguments
ModelComprExpanded

The scaffold model (i.e. compressed and expanded)
optimResT1 The results of the optimisation process at t1
optimResT2 The results of the optimisation process at t2 (set this to NA, the t2 optimisation

is not implemented in this version).
ModelOriginal

The PKN model
CNOlist The CNOlist on which the optimisation is based

Details

By scaffold network we mean the network that is used as a basis for optimisation (i.e. a compressed
and expanded network), therefore no map back of the weights is necessary here.

The weights of the edges are computed as the mean across models within the relative tolerance lim-
its, as output in the results from the optimisation $StringsTol. Strings that are in $StringsTol
are the ones that are within the relative tolerance limits around the best solution in the population
across all generations of the optimisation.

!If there is no time 2, then the argument optimResT2 should be = NA.

42 writeScaffold

Value

This function does not return anything, it writes a sif file and 2 edge attributes files, and a dot file,
in your working directory.

Author(s)

C.Terfve

See Also

writeNetwork, writeDot

Examples

tmpdir<-tempdir()
setwd(tmpdir)

#load the data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#pre-process the model (partial)

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyNCNOcutComp<-compressModel(ToyModel,indicesToy)
indicesToyNCNOcutComp<-indexFinder(CNOlistToy,ToyNCNOcutComp)
ToyNCNOcutCompExp<-expandGates(ToyNCNOcutComp)

#optimise

ToyFields4Sim<-prep4Sim(ToyNCNOcutCompExp)
initBstring<-rep(1,length(ToyNCNOcutCompExp$reacID))
ToyT1opt<-gaBinaryT1(
CNOlist=CNOlistToy,
Model=ToyNCNOcutCompExp,
SimList=ToyFields4Sim,
indexList=indicesToyNCNOcutComp,
initBstring=initBstring,
maxGens=3,
PopSize=5,
verbose=TRUE)

#write the network

writeScaffold(
ModelOriginal=ToyModel,
ModelComprExpanded=ToyNCNOcutCompExp,
optimResT1=ToyT1opt,
optimResT2=NA,
CNOlist=CNOlistToy)

Index

∗Topic datasets
CNOlistDREAM, 3
CNOlistToy, 4
LiverDREAM, 6
ToyModel, 6

∗Topic package
CellNOptR-package, 4

CellNOptR (CellNOptR-package), 4
CellNOptR-package, 4
checkSignals, 7
CNOlistDREAM, 3
CNOlistToy, 4
CNORwrap, 1
compressModel, 8
cutAndPlotResultsT1, 9
cutNONC, 10

DreamModel (LiverDREAM), 6

expandGates, 11

findNONC, 12

gaBinaryT1, 13
getFit, 15

indexFinder, 17

LiverDREAM, 6

makeCNOlist, 18

normaliseCNOlist, 19

plotCNOlist, 21
plotCNOlistLarge, 22
plotCNOlistLargePDF, 23
plotCNOlistPDF, 24
plotFit, 24
plotOptimResults, 25
plotOptimResultsPDF, 27
prep4Sim, 29

readMIDAS, 30
readSif, 31

residualError, 32

simulateT1, 33
simulatorT1, 34

ToyModel, 6

writeDot, 35
writeNetwork, 37
writeReport, 39
writeScaffold, 41

43

	CNORwrap
	CNOlistDREAM
	CNOlistToy
	CellNOptR-package
	LiverDREAM
	ToyModel
	checkSignals
	compressModel
	cutAndPlotResultsT1
	cutNONC
	expandGates
	findNONC
	gaBinaryT1
	getFit
	indexFinder
	makeCNOlist
	normaliseCNOlist
	plotCNOlist
	plotCNOlistLarge
	plotCNOlistLargePDF
	plotCNOlistPDF
	plotFit
	plotOptimResults
	plotOptimResultsPDF
	prep4Sim
	readMIDAS
	readSif
	residualError
	simulateT1
	simulatorT1
	writeDot
	writeNetwork
	writeReport
	writeScaffold
	Index

