
flowCore: data structures package for flow cytometry data

N. Le Meur F. Hahne B. Ellis P. Haaland

November 1, 2011

Abstract

Background The recent application of modern automation technologies to staining and
collecting flow cytometry (FCM) samples has led to many new challenges in data manage-
ment and analysis. We limit our attention here to the associated problems in the analysis
of the massive amounts of FCM data now being collected. From our viewpoint, see two
related but substantially different problems arising. On the one hand, there is the prob-
lem of adapting existing software to apply standard methods to the increased volume of
data. The second problem, which we intend to address here, is the absence of any research
platform which bioinformaticians, computer scientists, and statisticians can use to develop
novel methods that address both the volume and multidimensionality of the mounting tide
of data. In our opinion, such a platform should be Open Source, be focused on visualiza-
tion, support rapid prototyping, have a large existing base of users, and have demonstrated
suitability for development of new methods. We believe that the Open Source statistical
software R in conjunction with the Bioconductor Project fills all of these requirements.
Consequently we have developed a Bioconductor package that we call flowCore. The flow-
Core package is not intended to be a complete analysis package for FCM data, rather, we
see it as providing a clear object model and a collection of standard tools that enable R
as an informatics research platform for flow cytometry. One of the important issues that
we have addressed in the flowCore package is that of using a standardized representation
that will insure compatibility with existing technologies for data analysis and will support
collaboration and interoperability of new methods as they are developed. In order to do
this, we have followed the current standardized descriptions of FCM data analysis as being
developed under NIH Grant xxxx [n]. We believe that researchers will find flowCore to be
a solid foundation for future development of new methods to attack the many interesting
open research questions in FCM data analysis.

Methods We propose a variety different data structures. We have implemented the classes
and methods in the Bioconductor package flowCore. We illustrate their use with X case
studies.

Results We hope that those proposed data structures will be the base for the development
of many tools for the analysis of high throughput flow cytometry.

keywords Flow cytometry, high throughput, software, standard

1 Introduction

Traditionally, flow cytometry has been a tube-based technique limited to small-scale laboratory
and clinical studies. High throughput methods for flow cytometry have recently been developed

1

for drug discovery and advanced research methods (Gasparetto et al., 2004). As an example,
the flow cytometry high content screening (FC-HCS) can process up to a thousand samples
daily at a single workstation, and the results have been equivalent or superior to traditional
manual multi-parameter staining and analysis techniques.

The amount of information generated by high throughput technologies such as FC-HCS
need to be transformed into executive summaries (which are brief enough) for creative studies
by a human researcher (Brazma, 2001). Standardization is critical when developing new high
throughput technologies and their associated information services (Brazma, 2001; Chicurel,
2002; Boguski and McIntosh, 2003). Standardization efforts have been made in clinical cell
analysis by flow cytometry (Keeney et al., 2004), however data interpretation has not been
standardized for even low throughput FCM. It is one of the most difficult and time consuming
aspects of the entire analytical process as well as a primary source of variation in clinical tests,
and investigators have traditionally relied on intuition rather than standardized statistical
inference (Bagwell, 2004; Braylan, 2004; Parks, 1997; Suni et al., 2003). In the development
of standards in high throughput FCM, few progress has been done in term of Open Source
software. In this article we propose R data structures to handle flow cytometry data through
the main steps of preprocessing: compensation, transformation, filtering.

The aim is to merge both prada and rflowcyt (LeMeur and Hahne, 2006) into one core
package which is compliant with the data exchange standards that are currently developed in
the community (Spidlen et al., 2006).

Visualization as well as quality control will than be part of the utility packages that depend
on the data structures defined in the flowCore package.

2 Representing Flow Cytometry Data

flowCore’s primary task is the representation and basic manipulation of flow cytometry (or
similar) data. This is accomplished through a data model very similar to that adopted by
other Bioconductor packages using the expressionSet and AnnotatedDataFrame structures
familiar to most Bioconductor users.

2.1 The flowFrame Class

The basic unit of manipulation in flowCore is the flowFrame, which corresponds roughly with
a single “FCS” file exported from the flow cytometer’s acquisition software. At the moment we
support FCS file versions 2.0 through 3.0, and we expect to support FCS4/ACS1 as soon as
the specification has been ratified.

2.1.1 Data elements

The primary elements of the flowFrame are the exprs and parameters slots, which contain the
event-level information and column metadata respectively. The event information, stored as
a single matrix, is accessed and manipulated via the exprs() and exprs<- methods, allowing
flowFrames to be stitched together if necessary (for example, if the same tube has been collected
in two acquisition files for memory reasons).

2

The parameters slot is an AnnotatedDataFrame that contains information derived from an
FCS file’s “$P<n>” keywords, which describe the detector and stain information. The entire
list is available via the parameter() method, but more commonly this information is accessed
through the names, featureNames and colnames methods. The names function returns a
concatenated version of names and featureNames using a format similar to the one employed
by most flow cytometry analysis software. The colnames method returns the detector names,
often named for the fluorochrome detected, while the featureNames methods returns the
description field of the parameters, which will typically be an identifier for the antibody.

The keyword method allows access to the raw FCS keywords, which are a mix of standard
entries such as “SAMPLE ID,” vendor specific keywords and user-defined keywords that add
more information about an experiment. In the case of plate-based experiments, there are also
one or more keywords that identify the specific well on the plate.

Most vendor software also include some sort of unique identifier for the file itself. The
specialized methods identifier attempts to locate an appropriate globally unique identifier
that can be used to uniquely identify a frame. Failing that, this method will return the original
file name offering some assurance that this frame is at least unique to a particular session.

2.1.2 Reading a flowFrame

FCS files are read into the R environment via the read.FCS function using the standard
connection interface—allowing for the possibility of accessing FCS files hosted on a remote
resource as well as those that have been compressed or even retrieved as a blob from a database
interface. FCS files (version 2.0 and 3.0) and LMD (List Mode Data) extensions are currently
supported.

There are also several immediate processing options available in this function, the most
important of which is the transformation parameter, which can either“linearize”(the default)
or “scale” our data. To see how this works, first we will examine an FCS file without any
transformation at all:

> file.name <- system.file("extdata","0877408774.B08", package="flowCore")

> x <- read.FCS(file.name, transformation=FALSE)

> summary(x)

FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H Time

Min. 85 11.0 0.0 0.0 0.0 0.00 0.0 1.0

1st Qu. 385 141.0 233.0 277.0 90.0 0.00 210.0 122.0

Median 441 189.0 545.5 346.0 193.0 26.00 279.0 288.0

Mean 492 277.9 439.1 366.2 179.7 34.08 323.5 294.8

3rd Qu. 518 270.0 610.0 437.0 264.0 51.00 390.0 457.5

Max. 1023 1023.0 912.0 1023.0 900.0 1023.00 1022.0 626.0

As we can see, in this case the values from each parameter seem to run from 0 to 1023
(210 − 1). However, inspection of the “exponentiation” keyword ($P<n>E) reveals that some
of the parameters (3 and 4) have been stored in the format of the form a × 10x/R where a is
given by the first element of the string.

> keyword(x,c("$P1E", "$P2E", "$P3E", "$P4E"))

3

$`$P1E`

[1] "0,0"

$`$P2E`

[1] "0,0"

$`$P3E`

[1] "4,0"

$`$P4E`

[1] "4,0"

The default “linearize” transformation option will convert these to, effectively, have a
“$P<n>E” of “0,0”:

> summary(read.FCS(file.name))

FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H Time

Min. 85 11.0 1.000 1.00 1.000 0.00 1.000 1.0

1st Qu. 385 141.0 8.148 12.11 2.249 0.00 6.624 122.0

Median 441 189.0 135.800 22.54 5.684 26.00 12.330 288.0

Mean 492 277.9 158.700 106.60 8.488 34.08 141.300 294.8

3rd Qu. 518 270.0 242.700 51.13 10.770 51.00 33.490 457.5

Max. 1023 1023.0 3681.000 10000.00 3304.000 1023.00 9910.000 626.0

Finally, the “scale” option will both linearize values as well as ensure that output values
are contained in [0, 1], which is the proposed method of data storage for the ACS1.0/FCS4.0
specification:

> summary(read.FCS(file.name,transformation="scale"))

FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

Min. 0.08309 0.01075 0.0000000 0.000000 0.0000000 0.00000 0.0000000

1st Qu. 0.37630 0.13780 0.0007149 0.001111 0.0001249 0.00000 0.0005624

Median 0.43110 0.18480 0.0134800 0.002154 0.0004684 0.02542 0.0011330

Mean 0.48090 0.27170 0.0157700 0.010560 0.0007489 0.03331 0.0140300

3rd Qu. 0.50640 0.26390 0.0241800 0.005014 0.0009772 0.04985 0.0032490

Max. 1.00000 1.00000 0.3681000 1.000000 0.3303000 1.00000 0.9910000

Time

Min. 0.0009775

1st Qu. 0.1193000

Median 0.2815000

Mean 0.2881000

3rd Qu. 0.4472000

Max. 0.6119000

4

Another parameter of interest is the alter.names parameter, which will convert the pa-
rameter names into more “R friendly” equivalents, usually by replacing “-” with “.”:

> read.FCS(file.name,alter.names=TRUE)

flowFrame object '0877408774.B08'

with 10000 cells and 8 observables:

name desc range minRange maxRange

$P1 FSC.H FSC-H 1024 0 1023

$P2 SSC.H SSC-H 1024 0 1023

$P3 FL1.H 1024 1 10000

$P4 FL2.H 1024 1 10000

$P5 FL3.H 1024 1 10000

$P6 FL1.A <NA> 1024 0 1023

$P7 FL4.H 1024 1 10000

$P8 Time Time (51.20 sec.) 1024 0 1023

164 keywords are stored in the 'description' slot

When only a particular subset of parameters is desired the column.pattern parameter
allows for the specification of a regular expression and only parameters that match the regular
expression will be included in the frame. For example, to include on the Height parameters:

> x <- read.FCS(file.name, column.pattern="-H")

> x

flowFrame object '0877408774.B08'

with 10000 cells and 6 observables:

name desc range minRange maxRange

$P1 FSC-H FSC-H 1024 0 1023

$P2 SSC-H SSC-H 1024 0 1023

$P3 FL1-H 1024 1 10000

$P4 FL2-H 1024 1 10000

$P5 FL3-H 1024 1 10000

$P7 FL4-H 1024 1 10000

160 keywords are stored in the 'description' slot

Note that column.pattern is applied after alter.names if it is used.
Finally, only a sample of lines can be read in case you need a quick overview of a large

series of files.

> lines <- sample(100:500, 50)

> y <- read.FCS(file.name, which.lines = lines)

> y

flowFrame object '0877408774.B08'

with 50 cells and 8 observables:

name desc range minRange maxRange

5

$P1 FSC-H FSC-H 1024 0 1023

$P2 SSC-H SSC-H 1024 0 1023

$P3 FL1-H 1024 1 10000

$P4 FL2-H 1024 1 10000

$P5 FL3-H 1024 1 10000

$P6 FL1-A <NA> 1024 0 1023

$P7 FL4-H 1024 1 10000

$P8 Time Time (51.20 sec.) 1024 0 1023

164 keywords are stored in the 'description' slot

2.1.3 Visualizing a flowFrame

Much of the more sophisticated visualization of flowFrame and flowSet objects, including an
interface to the lattice graphics system is implemented by the flowViz package, also included
as part of Bioconductor. Here, we will only introduce the standard plot function. The basic
plot provides a simple pairs plot of all parameters:

> library(flowViz)

> plot(x)

Scatter Plot Matrix

FSC−H

SSC−H

FL1−H

FL2−H

FL3−H

FL4−H

6

To control the parameters being plotted we can supply a y value in the form of a character
vector. If we choose exactly two parameters this will create a bivariate density plot.

> plot(x,c("FL1-H", "FL2-H"))

0 2000 4000 6000 8000 10000

0
20

00
40

00
60

00
80

00
10

00
0

FL1−H

F
L2

−
H

However, if we only supply a single parameter we instead get a univariate histogram, which
also accepts the usual histogram arguments:

> plot(x, "FL1-H", breaks=256)

7

Histogram of values

FL1−H

F
re

qu
en

cy

0 2000 4000 6000 8000 10000

0
10

00
20

00
30

00
40

00

2.2 The flowSet Class

Most experiments consist of several flowFrame objects, which are organized using a flowSet
object. This class provides a mechanism for efficiently hosting the flowFrame objects with min-
imal copying, reducing memory requirements, as well as ensuring that experimental metadata
stays properly to the appropriate flowFrame objects.

2.2.1 Creating a flowSet

To facilitate the creation of flowSet objects from a variety of sources, we provide a means to
coerce list and environment objects to a flowSet object using the usual coercion mechanisms.
For example, if we have a directory containing FCS files we can read in a list of those files and
create a flowSet out of them:

> frames <- lapply(dir(system.file("extdata", "compdata", "data",

+ package="flowCore"), full.names=TRUE),

+ read.FCS)

> as(frames, "flowSet")

8

A flowSet with 5 experiments.

column names:

FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

Note that the original list is unnamed and that the resulting sample names are not particu-
larly meaningful. If the list is named, the list constructed is much more meaningful. One such
approach is to employ the keyword method for flowFrame objects to extract the “SAMPLE
ID” keyword from each frame:

> names(frames) <- sapply(frames, keyword, "SAMPLE ID")

> fs <- as(frames, "flowSet")

> fs

A flowSet with 5 experiments.

column names:

FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

2.2.2 Working with experimental metadata

Like most Bioconductor organizational classes, the flowSet has an associated AnnotatedDataFrame
that provides metadata not contained within the flowFrame objects themselves. This data
frame is accessed and modified via the usual phenoData and phenoData<- methods. You
can also generally treat the phenotypic data as a normal data frame to add new descriptive
columns. For example, we might want to track the original filename of the frames from above
in the phenotypic data for easier access:

> phenoData(fs)$Filename <- fsApply(fs,keyword, "$FIL")

> pData(phenoData(fs))

name Filename

NA NA 060909.001

fitc fitc 060909.002

pe pe 060909.003

apc apc 060909.004

7AAD 7AAD 060909.005

Note that we have used the flowSet-specific iterator, fsApply, which acts much like sapply
or lapply. Additionally, we should also note that the phenoData data frame must have row
names that correspond to the original names used to create the flowSet .

2.2.3 Bringing it all together: read.flowSet

Much of the functionality described above has been packaged into the read.flowSet conve-
nience function. In it’s simplest incarnation, this function takes a path, that defaults to the
current working directory, and an optional pattern argument that allows only a subset of files
contained within the working directory to be selected. For example, to read a flowSet of the
files read in by frame above:

9

> read.flowSet(path = system.file("extdata", "compdata", "data",

+ package="flowCore"))

A flowSet with 5 experiments.

column names:

FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

read.flowSet will pass on additional arguments meant for the underlying read.FCS func-
tion, such as alter.names and column.pattern, but also supports several other interesting
arguments for conducting initial processing:

files An alternative to the pattern argument, you may also supply a vector of filenames to
read.

name.keyword Like the example in the previous section, you may specify a particular key-
word to use in place of the filename when creating the flowSet .

phenoData If this is an AnnotatedDataFrame, then this will be used in place of the data
frame that is ordinarily created. Additionally, the row names of this object will be taken
to be the filenames of the FCS files in the directory specified by path. This argument
may also be a named list made up of a combination of character and function objects
that specify a keyword to extract from the FCS file or a function to apply to each frame
that will return a result.

To recreate the flowSet that we created by hand from the last section we can use read.flowSets
advanced functionality:

> fs <- read.flowSet(path=system.file("extdata", "compdata", "data",

+ package="flowCore"), name.keyword="SAMPLE ID",

+ phenoData=list(name="SAMPLE ID", Filename="$FIL"))

> fs

A flowSet with 5 experiments.

An object of class "AnnotatedDataFrame"

rowNames: NA fitc ... 7AAD (5 total)

varLabels: name Filename

varMetadata: labelDescription

column names:

FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

> pData(phenoData(fs))

name Filename

NA NA 060909.001

fitc fitc 060909.002

pe pe 060909.003

apc apc 060909.004

7AAD 7AAD 060909.005

10

2.2.4 Manipulating a flowSet

You can extract a flowFrame from a flowSet object in the usual way using the [[or $ extraction
operators. On the other hand using the [extraction operator returns a new flowSet by copying
the environment. However, simply assigning the flowFrame to a new variable will not copy
the contained frames.

The primary iterator method for a flowSet is the fsApply method, which works more-or-less
like sapply or lapply with two extra options. The first argument, simplify, which defaults
to TRUE, instructs fsApply to attempt to simplify it’s results much in the same way as sapply.
The primary difference is that if all of the return values of the iterator are flowFrame objects,
fsApply will create a new flowSet object to hold them. The second argument, use.exprs,
which defaults to FALSE instructs fsApply to pass the expression matrix of each frame rather
than the flowFrame object itself. This allows functions to operate directly on the intensity
information without first having to extract it.

As an aid to this sort of operation we also introduce the each_row and each_col conve-
nience functions that take the place of apply in the fsApply call. For example, if we wanted
the median value of each parameter of each flowFrame we might write:

> fsApply(fs, each_col, median)

FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

NA 423 128 4.110368 4.538282 3.656368 0 7.247948

fitc 436 128 936.811048 229.975372 33.490890 217 8.295949

pe 438 120 10.204639 796.655892 114.975700 0 9.326033

apc 441 129 4.377753 4.877217 4.790181 0 360.732067

7AAD 429 133 5.010744 15.029018 63.466061 0 20.970227

which is equivalent to the less readable

> fsApply(fs,function(x) apply(x, 2, median), use.exprs=TRUE)

FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

NA 423 128 4.110368 4.538282 3.656368 0 7.247948

fitc 436 128 936.811048 229.975372 33.490890 217 8.295949

pe 438 120 10.204639 796.655892 114.975700 0 9.326033

apc 441 129 4.377753 4.877217 4.790181 0 360.732067

7AAD 429 133 5.010744 15.029018 63.466061 0 20.970227

In this case, the use.exprs argument is not required in the first case because each_col and
each_row are methods and have been defined to work on flowFrame objects by first extracting
the intensity data.

3 Transformation

flowCore features two methods of transforming parameters within a flowFrame: inline and
out-of-line. The inline method, discussed in the next section has been developed primarily

11

to support filtering features and is strictly more limited than the out-of-line transformation
method, which uses R’s transform function to accomplish the filtering. Like the normal
transform function, the flowFrameis considered to be a data frame with columns named for
parameters of the FCS file. For example, if we wished to plot our first flowFrame’s first two
fluorescence parameters on the log scale we might write:

> plot(transform(fs[[1]], `FL1-H`=log(`FL1-H`), `FL2-H`=log(`FL2-H`)),

+ c("FL1-H","FL2-H"))

0 2 4 6 8

0
2

4
6

8

FL1−H

F
L2

−
H

Like the usual transform function, we can also create new parameters based on the old
parameters, without destroying the old

> plot(transform(fs[[1]], log.FL1.H=log(`FL1-H`),

+ log.FL2.H=log(`FL2-H`)), c("log.FL1.H", "log.FL2.H"))

12

0 2 4 6 8

0
2

4
6

8

log.FL1.H

lo
g.

F
L2

.H

3.1 Standard Transforms

Though any function can be used as a transform in both the out-of-line and inline transfor-
mation techniques, flowCore provides a number of parameterized transform generators that
correspond to the transforms commonly found in flow cytometry and defined in the Trans-
formation Markup Language (Transformation-ML, see http://www.ficcs.org/ and Spidlen
et al. (2006) for more details). Briefly, the predefined transforms are:

truncateTransform y =

{
a x < a
x x ≥ a

scaleTransform f(x) = x−a
b−a

linearTransform f(x) = a + bx

quadraticTransform f(x) = ax2 + bx + c

lnTransform f(x) = log (x) r
d

logTransform f(x) = logb (x) r
d

13

http://www.ficcs.org/

biexponentialTransform f−1(x) = aebx − cedx + f

logicleTransform A special form of the biexponential transform with parameters selected by
the data.

arcsinhTransform f(x) = asinh (a + bx) + c

To use a standard transform, first we create a transform function via the constructors
supplied by flowCore:

> aTrans <- truncateTransform("truncate at 1", a=1)

> aTrans

transform object 'truncate at 1'

which we can then use on the parameter of interest in the usual way

> transform(fs,`FL1-H`=aTrans(`FL1-H`))

A flowSet with 5 experiments.

An object of class "AnnotatedDataFrame"

rowNames: NA fitc ... 7AAD (5 total)

varLabels: name Filename

varMetadata: labelDescription

column names:

FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

4 Gating

The most common task in the analysis of flow cytometry data is some form of filtering opera-
tion, also known as gating, either to obtain summary statistics about the number of events that
meet a certain criteria or to perform further analysis on a subset of the data. Most filtering
operations are a composition of one or more common filtering operations. The definition of
gates in flowCore follows the Gating Markup Language Candidate Recommendation Spidlen
et al. (2008), thus any flowCore gating strategy can be reproduced by any other software that
also adheres to the standard and vice versa.

4.1 Standard gates and filters

Like transformations, flowCore includes a number of built-in common flow cytometry gates.
The simplest of these gates are the geometric gates, which correspond to those typically found
in interactive flow cytometry software:

rectangleGate Describes a cubic shape in one or more dimensions–a rectangle in one dimen-
sion is simply an interval gate.

14

polygonGate Describes an arbitrary two dimensional polygonal gate.

polytopeGate Describes a region that is the convex hull of the given points. This gate can
exist in dimensions higher than 2, unlike the polygonGate.

ellipsoidGate Describes an ellipsoidal region in two or more dimensions

These gates are all described in more or less the same manner (see man pages for more
details):

> rectGate <- rectangleGate(filterId="Fluorescence Region",

+ "FL1-H"=c(0, 12), "FL2-H"=c(0, 12))

In addition, we introduce the notion of data-driven gates, or filters, not usually found in
flow cytometry software. In these approaches, the necessary parameters are computed based
on the properties of the underlying data, for instance by modelling data distribution or by
density estimation :

norm2Filter A robust method for finding a region that most resembles a bivariate Normal
distribution.

kmeansFilter Identifies populations based on a one dimensional k-means clustering opera-
tion. Allows the specification of multiple populations.

4.2 Count Statistics

When we have constructed a filter, we can apply it in two basic ways. The first is to collect
simple summary statistics on the number and proportion of events considered to be contained
within the gate or filter. This is done using the filter method. The first step is to apply our
filter to some data

> result = filter(fs[[1]],rectGate)

> result

A filterResult produced by the filter named 'Fluorescence Region'

As we can see, we have returned a filterResult object, which is in turn a filter allowing for
reuse in, for example, subsetting operations. To obtain count and proportion statistics, we
take the summary of this filterResult , which returns a list of summary values:

> summary(result)

Fluorescence Region+: 9811 of 10000 events (98.11%)

> summary(result)$n

[1] 10000

> summary(result)$true

15

[1] 9811

> summary(result)$p

[1] 0.9811

A filter which contains multiple populations, such as the kmeansFilter , can return a list of
summary lists:

> summary(filter(fs[[1]], kmeansFilter("FSC-H"=c("Low", "Medium", "High"),

+ filterId="myKMeans")))

Low: 2518 of 10000 events (25.18%)

Medium: 5109 of 10000 events (51.09%)

High: 2373 of 10000 events (23.73%)

A filter may also be applied to an entire flowSet , in which case it returns a list of filterResult
objects:

> filter(fs,rectGate)

A list of filterResults for a flowSet containing 5 frames

produced by the filter named 'Fluorescence Region'

4.3 Subsetting

To subset or split a flowFrame or flowSet , we use the Subset and split methods respectively.
The first, Subset, behaves similarly to the standard R subset function, which unfortunately
could not used. For example, recall from our initial plots of this data that the morphology
parameters, Forward Scatter and Side Scatter contain a large more-or-less ellipse shaped pop-
ulation. If we wished to deal only with that population, we might use Subset along with a
norm2Filter object as follows:

> morphGate <- norm2Filter("FSC-H", "SSC-H", filterId="MorphologyGate",

+ scale=2)

> smaller <- Subset(fs, morphGate)

> fs[[1]]

flowFrame object 'NA'

with 10000 cells and 7 observables:

name desc range minRange maxRange

$P1 FSC-H FSC-Height 1024 0 1023

$P2 SSC-H SSC-Height 1024 0 1023

$P3 FL1-H <NA> 1024 1 10000

$P4 FL2-H <NA> 1024 1 10000

$P5 FL3-H <NA> 1024 1 10000

$P6 FL1-A <NA> 1024 0 1023

$P7 FL4-H <NA> 1024 1 10000

141 keywords are stored in the 'description' slot

16

> smaller[[1]]

flowFrame object 'NA'

with 8312 cells and 7 observables:

name desc range minRange maxRange

$P1 FSC-H FSC-Height 1024 0 1023

$P2 SSC-H SSC-Height 1024 0 1023

$P3 FL1-H <NA> 1024 1 10000

$P4 FL2-H <NA> 1024 1 10000

$P5 FL3-H <NA> 1024 1 10000

$P6 FL1-A <NA> 1024 0 1023

$P7 FL4-H <NA> 1024 1 10000

141 keywords are stored in the 'description' slot

Notice how the smaller flowFrame objects contain fewer events. Now imagine we wanted
to use a kmeansFilter as before to split our first fluorescence parameter into three populations.
To do this we employ the split function:

> split(smaller[[1]], kmeansFilter("FSC-H"=c("Low","Medium","High"),

+ filterId="myKMeans"))

$Low

flowFrame object 'NA (Low)'

with 2422 cells and 7 observables:

name desc range minRange maxRange

$P1 FSC-H FSC-Height 1024 0 1023

$P2 SSC-H SSC-Height 1024 0 1023

$P3 FL1-H <NA> 1024 1 10000

$P4 FL2-H <NA> 1024 1 10000

$P5 FL3-H <NA> 1024 1 10000

$P6 FL1-A <NA> 1024 0 1023

$P7 FL4-H <NA> 1024 1 10000

141 keywords are stored in the 'description' slot

$Medium

flowFrame object 'NA (Medium)'

with 3563 cells and 7 observables:

name desc range minRange maxRange

$P1 FSC-H FSC-Height 1024 0 1023

$P2 SSC-H SSC-Height 1024 0 1023

$P3 FL1-H <NA> 1024 1 10000

$P4 FL2-H <NA> 1024 1 10000

$P5 FL3-H <NA> 1024 1 10000

$P6 FL1-A <NA> 1024 0 1023

$P7 FL4-H <NA> 1024 1 10000

141 keywords are stored in the 'description' slot

17

$High

flowFrame object 'NA (High)'

with 2327 cells and 7 observables:

name desc range minRange maxRange

$P1 FSC-H FSC-Height 1024 0 1023

$P2 SSC-H SSC-Height 1024 0 1023

$P3 FL1-H <NA> 1024 1 10000

$P4 FL2-H <NA> 1024 1 10000

$P5 FL3-H <NA> 1024 1 10000

$P6 FL1-A <NA> 1024 0 1023

$P7 FL4-H <NA> 1024 1 10000

141 keywords are stored in the 'description' slot

or for an entire flowSet

> split(smaller, kmeansFilter("FSC-H"=c("Low", "Medium", "High"),

+ filterId="myKMeans"))

$Low

A flowSet with 5 experiments.

An object of class "AnnotatedDataFrame"

rowNames: NA fitc ... 7AAD (5 total)

varLabels: name Filename population

varMetadata: labelDescription

column names:

FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

$Medium

A flowSet with 5 experiments.

An object of class "AnnotatedDataFrame"

rowNames: NA fitc ... 7AAD (5 total)

varLabels: name Filename population

varMetadata: labelDescription

column names:

FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

$High

A flowSet with 5 experiments.

An object of class "AnnotatedDataFrame"

rowNames: NA fitc ... 7AAD (5 total)

18

varLabels: name Filename population

varMetadata: labelDescription

column names:

FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

4.4 Combining Filters

Of course, most filtering operations consist of more than one gate. To combine gates and filters
we use the standard R Boolean operators: &, | and ! to construct an intersection, union and
complement respectively:

> rectGate & morphGate

filter 'Fluorescence Region and MorphologyGate'

the intersection between the 2 filters

Rectangular gate 'Fluorescence Region' with dimensions:

FL1-H: (0,12)

FL2-H: (0,12)

norm2Filter 'MorphologyGate' in dimensions FSC-H and SSC-H with parameters:

method: covMcd

scale.factor: 2

n: 50000

> rectGate | morphGate

filter 'Fluorescence Region or MorphologyGate'

the union of the 2 filters

Rectangular gate 'Fluorescence Region' with dimensions:

FL1-H: (0,12)

FL2-H: (0,12)

norm2Filter 'MorphologyGate' in dimensions FSC-H and SSC-H with parameters:

method: covMcd

scale.factor: 2

n: 50000

> !morphGate

filter 'not MorphologyGate', the complement of

norm2Filter 'MorphologyGate' in dimensions FSC-H and SSC-H with parameters:

method: covMcd

scale.factor: 2

n: 50000

19

>

we also introduce the notion of the subset operation, denoted by either %subset% or %&%.
This combination of two gates first performs a subsetting operation on the input flowFrame
using the right-hand filter and then applies the left-hand filter. For example,

> summary(filter(smaller[[1]],rectGate %&% morphGate))

Fluorescence Region in MorphologyGate+: 7188 of 8312 events (86.48%)

first calculates a subset based on the morphGate filter and then applies the rectGate.

4.5 Transformation Filters

Finally, it is sometimes desirable to construct a filter with respect to transformed parameters.
To allow for this in our filtering constructs we introduce a special form of the transform

method along with another filter combination operator %on%, which can be applied to both
filters and flowFrame or flowSet objects. To specify our transform filter we must first construct
a transform list using a simplified version of the transform function:

> tFilter <- transform("FL1-H"=log,"FL2-H"=log)

> tFilter

An object of class "transformList"

Slot "transforms":

[[1]]

transformMap for parameter 'FL1-H' mapping to 'FL1-H'

[[2]]

transformMap for parameter 'FL2-H' mapping to 'FL2-H'

Slot "transformationId":

[1] "defaultTransformation"

Note that this version of the transform filter does not take parameters on the right-hand
side–the functions can only take a single vector that is specified by the parameter on the left-
hand side. In this case those parameters are “FL1-H” and “FL2-H.” The function also does not
take a specific flowFrame or flowSet allowing us to use this with any appropriate data. We
can then construct a filter with respect to the transform as follows:

> rect2 <- rectangleGate(filterId="Another Rect", "FL1-H"=c(1,2),

+ "FL2-H"=c(2,3)) %on% tFilter

> rect2

transformed filter 'Another Rect on transformed values of FL1-H,FL2-H'

20

Additionally, we can use this construct directly on a flowFrame or flowSet by moving the
transform to the left-hand side and placing the data on the right-hand side:

> plot(tFilter %on% smaller[[1]],c("FL1-H","FL2-H"))

0 2 4 6 8

0
2

4
6

8

FL1−H

F
L2

−
H

which has the same effect as the log transform used earlier.

5 filterSet: Organizing Filtering Strategies

5.1 Building Filter Sets

In addition to allowing for sequential filtering, flowCore also provides a filterSet object that
serves as an analogue to flowSets for filters. The primary use of this object is to organize and
manipulate complex gating strategies. For example, recall from the filtering section we had
two gates, a “morphologyGate” and a “Fluorescence Region” gate that we used to demonstrate
the various logical operators available for gates. To recreate this example as a filterSet , we
would do the following:

> fset1 = filterSet(

+ rectangleGate(filterId="Fluorescence Region","FL1-H"=c(50,100),

21

+ "FL2-H"=c(50,100)),

+ norm2Filter("FSC-H","SSC-H",filterId="Morphology Gate", scale=2),

+ ~ `Fluorescence Region` & `Morphology Gate`,

+ ~ `Fluorescence Region` | `Morphology Gate`,

+ Debris ~ ! `Morphology Gate`,

+ ~ `Fluorescence Region` %&% `Morphology Gate`

+)

> fset1

A set of filter objects:

Debris,Fluorescence Region,Fluorescence Region and Morphology Gate,Fluorescence Region in Morphology Gate,Fluorescence Region or Morphology Gate,Morphology Gate

>

There are two features of note in filterSet, which can also take a single list argument
for programmatic creation of filterSet objects. The first is that there is a formula interface
for the creation of filter objects from operators. The formula interface can be used with or
without a left-hand side, which specifies an optional filter identifier. If the filter identifier is not
specified, as is the case with all but the “Debris” gate in the example above the usual default
filter identifier is constructed. Non-formula gates can also have an optional name specified
which overrides the filter identifier specified in the gate constructor. This is discouraged at
this time as it leads to confusion when creating new filters.

5.2 Manipulating Filter Sets

Manipulating a filterSet is done using the normal list element replacement methods, though we
do provide a special case where replacing the “””” element or the “NULL” element causes the
filterSet to use the “filterId” slot of the incoming filter to choose a name. Similarly, specifying
an identifier will override any “filterId” slot in the original filter.

Additionally, there are several convenience functions and methods available for manipulat-
ing a filterSet . The names function provides a list of filter identifiers in an arbitrary order. The
sort lists the filter identifiers according to a topological sort of the filter dependencies such
that parent filters are always evaluated before their children. Filters without dependencies are
provided in an arbitrary relative ordering. To obtain the adjacency matrix for this sorting, the
option “dependencies=TRUE” supplied to the sort function will attach an “AdjM” attribute
to the resulting character vector.

5.3 Using Filter Sets

Though they are not explicitly filters, meaning that they cannot play a role in the construction
of sub filters via operators, filterSet objects do define filter and split methods that allow
for the two most common use cases. Additionally, a filter can be selected from the filterSet
using “[[” to perform a Subset operation if desired.

For standard filtering operations, the filterSet can yield better performance than a manual
filtering operation because it ensures that each parent filter is only evaluated once per call to
filter so that if many sub filters rely on a particular, likely expensive, filtering operation they

22

use the original result rather than recalculating each time. The individual filterResult objects
may be later extracted for further analysis of desire, making the filterSet the logical choice
for most filtering operations. Additionally, though not presently implemented, it can allow
visualization methods to make more intelligent choices about display when rendering gating
strategies because the disposition of the entire filtering graph is known and the filter results
are already available.

Like any other filtering operation, summary methods are also available to collect the usual
sorts of count statistics for a filtering operation:

> f = filter(fs,fset1)

> f

A list of filterResults for a flowSet containing 5 frames

produced by the filter named 'default'

When splitting a flowFrame using split, we have two options. The first is to include all
of the resultant subsets in the usual way:

> split(fs[[1]], fset1, flowSet=TRUE)

A flowSet with 7 experiments.

An object of class "AnnotatedDataFrame"

rowNames: rest Fluorescence Region ... Fluorescence Region or

Morphology Gate (7 total)

varLabels: name population

varMetadata: labelDescription

column names:

FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

>

While this provides access to all subsets, for automated analysis we will often only wish
to work with the “leaf” gates (i.e. those without children of their own). In this case, we can
specify “drop=TRUE” to obtain only the leaf gates:

> split(fs[[1]],fset1,drop=TRUE,flowSet=TRUE)

A flowSet with 7 experiments.

An object of class "AnnotatedDataFrame"

rowNames: rest Fluorescence Region ... Fluorescence Region or

Morphology Gate (7 total)

varLabels: name population

varMetadata: labelDescription

column names:

FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

23

>

Note that in both cases, we use the “flowSet=TRUE” option that has been added to the
split function to automatically create a flowSet object from the resulting flowFrame objects.
For filterSet objects, the split function can take advantage of the added structure in this
case to provide some information about the filtering operation itself in the flowSet ’s metadata
as well.

6 Work flows

filterSets are very limited in their use for complex analysis work flows. They are result-centric
and it is hard to access intermediate results. flowCore offers much more versatile tools for such
tasks though the workFlow class. The general idea is to let the software handle the organization
of intermediate results, naming schemes and operations and to provide a unified API to access
and summarize these operations.

6.1 Abstraction of work flows

There are three classes in flowCore that are used to abstract work flows: workFlow objects are
the basic container holding all the necessary bits and pieces and they are the main structure
for user interaction. actionItem objects are abstractions of data analysis operations like gat-
ing, transformation or normalization. There are sub-classes for different types of operations.
Finally, view objects are created when applying actionItems to a workFlow . One can think of
views as separate data sets, for instance a subset that is created by a gating operation or the
modified data following a transformation. Again, different types of views are available through
various sub-classes. This structure allows for a unified API in which the user interacts with
either views (the most common application) or actionItems.

It is important to know that workFlows use a reference semantic instead of the pass-by-value
semantic that is usually found in the R language. This design was chosen to minimize memory
consumption and to keep the framework as flexible as possible. The only main consequence on
the user-level is the fact that direct assignments to a workFlow object are usually not necessary;
i.e., functions that operate on the workFlow have the potential side-effect of modifying the
object.

6.2 Naming schemes

One major obstacle of using scripts as a work flow representation is the need to keep track
of object symbols or names of list items. Choosing arbitrary names makes it hard to access
objects and there is no way to easily query the structure of the work flow other than reading
through the complete script. It is also very hard to appreciate the hierarchical structure of the
work flow from a linear listing of R commands. Most objects in flowCore provide useful names
or identifiers, and the work flow framework tries to utilize these names as much as possible. For
example, a rectangleGate called“Lymphocytes”will create two subpopulations, namely the cells
within the gate and their complement. Intuitive names for these subpopulation would therefore
be “Lymphocyte+” and “Lymphocyte-”. These names don’t necessarily need to be unique, and
in order to be able to unambiguously address each item in a work flow we need additional

24

unique identifiers. Our software keeps an alias table that maps these internal unique identifiers
to more human-readable and user friendly names, and unless there are naming collisions, those
names will also be the primary identifiers that are exposed in the API. Only if and alias is not
unique, objects need to be addressed by their internal unique identifier.

6.3 Creating workFlow objects

Objects of class workFlow have to be created using the constructor workFlow. The single
mandatory argument is a flow data object, either a flowFrame or a flowSet .

> data(GvHD)

> wf <- workFlow(GvHD[1:5], name="myWorkflow")

> wf

A flow cytometry workflow called 'myWorkflow'

The following data views are provided:

Basic view 'base view'

on a flowSet

not associated to a particular action item

Printing the objects shows its structure: the work flow contains a single view “base view” which
essentially is the flowSet fs. Since the data was added by the constructor and is not the result
of a particular data analysis operation, no actionItem is associated to the view . We can query
the available views in the workFlow using the views method:

> views(wf)

[1] "base view"

6.4 Adding actionItems

Currently there are four different types of actionItems that can be added to a workFlow :

� compensateActionItem: A compensation object

� transformActionItem: A transformList object

� normalizeActionItem: A normalization object

� gateActionItem: A filter object

The user doesn’t have to bother with the details of these classes, they will be created
internally when adding one of the above source objects to the workFlow using the add method.

> tf <- transformList(colnames(GvHD[[1]])[3:6], asinh, transformationId="asinh")

> add(wf, tf)

> wf

25

A flow cytometry workflow called 'myWorkflow'

The following data views are provided:

Basic view 'base view'

on a flowSet

not associated to a particular action item

View 'asinh'

on a flowSet linked to

transform action item 'action_asinh'

> views(wf)

[1] "base view" "asinh"

There are several things to note here. First, we didn’t assign the return value of add back to
wf. This is the aforementioned feature of the reference semantic. Internally, workFlows are to
the most part environments, and all modifications change the content of these environments
rather than the object itself. We also used the add methods with two arguments only: the
workFlow and the transformList . In a hierarchical work flow we usually want to control to
which subset (or rather to which view , to stick to the work flow lingo) we want to add the
actionItem to. The default is to use the base view, and alternative parent views have to
be specified using the parent argument; add(wf,tf,parent="base view") would have been
equivalent. Adding the transformation created a new view called “asinh” and we can see that
this name was automatically taken from the transformationList object. If we want to control
the name of the new view , we can do so using the name argument:

> add(wf, tf, name="another asinh transform")

> wf

A flow cytometry workflow called 'myWorkflow'

The following data views are provided:

Basic view 'base view'

on a flowSet

not associated to a particular action item

View 'asinh'

on a flowSet linked to

transform action item 'action_asinh'

(ID=transActionRef_dpBDmRQOhP)

View 'another asinh transform'

on a flowSet linked to

transform action item 'action_asinh'

(ID=transActionRef_SKzX4l0Co4)

26

This operation created a warning since we didn’t use a leaf node to add the transformation.
The software can’t be sure if any of the downstream leafs in the work flow hierarchy are affected
by the transformation (as it would certainly be true for most gates). One solution would be
to update all downstream leafs in the work flow, but this feature is not supported yet. Also
note that we used the same transformList object twice. While we controlled the name that
was used for the second view , the alias for the actionItem is the same in both cases, and we
would have to use the internal unique identifier to unambiguously access the respective object.

Transformation operations (and also compensations or normalizations) only create single
views. This is not true for gating operations. Even the most simple gate creates two popula-
tions: those cells in the gate and the complement. Accordingly, two separate views have to be
created as well.

> rg <- rectangleGate("FSC-H"=c(200,400), "SSC-H"=c(250, 400),

+ filterId="rectangle")

> add(wf, rg, parent="asinh")

> wf

A flow cytometry workflow called 'myWorkflow'

The following data views are provided:

Basic view 'base view'

on a flowSet

not associated to a particular action item

View 'asinh'

on a flowSet linked to

transform action item 'action_asinh'

(ID=transActionRef_dpBDmRQOhP)

View 'rectangle+'

on a flowSet linked to

gate action item 'action_rectangle'

View 'rectangle-'

on a flowSet linked to

gate action item 'action_rectangle'

View 'another asinh transform'

on a flowSet linked to

transform action item 'action_asinh'

(ID=transActionRef_SKzX4l0Co4)

As we see, there are now two new views under the “asinh” node called “rectangle+” and
“rectangle-”. Other filter types may create more than two populations, for instance a quad-
rantGate always results in four sub-populations. There is no restriction on the number of
populations that are allowed to be created by a single gating operation, however, when gating
a flowSet , the number of populations have to be the same for each frame in the set.

27

> qg <- quadGate("FL1-H"=2, "FL2-H"=4)

> add(wf,qg,parent="rectangle+")

> wf

A flow cytometry workflow called 'myWorkflow'

The following data views are provided:

Basic view 'base view'

on a flowSet

not associated to a particular action item

View 'asinh'

on a flowSet linked to

transform action item 'action_asinh'

(ID=transActionRef_dpBDmRQOhP)

View 'rectangle+'

on a flowSet linked to

gate action item 'action_rectangle'

View 'CD15 FITC+CD45 PE+'

on a flowSet linked to

gate action item 'action_defaultQuadGate'

View 'CD15 FITC-CD45 PE+'

on a flowSet linked to

gate action item 'action_defaultQuadGate'

View 'CD15 FITC+CD45 PE-'

on a flowSet linked to

gate action item 'action_defaultQuadGate'

View 'CD15 FITC-CD45 PE-'

on a flowSet linked to

gate action item 'action_defaultQuadGate'

View 'rectangle-'

on a flowSet linked to

gate action item 'action_rectangle'

View 'another asinh transform'

on a flowSet linked to

transform action item 'action_asinh'

(ID=transActionRef_SKzX4l0Co4)

28

For complex work flows it becomes increasingly hard to convey all information by printing on
the screen. There is a plotting function for workFlow objects which plots the underlying tree.
The function depends on the Rgraphviz package.

> plot(wf)

base
view

asinh
another
asinh

transform

rectangle+ rectangle−

CD15
FITC+CD45

PE+

CD15
FITC−CD45

PE+

CD15
FITC+CD45

PE−

CD15
FITC−CD45

PE−

transActionRef_
dpBDmRQOhP

transActionRef_
SKzX4l0Co4

action_
rectangle

action_
defaultQuadGate

6.5 Accessing items in the workFlow object

The main reason for having the workFlow class is to be able to easily access all elements
of a potentially complex analysis work flow. The predominant use case here is to access
individual views, either for plotting, to create summary statistics or to use the underlying data
for subsequent analysis steps. You can do that using the familiar list subsetting syntax:

> wf[["rectangle+"]]

View 'rectangle+'

on a flowSet linked to

gate action item 'action_rectangle'

applied to view 'asinh' (ID=transViewRef_giwYQX9z0V)

29

> wf$asinh

View 'asinh'

on a flowSet linked to

transform action item 'action_asinh'

(ID=transActionRef_dpBDmRQOhP)

applied to view 'base view' (ID=viewRef_jzwiFXPREp)

This also works for actionItems:

> wf[["action_rectangle"]]

gate action item 'action_rectangle'

applied to view 'asinh' (ID=transViewRef_giwYQX9z0V)

In order to retreive the underlying data for a view you can use the Data method.

> Data(wf[["rectangle-"]])

A flowSet with 5 experiments.

An object of class "AnnotatedDataFrame"

rowNames: s5a01 s5a02 ... s5a05 (5 total)

varLabels: Patient Visit ... name (5 total)

varMetadata: labelDescription

column names:

FSC-H SSC-H FL1-H FL2-H FL3-H FL2-A FL4-H Time

There are summary methods defined for the different view subclasses, which basically create
the respective summaries of the associated flowCore objects, e.g. a filterResult for a filtering
operation.

> summary(wf[["action_rectangle"]])

sample population percent count true false p q

1 s5a01 rectangle+ 2.8070175 3420 96 3324 0.028070175 0.9719298

2 s5a02 rectangle+ 1.5859031 3405 54 3351 0.015859031 0.9841410

3 s5a03 rectangle+ 0.3202329 3435 11 3424 0.003202329 0.9967977

4 s5a04 rectangle+ 0.3859649 8550 33 8517 0.003859649 0.9961404

5 s5a05 rectangle+ 3.5542747 10410 370 10040 0.035542747 0.9644573

6 s5a01 rectangle- 97.1929825 3420 3324 96 0.028070175 0.9719298

7 s5a02 rectangle- 98.4140969 3405 3351 54 0.015859031 0.9841410

8 s5a03 rectangle- 99.6797671 3435 3424 11 0.003202329 0.9967977

9 s5a04 rectangle- 99.6140351 8550 8517 33 0.003859649 0.9961404

10 s5a05 rectangle- 96.4457253 10410 10040 370 0.035542747 0.9644573

> summary(wf[["CD15 FITC+CD45 PE+"]])

30

sample population percent count true false p q

1 s5a01 CD15 FITC+CD45 PE+ 91.66667 96 88 8 0.9166667 0.08333333

5 s5a02 CD15 FITC+CD45 PE+ 85.18519 54 46 8 0.8518519 0.14814815

9 s5a03 CD15 FITC+CD45 PE+ 63.63636 11 7 4 0.6363636 0.36363636

13 s5a04 CD15 FITC+CD45 PE+ 93.93939 33 31 2 0.9393939 0.06060606

17 s5a05 CD15 FITC+CD45 PE+ 98.91892 370 366 4 0.9891892 0.01081081

The flowViz package also defines xyplot and densityplot methods for view objects. Sensible
defaults are usually chosen automatically, for instance to add the gate boundaries to the plot
of a gateView .

> densityplot(wf[["base view"]])

> xyplot(`FL1-H` ~ `FL2-H`, wf[["CD15 FITC+CD45 PE+"]])

6.6 Removing items from workFlow object

The hierarchical structur of the workFlow object introduces dependencies between views or
between views and actionItems. Thus, removing a particular view means also removing all of
its associated child views and actionItems. The easiest way to remove objects from a workFlow
is through the undo mechanism. The function takes a workFlow object as first argument and
an optional second integer argument giving the number of operartions that are supposed to be
roled back.

> undo(wf)

> wf

A flow cytometry workflow called 'myWorkflow'

The following data views are provided:

Basic view 'base view'

on a flowSet

not associated to a particular action item

View 'asinh'

on a flowSet linked to

transform action item 'action_asinh'

(ID=transActionRef_dpBDmRQOhP)

View 'rectangle+'

on a flowSet linked to

gate action item 'action_rectangle'

View 'rectangle-'

on a flowSet linked to

gate action item 'action_rectangle'

View 'another asinh transform'

31

on a flowSet linked to

transform action item 'action_asinh'

(ID=transActionRef_SKzX4l0Co4)

Sometimes it is more convenient to specify a particular view or action item that is to be
removed. This can be archived using the Rm methods for views or actionItems. As a side-effect
these methods will also remove all dependent items and the user should be well aware of this
potentially dangerous behaviour.

> Rm('rectangle-', wf)

> Rm('asinh', wf)

32

References

C. Bruce Bagwell. DNA histogram analysis for node-negative breast cancer. Cytometry A, 58:
76–78, 2004.

Mark S Boguski and Martin W McIntosh. Biomedical informatics for proteomics. Nature, 422:
233–237, 2003.

Raul C Braylan. Impact of flow cytometry on the diagnosis and characterization of lymphomas,
chronic lymphoproliferative disorders and plasma cell neoplasias. Cytometry A, 58:57–61,
2004.

A. Brazma. On the importance of standardisation in life sciences. Bioinformatics, 17:113–114,
2001.

M. Chicurel. Bioinformatics: bringing it all together. Nature, 419:751–755, 2002.

Maura Gasparetto, Tracy Gentry, Said Sebti, Erica O’Bryan, Ramadevi Nimmanapalli,
Michelle A Blaskovich, Kapil Bhalla, David Rizzieri, Perry Haaland, Jack Dunne, and Clay
Smith. Identification of compounds that enhance the anti-lymphoma activity of rituximab
using flow cytometric high-content screening. J Immunol Methods, 292:59–71, 2004.

M. Keeney, D. Barnett, and J. W. Gratama. Impact of standardization on clinical cell analysis
by flow cytometry. J Biol Regul Homeost Agents, 18:305–312, 2004.

N. LeMeur and F. Hahne. Analyzing flow cytometry data with bioconductor. Rnews, 6:27–32,
2006.

DR Parks. Data Processing and Analysis: Data Management., volume 1 of Current Protocols
in Cytometry. John Wiley & Sons, Inc, New York, 1997.

J. Spidlen, R.C. Gentleman, P.D. Haaland, M. Langille, N. Le Meur N, M.F. Ochs, C. Schmitt,
C.A. Smith, A.S. Treister, and R.R. Brinkman. Data standards for flow cytometry. OMICS,
10(2):209–214, 2006.

J. Spidlen, R.C. Leif, W. Moore, M. Roederer, International Society for the Advancement of
Cytometry Data Standards Task Force, and R.R. Brinkman. Gating-ml: Xml-based gating
descriptions in flow cytometry. Cytometry A, 73A(12):1151–1157, 2008.

Maria A Suni, Holli S Dunn, Patricia L Orr, Rian de Laat, Elizabeth Sinclair, Smita A
Ghanekar, Barry M Bredt, John F Dunne, Vernon C Maino, and Holden T Maecker. Perfor-
mance of plate-based cytokine flow cytometry with automated data analysis. BMC Immunol,
4:9, 2003.

33

	Introduction
	Representing Flow Cytometry Data
	The flowFrame Class
	Data elements
	Reading a flowFrame
	Visualizing a flowFrame

	The flowSet Class
	Creating a flowSet
	Working with experimental metadata
	Bringing it all together: read.flowSet
	Manipulating a flowSet

	Transformation
	Standard Transforms

	Gating
	Standard gates and filters
	Count Statistics
	Subsetting
	Combining Filters
	Transformation Filters

	filterSet: Organizing Filtering Strategies
	Building Filter Sets
	Manipulating Filter Sets
	Using Filter Sets

	Work flows
	Abstraction of work flows
	Naming schemes
	Creating workFlow objects
	Adding actionItems
	Accessing items in the workFlow object
	Removing items from workFlow object

