
Notes on the Bioconductor ROC library

November 1, 2011

1 Introduction

The ROC library is a collection of R classes and functions related to receiver
operating characteristic (ROC) curves. These functions are targeted at the use
of ROC analysis with DNA microarrays, as discussed in work of MS Pepe, G
Anderson and colleagues at U Washington Seattle Biostatistics (unpublished
report). Other open source software for ROC analysis in the S language has
been distributed by Beth Atkinson of the Mayo Clinic.

2 Inventory of classes and functions

2.1 rocc: a representation of an ROC curve

ROC curves illustrate the performance of a classification procedure based on
dichotomous interpretation of a continuous marker. Suppose the true state of
an item is either ‘+’ or ‘−’. The item’s marker value is compared to a threshold,
and the item is classified as positive or negative depending on whether the
marker value is greater than or less than the threshold. For a fixed threshold
t, the procedure has a sensitivity Pr(marker ≥ t |true class= +) and specificity
Pr(marker < t |true class= −). The ROC curve is the locus of values (x, y) =
(1− spec, sens).

rocc is an S4-style class, with slots

� sens, vector of sensitivity values

� spec, vector of specificity values

� rule, archival value of the rule used to classify items

� cuts, vector of thresholds used

� markerlabel, name of the marker

� caselabel, name of the state

Let’s verify:

1

> library(ROC)

> print(getClass("rocc"))

Class "rocc" [package "ROC"]

Slots:

Name: sens spec rule cuts markerLabel caseLabel

Class: numeric numeric function numeric character character

For creation of an ROC curve object (an instance of class rocc), the func-
tion rocdemo.sca is available. The name is chosen to indicate that this is a
provisional definition based on a scalar marker.

rocdemo.sca is defined as follows:

> print(rocdemo.sca)

function (truth, data, rule = NULL, cutpts = NA, markerLabel = "unnamed marker",

caseLabel = "unnamed diagnosis")

{

if (!all(sort(unique(truth)) == c(0, 1)))

stop("'truth' variable must take values 0 or 1")

if (is.na(cutpts)) {

udata <- unique(sort(data))

delta <- min(diff(udata))/2

cutpts <- c(udata - delta, udata[length(udata)] + delta)

}

np <- length(cutpts)

if (is.null(rule) | isTRUE(all.equal(rule, dxrule.sca))) {

if (options()$verbose)

cat("verbose: using C.\n")

rocResult <- .C("ROC", as.integer(truth), as.double(data),

as.double(cutpts), as.integer(length(truth)), as.integer(length(cutpts)),

spec = double(np), sens = double(np), PACKAGE = "ROC")

spec <- rocResult$spec

sens <- rocResult$sens

rule <- dxrule.sca

}

else {

sens <- rep(NA, np)

spec <- rep(NA, np)

for (i in 1:np) {

pred <- rule(data, cutpts[i])

sens[i] = mean(pred[truth == 1])

spec[i] = mean(1 - pred[truth == 0])

}

}

2

new("rocc", spec = spec, sens = sens, rule = rule, cuts = cutpts,

markerLabel = markerLabel, caseLabel = caseLabel)

}

<environment: namespace:ROC>

The argument truth is the vector of actual states of the objects being clas-
sified, and it must be a vector of binary indicators. The argument data is the
vector of marker values. The argument rule is the classification rule. This must
be a function of two arguments, and the following is an obvious approach:

> print(dxrule.sca)

function (x, thresh)

ifelse(x > thresh, 1, 0)

<environment: namespace:ROC>

To begin working with ROC curves in R, you can proceed as follows.

> set.seed(123)

> state <- c(0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1)

> markers <- c(1,2,1,1,2,3,3,4,2,1,1,3,2,3,2,4,5,2,3,4)+runif(20,-1,1)

> roc1 <- rocdemo.sca(truth=state, data=markers, rule=dxrule.sca)

2.2 Functionals of the ROC curve

The area under the ROC curve is well known to be equivalent to the numerator
of the Mann-Whitney U statistic comparing the marker distributions among
positive and negative items. Even if the overall area is not very large, the
existence of threshold values yielding sensitivities markedly greater than the
false positive rate can be of interest. The sensitivity at a false positive rate t is

denoted ROC(t); the AUC =
∫ 1

0
ROC(u)du. Finally, the partial AUC to a false

positive rate s is denoted pAUC(s) =
∫ s

0
ROC(u)du.

> auc <- AUC(roc1); print(auc)

[1] 0.7

> paucp4 <- pAUC(roc1,.4); print(paucp4)

[1] 0.2

> rocp3 <- ROC(roc1,.3); print(rocp3)

[1] 0.6

>

3

> plot(roc1)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Figure 1: An example ROC curve with default plotting parameters.

4

Note that the definition of the AUC uses a naive trapezoidal rule. This is
faster than integrate. However, functions AUCi and pAUCi that use the more
accurate integrate() function are available.

> print(trapezint)

function (x, y, a, b)

{

if (length(x) != length(y))

stop("length x must equal length y")

y <- y[x >= a & x <= b]

x <- x[x >= a & x <= b]

if (length(unique(x)) < 2)

return(NA)

ya <- approx(x, y, a, ties = max, rule = 2)$y

yb <- approx(x, y, b, ties = max, rule = 2)$y

x <- c(a, x, b)

y <- c(ya, y, yb)

h <- diff(x)

lx <- length(x)

0.5 * sum(h * (y[-1] + y[-lx]))

}

<environment: namespace:ROC>

>

2.3 Tools for working with microarrays

See the Biobase package for a discussion of the ExpressionSet class, which
represents a collection of microarrays. Given a dichotomous element from the
phenoData slot, an AnnotatedDataFrame, of an ExpressionSet object, an ROC
curve may be defined using the expression levels of any gene as the vector of
marker values.

We confine activities to the first 50 genes in sample.ExpressionSet so that
this vignette is computable in reasonable CPU time.

> library(Biobase)

> data(sample.ExpressionSet)

> myauc <- function(x) {

+ dx <- as.numeric(sex) - 1 # phenoData is installed

+ AUC(rocdemo.sca(truth=dx, data=x, rule=dxrule.sca))

+ }

> mypauc1 <- function(x) {

+ dx <- as.numeric(sex) - 1

+ pAUC(rocdemo.sca(truth=dx, data=x, rule=dxrule.sca), .1)

+ }

> allAUC <- esApply(sample.ExpressionSet[1:50,], 1, myauc)

5

> allpAUC1 <- esApply(sample.ExpressionSet[1:50,], 1, mypauc1)

> print(featureNames(sample.ExpressionSet[1:50,])[order(allAUC, decreasing = TRUE)[1]])

[1] "AFFX-HUMRGE/M10098_5_at"

> print(featureNames(sample.ExpressionSet[1:50,])[order(allpAUC1, decreasing = TRUE)[1]])

[1] "AFFX-LysX-5_at"

>

2.4 Inference on ROC-based rankings

Pepe et al indicate that rankings based on ROC functionals are of interest, and
that uncertainty in rankings can be exposed by resampling tissues. Working
with ExpressionSets, this is easy to carry out. (We use a very small number
of resamplings (5) to get through this in a reasonable execution time.)

> nResamp <- 5

> nTiss <- ncol(exprs(sample.ExpressionSet))

> nGenes <- nrow(exprs(sample.ExpressionSet[1:50,]))

> out <- matrix(NA,nr=nGenes, nc=nResamp)

> set.seed(123)

> for (i in 1:nResamp)

+ {

+ TissInds <- sample(1:nTiss, size=nTiss, replace=TRUE)

+ out[,i] <- esApply(sample.ExpressionSet[1:50,TissInds], 1, myauc)

+ }

> rout <- apply(out,2,rank)

>

Each row of the matrix rout is a sample from the bootstrap distribution of AUC
ranks for the corresponding gene.

6

